
Chapter 10

Multivariable integral

10.1 Riemann integral over rectangles
Note: ??? lectures

As in chapter chapter 5, we define the Riemann integral using the Darboux upper and lower inte-
grals. The ideas in this section are very similar to integration in one dimension. The complication is
mostly notational. The differences between one and several dimensions will grow more pronounced
in the sections following.

10.1.1 Rectangles and partitions
Definition 10.1.1. Let (a1,a2, . . . ,an) and (b1,b2, . . . ,bn) be such that ak ≤ bk for all k. A set of
the form [a1,b1]× [a2,b2]×·· ·× [an,bn] is called a closed rectangle. In this setting it is sometimes
useful to allow ak = bk, in which case we think of [ak,bk] = {ak} as usual. If ak < bk for all k, then
a set of the form (a1,b1)× (a2,b2)×·· ·× (an,bn) is called an open rectangle.

For an open or closed rectangle R := [a1,b1]× [a2,b2]×·· ·× [an,bn]⊂ Rn or R := (a1,b1)×
(a2,b2)×·· ·× (an,bn)⊂ Rn, we define the n-dimensional volume by

V (R) := (b1 −a1)(b2 −a2) · · ·(bn −an).

A partition P of the closed rectangle R = [a1,b1]× [a2,b2]×·· ·× [an,bn] is a finite set of par-
titions P1,P2, . . . ,Pn of the intervals [a1,b1], [a2,b2], . . . , [an,bn]. We will write P = (P1,P2, . . . ,Pn).
That is, for every k there is an integer �k and the finite set of numbers Pk = {xk,0,xk,1,xk,2, . . . ,xk,�k}
such that

ak = xk,0 < xk,1 < xk,2 < · · ·< xk,�k−1 < xk,�k = bk.

Picking a set of n integers j1, j2, . . . , jn where jk ∈ {1,2, . . . ,�k} we get the subrectangle

[x1, j1−1 , x1, j1 ]× [x2, j2−1 , x2, j2 ]×·· ·× [xn, jn−1 , xn, jn ].
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For simplicity, we order the subrectangles somehow and we say {R1,R2, . . . ,RN} are the subrectan-
gles corresponding to the partition P of R. Or more simply, we say they are the subrectangles of
P. In other words we subdivide the original rectangle into many smaller subrectangles. It is not
difficult to see that these subrectangles cover our original R, and their volume sums to that of R.
That is

R =
N�

j=1

R j, and V (R) =
N

∑
j=1

V (R j).

When
Rk = [x1, j1−1 , x1, j1 ]× [x2, j2−1 , x2, j2 ]×·· ·× [xn, jn−1 , xn, jn ]

then

V (Rk) = Δx1, j1Δx2, j2 · · ·Δxn, jn = (x1, j1 − x1, j1−1)(x2, j2 − x2, j2−1) · · ·(xn, jn − xn, jn−1).

Let R ⊂ Rn be a closed rectangle and let f : R → R be a bounded function. Let P be a partition
of [a,b] and suppose that there are N subrectangles. Let Ri be a subrectangle of P. Define

mi := inf{ f (x) : x ∈ Ri},
Mi := sup{ f (x) : x ∈ Ri},

L(P, f ) :=
N

∑
i=1

miV (Ri),

U(P, f ) :=
N

∑
i=1

MiV (Ri).

We call L(P, f ) the lower Darboux sum and U(P, f ) the upper Darboux sum.

The indexing in the definition may be complicated, fortunately we generally do not need to go
back directly to the definition often. We start proving facts about the Darboux sums analogous to
the one-variable results.

Proposition 10.1.2. Suppose R ⊂ Rn is a closed rectangle and f : R → R is a bounded function.
Let m,M ∈ R be such that for all x ∈ R we have m ≤ f (x)≤ M. For any partition P of R we have

mV (R)≤ L(P, f )≤U(P, f )≤ MV (R).

