A couple of extra questions

Here's a couple of extra problems to try. This is not a complete coverage of the material. You should go over the past exams, the online homeworks, and the exercises in the book.

1. For what a is $f(x, y)=2 x^{2}+a y^{2}+x y$ is a Harmonic function (solves the Laplace equation)?
2. Compute $d\left(x^{2} z y d x \wedge d y\right)$
3. Compute $\left(x^{2} d x+4 y d z\right) \wedge\left(5 d x \wedge d y+8 d z \wedge d x+e^{z} d y \wedge d z\right)$
4. Suppose $\left(f_{1} \hat{\imath}+f_{2} \hat{\jmath}+f_{3} \hat{k}\right) \times\left(g_{1} \hat{\imath}+g_{2} \hat{\jmath}+g_{3} \hat{k}\right)=z \hat{\imath}+e^{y} \hat{\jmath}+x^{2} \hat{k}$. Compute $\left(f_{1} d x+f_{2} d y+f_{3} d z\right) \wedge\left(g_{1} d x+g_{2} d y+g_{3} d z\right)=$
5. If $d \omega=3 d x \wedge d y \wedge d z$ for a certain two-form ω, and S is the boundary of a region R in three-space where volume of R is 2 (and S is oriented with the outer unit normal). Find

$$
\int_{S} \omega
$$

6. Compute

$$
\int_{S} 5 d x \wedge d y+8 d z \wedge d x+e^{z} d y \wedge d z
$$

for a surface S defined by $z=x^{2}+y,-1<x<1,-1<y<1$.
7. Find and classify the critical points of
a) $f(x, y)=x y-2 y-3 x+6$
b) $f(x, y)=3 y^{2}-x y-24 y+2 x^{2}-4 x+50$
c) $f(x, y)=x^{3}+x^{2}+y^{2}+x y$
d) $f(x, y)=x^{4}-y^{4}$
8. Compute

$$
\int_{C}\left(x^{2}-y^{2}\right) d x+y^{2} d y
$$

for a C being the sides of the unit square, traversing them counterclockwise.
9. Suppose $\nabla \cdot \vec{F}=x$. Compute

$$
\iint_{S} \vec{F} \cdot \hat{n} d S
$$

for S being the sides of the unit cube, with \hat{n} being the outer unit normal.
10. Suppose

$$
\iint_{R} \vec{F} \cdot \hat{k} d A=3
$$

where R is the bottom square side (the one in the $x y$-plane) of the unit cube. Suppose that $\nabla \cdot \vec{F}=0$. Find

$$
\iint_{S} \vec{F} \cdot \hat{n} d A
$$

where \hat{n} is the outer unit normal and S are the 5 remaining sides of the cube.
11. Suppose you estimated $\int_{C} y d x \approx 9.1$ for a closed curve C. What can you say about the inside of C ?
12. Let $f(x, y, z)=x^{2}+y+e^{x z^{2}}$. Let C be a path (any path) from $(1,2,3)$ to $(-1,3,5)$. Can you compute

$$
\int_{C} \nabla f \cdot \hat{T} d s
$$

and if so what is it? If not explain why.
13. Suppose a force field is $\vec{F}=\left(2 x z+y z e^{x y}\right) \hat{\imath}+\left(x z e^{x y}\right) \hat{\jmath}+\left(x^{2}+2 z+e^{x y}\right) \hat{k}$. Compute the potential of this force field (in the sense of physicists), that is find a function ψ such that $\vec{F}=-\nabla \psi$.
14. Suppose that ψ has a single global minimum (and a single critical point in fact) at the point $(1,2,3)$ and goes to plus infinity along any path going from the origin (towards infinity) in any direction. Let \vec{F} be a force field given by $\vec{F}=-\nabla \psi$. Suppose a particle is pulled by \vec{F} and starts at the point $(0,0,0)$. What will this particle do?