Proof. Let P be a partition. Then note that m ≤ mi for all i and Mi ≤ M for all i. Also mi ≤ Mi for
all i. Finally ∑N

i=1V (Ri) =V (R). Therefore,

mV (R) = m

�
N

∑
i=1

V (Ri)

�
=

N

∑
i=1

mV (Ri)≤
N

∑
i=1

miV (Ri)≤

≤
N

∑
i=1

MiV (Ri)≤
N

∑
i=1

MV (Ri) = M

�
N

∑
i=1

V (Ri)

�
= MV (R).
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10.1.2 Upper and lower integrals
By Proposition 10.1.2 the set of upper and lower Darboux sums are bounded sets and we can take
their infima and suprema. As before, we now make the following definition.

Definition 10.1.3. If f : R → R is a bounded function on a closed rectangle R ⊂ Rn. Define
�

R
f := sup{L(P, f ) : P a partition of R},

�

R
f := inf{U(P, f ) : P a partition of R}.

We call
�

the lower Darboux integral and
�

the upper Darboux integral.

As in one dimension we have refinements of partitions.

Definition 10.1.4. Let R⊂Rn be a closed rectangle and let P=(P1,P2, . . . ,Pn) and �P=(�P1, �P2, . . . , �Pn)
be partitions of R. We say �P a refinement of P if as sets Pk ⊂ �Pk for all k = 1,2, . . . ,n.

It is not difficult to see that if �P is a refinement of P, then subrectangles of P are unions of
subrectangles of �P. Simply put, in a refinement we took the subrectangles of P and we cut them
into smaller subrectangles.

Proposition 10.1.5. Suppose R⊂Rn is a closed rectangle, P is a partition of R and �P is a refinement
of P. If f : R → R be a bounded function, then

L(P, f )≤ L(�P, f ) and U(�P, f )≤U(P, f ).

Proof. Let R1,R2, . . . ,RN be the subrectangles of P and �R1, �R2, . . . , �RM be the subrectangles of �R.
Let Ik be the set of indices j such that �R j ⊂ Rk. We notice that

Rk =
�

j∈Ik

�R j, V (Rk) = ∑
j∈Ik

V (�R j).

Let m j := inf{ f (x) : x ∈ R j}, and �m j := inf{ f (x) :∈ �R j} as usual. Notice also that if j ∈ Ik, then
mk ≤ �m j. Then

L(P, f ) =
N

∑
k=1

mkV (Rk) =
N

∑
k=1

∑
j∈Ik

mkV (�R j)≤
N

∑
k=1

∑
j∈Ik

�m jV (�R j) =
M

∑
j=1

�m jV (�R j) = L(�P, f ).

The key point of this next proposition is that the lower Darboux integral is less than or equal to
the upper Darboux integral.

Proposition 10.1.6. Let R ⊂ Rn be a closed rectangle and f : R → R a bounded function. Let
m,M ∈ R be such that for all x ∈ R we have m ≤ f (x)≤ M. Then

mV (R)≤
�

R
f ≤

�

R
f ≤ MV (R). (10.1)
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Proof. For any partition P, via Proposition 10.1.2

mV (R)≤ L(P, f )≤U(P, f )≤ MV (R).

By taking suprema of L(P, f ) and infima of U(P, f ) over all P we obtain the first and the last
inequality.

The key of course is the middle inequality in (10.1). Let P=(P1,P2, . . . ,Pn) and Q=(Q1,Q2, . . . ,Qn)
be partitions of R. Define �P = (�P1, �P2, . . . , �Pn) by letting �Pk = Pk ∪Qk. Then �P is a partition of R as
can easily be checked, and �P is a refinement of P and a refinement of Q. By Proposition 10.1.5,
L(P, f )≤ L(�P, f ) and U(�P, f )≤U(Q, f ). Therefore,

L(P, f )≤ L(�P, f )≤U(�P, f )≤U(Q, f ).

In other words, for two arbitrary partitions P and Q we have L(P, f )≤U(Q, f ). Via Proposition ??
we obtain

sup{L(P, f ) : P a partition of R}≤ inf{U(P, f ) : P a partition of R}.
In other words

�
R f ≤ �

R f .

10.1.3 The Riemann integral
We now have all we need to define the Riemann integral in n-dimensions over rectangles. Again,
the Riemann integral is only defined on a certain class of functions, called the Riemann integrable
functions.

Definition 10.1.7. Let R ⊂ Rn be a closed rectangle. Let f : R → R be a bounded function such
that �

R
f (x) dx =

�

R
f (x) dx.

Then f is said to be Riemann integrable. The set of Riemann integrable functions on R is denoted
by R(R). When f ∈ R(R) we define the Riemann integral

�

R
f :=

�

R
f =

�

R
f .

When the variable x ∈ Rn needs to be emphasized we write
�

R
f (x) dx,

�

R
f (x1, . . . ,xn) dx1 · · ·dxn, or

�

R
f (x) dV.

If R ⊂ R2, then often instead of volume we say area, and hence write
�

R
f (x) dA.

Proposition 10.1.6 implies immediately the following proposition.
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Proposition 10.1.8. Let f : R → R be a Riemann integrable function on a closed rectangle R ⊂ Rn.
Let m,M ∈ R be such that m ≤ f (x)≤ M for all x ∈ R. Then

mV (R)≤
�

R
f ≤ MV (R).

Example 10.1.9: A constant function is Riemann integrable. Suppose f (x) = c for all x on R. Then

cV (R)≤
�

R
f ≤

�

R
f ≤ cV (R).

So f is integrable, and furthermore
�

R f = cV (R).

The proofs of linearity and monotonicity are almost completely identical as the proofs from one
variable. We therefore leave it as an exercise to prove the next two propositions.

Proposition 10.1.10 (Linearity). Let R ⊂ Rn be a closed rectangle and let f and g be in R(R) and
α ∈ R.

(i) α f is in R(R) and �

R
α f = α

�

R
f

(ii) f +g is in R(R) and �

R
( f +g) =

�

R
f +

�

R
g.

Proposition 10.1.11 (Monotonicity). Let R ⊂ Rn be a closed rectangle and let f and g be in R(R)
and let f (x)≤ g(x) for all x ∈ R. Then

�

R
f ≤

�

R
g.

Again for simplicity if f : S → R is a function and R ⊂ S is a closed rectangle, then if the
restriction f |R is integrable we say f is integrable on R, or f ∈ R(R) and we write

�

R
f :=

�

R
f |R.

Proposition 10.1.12. For a closed rectangle S ⊂ Rn, if f : S → R is integrable and R ⊂ S is a
closed rectangle, then f is integrable over R.

Proof. Given ε > 0, we find a partition P such that U(P, f )−L(P, f )< ε . By making a refinement
of P we can assume that the endpoints of R are in P, or in other words, R is a union of subrectangles
of P. Then the subrectangles of P divide into two collections, ones that are subsets of R and ones
whose intersection with the interior of R is empty. Suppose that R1,R2 . . . ,RK be the subrectangles
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that are subsets of R and RK+1, . . . ,RN be the rest. Let �P be the partition of R composed of those
subrectangles of P contained in R. Then using the same notation as before.

ε >U(P, f )−L(P, f ) =
K

∑
k=1

(Mk −mk)V (Rk)+
N

∑
k=K+1

(Mk −mk)V (Rk)

≥
K

∑
k=1

(Mk −mk)V (Rk) =U(�P, f |R)−L(�P, f |R)

Therefore f |R is integrable.

10.1.4 Integrals of continuous functions
Later we will prove a much more general result, but it is useful to start with continuous functions
only and prove that continuous functions are integrable. Before we get to continuous functions, let
us state the following proposition, which has a very easy proof, but it is useful to emphasize as a
technique.

Proposition 10.1.13. Let R ⊂ Rn be a closed rectangle and f : R → R a bounded function. If for
every ε > 0, there exists a partition P of R such that

U(P, f )−L(P, f )< ε,

then f ∈ R(R).

Proof. Given an ε > 0 find P as in the hypothesis. Then
�

R
f −

�

R
f ≤U(P, f )−L(P, f )< ε.

As
�

R f ≥ �
R f and the above holds for every ε > 0, we conclude

�
R f =

�
R f and f ∈ R(R).

We say a rectangle R = [a1,b1]× [a2,b2]×·· ·× [an,bn] has longest side at most α if bk−ak ≤ α
for all k = 1,2, . . . ,n.

Proposition 10.1.14. If a rectangle R ⊂ Rn has longest side at most α . Then for any x,y ∈ R,

�x− y� ≤ √
nα.

Proof.

�x− y�=
�
(x1 − y1)

2 +(x2 − y2)
2 + · · ·+(xn − yn)

2

≤
�

(b1 −a1)
2 +(b2 −a2)

2 + · · ·+(bn −an)
2

≤
�

α2 +α2 + · · ·+α2 =
√

nα.
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Theorem 10.1.15. Let R ⊂ Rn be a closed rectangle and f : R → R a continuous function, then
f ∈ R(R).

Proof. The proof is analogous to the one variable proof with some complications. The set R
is closed and bounded and hence compact. So f is not just continuous, but in fact uniformly
continuous by Proposition ??. Let ε > 0 be given. Find a δ > 0 such that �x− y� < δ implies
| f (x)− f (y)|< ε

V (R) .

Let P be a partition of R such that longest side of any subrectangle is strictly less than δ√
n . Then

for all x,y ∈ Rk for a subrectangle Rk of P we have, by the proposition above, �x− y�<√
n δ√

n = δ .
Therefore

f (x)− f (y)≤ | f (x)− f (y)|< ε
V (R)

.

As f is continuous on Rk, it attains a maximum and a minimum on this interval. Let x be a point
where f attains the maximum and y be a point where f attains the minimum. Then f (x) = Mk and
f (y) = mk in the notation from the definition of the integral. Therefore,

Mi −mi = f (x)− f (y)<
ε

V (R)
.

And so

U(P, f )−L(P, f ) =

�
N

∑
k=1

MkV (Rk)

�
−
�

N

∑
k=1

mkV (Rk)

�

=
N

∑
k=1

(Mk −mk)V (Rk)

<
ε

V (R)

N

∑
k=1

V (Rk) = ε.

As ε > 0 was arbitrary,
� b

a
f =

� b

a
f ,

and f is Riemann integrable on R.

10.1.5 Integration of functions with compact support
Let U ⊂ Rn be an open set and f : U → R be a function. We say the support of f is the set

supp( f ) := {x ∈U : f (x) �= 0}.
That is, the support is the closure of the set of points where the function is nonzero. The closure is
in U , that is in particular supp( f )⊂U . So for a point x ∈U not in the support we have that f is
constantly zero in a whole neighbourhood of x.
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A function f is said to have compact support if supp( f ) is a compact set. We will mostly
consider the case when U = Rn. In light of the following exercise, this is not an oversimplification.

Exercise 10.1.1: Suppose U ⊂ Rn is open and f : U → R is continuous and of compact support. Show that
the function �f : Rn → R

�f (x) :=

�
f (x) if x ∈U,
0 otherwise,

is continuous.

Proposition 10.1.16. Suppose f : Rn → R be a function with compact support. If R is a closed
rectangle such that supp( f )⊂ Ro where Ro is the interior of R, and f is integrable over R, then for
any other closed rectangle S with supp( f )⊂ So, the function f is integrable over S and

�

S
f =

�

R
f .

Proof. The intersection of closed rectangles is again a closed rectangle (or empty). Therefore we
can take �R = R∩S be the intersection of all rectangles containing supp( f ). If �R is the empty set,
then supp( f ) is the empty set and f is identically zero and the proposition is trivial. So suppose that
�R is nonempty. As �R ⊂ R, we know that f is integrable over �R. Furthermore �R ⊂ S. Given ε > 0,
take �P to be a partition of �R such that

U(�P, f |�R)−L(�P, f |�R)< ε.

Now add the endpoints of S to �P to create a new partition P. Note that the subrectangles of �P are
subrectangles of P as well. Let R1,R2, . . . ,RK be the subrectangles of �P and RK+1, . . . ,RN the new
subrectangles. Note that since supp( f )⊂ �R, then for k = K +1, . . . ,N we have supp( f )∩Rk = /0.
In other words f is identically zero on Rk. Therefore in the notation used previously we have

U(P, f |S)−L(P, f |S) =
K

∑
k=1

(Mk −mk)V (Rk)+
N

∑
k=K+1

(Mk −mk)V (Rk)

=
K

∑
k=1

(Mk −mk)V (Rk)+
N

∑
k=K+1

(0)V (Rk)

=U(�P, f |�R)−L(�P, f |�R)< ε.

Similarly we have that L(P, f |S) = L(�P, f�R) and therefore
�

S
f =

�

�R
f .

Since �R ⊂ R we also get
�

R f =
�
�R f , or in other words

�
R f =

�
S f .
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Because of this proposition, when f : Rn → R has compact support and is integrable over a
rectangle R containing the support we write

�
f :=

�

R
f or

�

Rn
f :=

�

R
f .

For example if f is continuous and of compact support then
�
Rn f exists.

10.1.6 Exercises

Exercise 10.1.2: Prove Proposition 10.1.10.

Exercise 10.1.3: Suppose that R is a rectangle with the length of one of the sides equal to 0. Show that for
any function f show that f ∈ R(R) and

�
R f = 0.

Exercise 10.1.4: Suppose R and R� are two closed rectangles with R� ⊂ R. Suppose that f : R → R is in
R(R). Show that f ∈ R(R�).

Exercise 10.1.5: Suppose R and R� are two closed rectangles with R� ⊂ R. Suppose that f : R → R is in
R(R�) and f (x) = 0 for x /∈ R�. Show that f ∈ R(R) and

�

R�
f =

�

R
f .

Hint: see the previous exercise.

Exercise 10.1.6: Suppose that R� ⊂ Rn and R�� ⊂ Rn are two rectangles such that R = R� ∪R�� is a rectangle,
and R� ∩R�� is rectangle with one of the sides having length 0 (that is V (R� ∩R��) = 0). Let f : R → R be a
function such that f ∈ R(R�) and f ∈ R(R��). Show that f ∈ R(R) and

�

R
f =

�

R�
f +

�

R��
f .

Hint: see previous exercise.

Exercise 10.1.7: Prove a stronger version of Proposition 10.1.16. Suppose f : Rn → R be a function with
compact support. Prove that if R is a closed rectangle such that supp( f )⊂ R and f is integrable over R, then
for any other closed rectangle S with supp( f )⊂ S, the function f is integrable over S and

�
S f =

�
R f . Hint:

notice that now the new rectangles that you add as in the proof can intersect supp( f ) on their boundary.

Exercise 10.1.8: Suppose that R and S are closed rectangles. Let f (x) := 1 if x ∈ R and f (x) = 0 otherwise.
Show that f is integrable over S and compute

�
S f .
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Exercise 10.1.9: Let R = [0,1]× [0,1]⊂ R2.
a) Suppose f : R → R is defined by

f (x,y) :=

�
1 if x = y,
0 else.

Show that f ∈ R(R) and compute
�

R f .
b) Suppose f : R → R is defined by

f (x,y) :=

�
1 if x ∈Q or y ∈Q,
0 else.

Show that f /∈ R(R).
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10.2 Iterated integrals and Fubini theorem
Note: ??? lectures

The Riemann integral in several variables is hard to compute from the definition. For one-
dimensional Riemann integral we have the fundamental theorem of calculus and we can compute
many integrals without having to appeal to the definition of the integral. We will rewrite a a Riemann
integral in several variables into several one-dimensional Riemann integrals by iterating. However, if
f : [0,1]2 → R is a Riemann integrable function, it is not immediately clear if the three expressions

�

[0,1]2
f ,

� 1

0

� 1

0
f (x,y)dxdy, and

� 1

0

� 1

0
f (x,y)dydx

are equal, or if the last two are even well-defined.

Example 10.2.1: Define

f (x,y) :=

�
1 if x = 1/2 and y ∈Q,
0 otherwise.

Then f is Riemann integrable on R := [0,1]2 and
�

R f = 0. Furthermore,
� 1

0
� 1

0 f (x,y)dxdy = 0.
However � 1

0
f (1/2,y)dy

does not exist, so we cannot even write
� 1

0
� 1

0 f (x,y)dydx.
Proof: Let us start with integrability of f . We simply take the partition of [0,1]2 where the

partition in the x direction is {0,1/2− ε,1/2+ ε,1} and in the y direction {0,1} . The subrectangles
of the partition are

R1 := [0,1/2− ε]× [0,1], R2 := [1/2− ε,1/2+ ε]× [0,1], R3 := [1/2+ ε,1]× [0,1].

We have m1 = M1 = 0, m2 = 0, M2 = 1, and m3 = M3 = 0. Therefore,

L(P, f ) = m1(1/2− ε) ·1+m2(2ε) ·1+m3(1/2− ε) ·1 = 0,

and
U(P, f ) = M1(1/2− ε) ·1+M2(2ε) ·1+M3(1/2− ε) ·1 = 2ε.

The upper and lower sum are arbitrarily close and the lower sum is always zero, so the function is
integrable and

�
R f = 0.

For any y, the function that takes x to f (x,y) is zero except perhaps at a single point x = 1/2. We
know that such a function is integrable and

� 1
0 f (x,y)dx = 0. Therefore,

� 1
0
� 1

0 f (x,y)dxdy = 0.
However if x = 1/2, the function that takes y to f (1/2,y) is the nonintegrable function that is 1 on

the rationals and 0 on the irrationals. See Example ??.
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We will solve this problem of undefined inside integrals by using the upper and lower integrals,
which are always defined.

We split Rn+m into two parts. That is, we write the coordinates on Rn+m = Rn ×Rm as (x,y)
where x ∈ Rn and y ∈ Rm. For a function f (x,y) we write

fx(y) := f (x,y)

when x is fixed and we wish to speak of the function in terms of y. We write

f y(x) := f (x,y)

when y is fixed and we wish to speak of the function in terms of x.

Theorem 10.2.2 (Fubini version A). Let R×S ⊂Rn×Rm be a closed rectangle and f : R×S →R
be integrable. The functions g : R → R and h : R → R defined by

g(x) :=
�

S
fx and h(x) :=

�

S
fx

are integrable over R and �

R
g =

�

R
h =

�

R×S
f .

In other words
�

R×S
f =

�

R

��

S
f (x,y)dy

�
dx =

�

R

��

S
f (x,y)dy

�
dx.

If it turns out that fx is integrable for all x, for example when f is continuous, then we obtain the
more familiar �

R×S
f =

�

R

�

S
f (x,y)dydx.

Proof. Let P be a partition of R and P� be a partition of S. Let R1,R2, . . . ,RN be the subrectangles
of P and R�

1,R
�
2, . . . ,R

�
K be the subrectangles of P�. Then P×P� is the partition whose subrectangles

are R j ×R�
k for all 1 ≤ j ≤ N and all 1 ≤ k ≤ K.

Let
m j,k := inf

(x,y)∈R j×R�
k

f (x,y).

We notice that V (R j ×R�
k) =V (R j)V (R�

k) and hence

L(P×P�, f ) =
N

∑
j=1

K

∑
k=1

m j,k V (R j ×R�
k) =

N

∑
j=1

�
K

∑
k=1

m j,k V (R�
k)

�
V (R j).
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If we let
mk(x) := inf

y∈R�
k

f (x,y) = inf
y∈R�

k

fx(y),

then of course if x ∈ R j then m j,k ≤ mk(x). Therefore

K

∑
k=1

m j,k V (R�
k)≤

K

∑
k=1

mk(x)V (R�
k) = L(P�, fx)≤

�

S
fx = g(x).

As we have the inequality for all x ∈ R j we have

K

∑
k=1

m j,k V (R�
k)≤ inf

x∈R j
g(x).

We thus obtain

L(P×P�, f )≤
N

∑
j=1

�
inf

x∈R j
g(x)

�
V (R j) = L(P,g).

Similarly U(P×P�, f )≥U(P,h), and the proof of this inequality is left as an exercise.
Putting this together we have

L(P×P�, f )≤ L(P,g)≤U(P,g)≤U(P,h)≤U(P×P�, f ).

And since f is integrable, it must be that g is integrable as

U(P,g)−L(P,g)≤U(P×P�, f )−L(P×P�, f ),

and we can make the right hand side arbitrarily small. Furthermore as L(P×P�, f ) ≤ L(P,g) ≤
U(P×P�, f ) we must have that

�
R g =

�
R×S f .

Similarly we have

L(P×P�, f )≤ L(P,g)≤ L(P,h)≤U(P,h)≤U(P×P�, f ),

and hence
U(P,h)−L(P,h)≤U(P×P�, f )−L(P×P�, f ).

So if f is integrable so is h, and as L(P × P�, f ) ≤ L(P,h) ≤ U(P × P�, f ) we must have that�
R h =

�
R×S f .

We can also do the iterated integration in opposite order. The proof of this version is almost
identical to version A, and we leave it as an exercise to the reader.
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Theorem 10.2.3 (Fubini version B). Let R×S ⊂Rn ×Rm be a closed rectangle and f : R×S →R
be integrable. The functions g : S → R and h : S → R defined by

g(y) :=
�

R
f y and h(y) :=

�

R
f y

are integrable over S and �

S
g =

�

S
h =

�

R×S
f .

That is we also have
�

R×S
f =

�

S

��

R
f (x,y)dx

�
dy =

�

S

��

R
f (x,y)dx

�
dy.

Next suppose that fx and f y are integrable for simplicity. For example, suppose that f is
continuous. Then by putting the two versions together we obtain the familiar

�

R×S
f =

�

R

�

S
f (x,y)dydx =

�

S

�

R
f (x,y)dxdy.

Often the Fubini theorem is stated in two dimensions for a continuous function f : R → R on a
rectangle R = [a,b]× [c,d]. Then the Fubini theorem states that

�

R
f =

� b

a

� d

c
f (x,y)dydx =

� d

c

� b

a
f (x,y)dxdy.

And the Fubini theorem is commonly thought of as the theorem that allows us to swap the order of
iterated integrals.

Repeatedly applying Fubini theorem gets us the following corollary: Let R := [a1,b1]× [a2,b2]×
·· ·× [an,bn]⊂ Rn be a closed rectangle and let f : R → R be continuous. Then

�

R
f =

� b1

a1

� b2

a2

· · ·
� bn

an

f (x1,x2, . . . ,xn)dxn dxn−1 · · ·dx1.

Clearly we can also switch the order of integration to any order we please. We can also relax the
continuity requirement by making sure that all the intermediate functions are integrable, or by using
upper or lower integrals.

10.2.1 Exercises
Exercise 10.2.1: Compute

� 1
0
� 1
−1 xexy dxdy in a simple way.

Exercise 10.2.2: Prove the assertion U(P×P�, f )≥U(P,h) from the proof of Theorem 10.2.2.

Exercise 10.2.3: Prove Theorem 10.2.3.
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Exercise 10.2.4: Let R = [a,b]× [c,d] and f (x,y) := g(x)h(y) for two continuous functions g : [a,b]→ R
and h : [a,b]→ R. Prove �

R
f =

�� b

a
g
��� d

c
h
�
.

Exercise 10.2.5: Compute

� 1

0

� 1

0

x2 − y2

(x2 + y2)2 dxdy and
� 1

0

� 1

0

x2 − y2

(x2 + y2)2 dydx.

You will need to interpret the integrals as improper, that is, the limit of
� 1

ε as ε → 0.

Exercise 10.2.6: Suppose f (x,y) := g(x) where g : [a,b]→R is Riemann integrable. Show that f is Riemann
integrable for any R = [a,b]× [c,d] and

�

R
f = (d − c)

� b

a
g.

Exercise 10.2.7: Define f : [−1,1]× [0,1]→ R by

f (x,y) :=

�
x if y ∈Q,
0 else.

Show
a)

� 1
0
� 1
−1 f (x,y)dxdy exists, but

� 1
−1

� 1
0 f (x,y)dydx does not.

b) Compute
� 1
−1

� 1
0 f (x,y)dydx and

� 1
−1

� 1
0 f (x,y)dydx.

c) Show f is not Riemann integrable on [−1,1]× [0,1] (use Fubini).
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10.3 Outer measure and null sets
Note: ??? lectures

10.3.1 Outer measure and null sets
Before we characterize all Riemann integrable functions, we need to make a slight detour. We
introduce a way of measuring the size of sets in Rn.

Definition 10.3.1. Let S ⊂ Rn be a subset. Define the outer measure of S as

m∗(S) := inf
∞

∑
j=1

V (R j),

where the infimum is taken over all sequences {R j} of open rectangles such that S ⊂�∞
j=1 R j. In

particular S is of measure zero or a null set if m∗(S) = 0.

We will only need measure zero sets and so we focus on these. Note that S is of measure zero if
for every ε > 0 there exist a sequence of open rectangles {R j} such that

S ⊂
∞�

j=1

R j and
∞

∑
j=1

V (R j)< ε. (10.2)

Furthermore, if S is measure zero and S� ⊂ S, then S� is of measure zero. We can in fact use the
same exact rectangles.

We can also use balls and it is sometimes more convenient. In fact we can choose balls no bigger
than a fixed radius.

Proposition 10.3.2. Let δ > 0 be given. A set S ⊂ Rn is measure zero if and only if for every ε > 0,
there exists a sequence of open balls {B j}, where the radius of B j is r j < δ such that

S ⊂
∞�

j=1

B j and
∞

∑
j=1

rn
j < ε.

Note that the “volume” of B j is proportional to rn
j .

Proof. First note that if R is a (closed or open) cube (rectangle with all sides equal) of side s, then R
is contained in a closed ball of radius

√
ns by Proposition 10.1.14, and therefore in an open ball of

size 2
√

ns.
Let s be a number that is less than the smallest side of R and also so that 2

√
ns < δ . We claim R

is contained in a union of closed cubes C1,C2, . . . ,Ck of sides s such that

k

∑
j=1

V (Cj)≤ 2nV (R).
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It is clearly true (without the 2n) if R has sides that are integer multiples of s. So if a side is of length
(�+α)s, for � ∈ N and 0 ≤ α < 1, then (�+α)s ≤ 2�s. Increasing the side to 2�s we obtain a new
larger rectangle of volume at most 2n times larger, but whose sides are multiples of s.

So suppose that there exist {R j} as in the definition such that (10.2) is true. As we have seen
above, we can choose closed cubes {Ck} with Ck of side sk as above that cover all the rectangles
{R j} and so

∞

∑
k=1

sn
k =

∞

∑
k=1

V (Ck)≤ 2n
∞

∑
j=1

V (Rk)< 2nε.

Covering Ck with balls Bk of radius rk = 2
√

nsk we obtain

∞

∑
k=1

rn
k < 22nnε.

And as S ⊂�
j R j ⊂

�
k Ck ⊂

�
k Bk, we are finished.

Suppose that we have the ball condition above for some ε > 0. Without loss of generality
assume that all r j < 1. Each B j is contained a in a cube (rectangle with all sides equal) R j of side
2r j. So V (R j) = (2r j)

n < 2nr j. Therefore

S ⊂
∞�

j=1

R j and
∞

∑
j=1

V (R j)<
∞

∑
j=1

2nr j < 2nε.

In fact the definition of outer measure could have been done with open balls as well, not just
null sets. Although we leave this generalization to the reader.

10.3.2 Examples and basic properties
Example 10.3.3: The set Qn ⊂ Rn of points with rational coordinates is a set of measure zero.

Proof: The set Qn is countable and therefore let us write it as a sequence q1,q2, . . .. For each q j
find an open rectangle R j with q j ∈ R j and V (R j)< ε2− j. Then

Qn ⊂
∞�

j=1

R j and
∞

∑
j=1

V (R j)<
∞

∑
j=1

ε2− j = ε.

In fact, the example points to a more general result.

Proposition 10.3.4. A countable union of measure zero sets is of measure zero.

Proof. Suppose

S =
∞�

j=1

S j



92 CHAPTER 10. MULTIVARIABLE INTEGRAL

where S j are all measure zero sets. Let ε > 0 be given. For each j there exists a sequence of open
rectangles {R j,k}∞

k=1 such that

S j ⊂
∞�

k=1

R j,k

and
∞

∑
k=1

V (R j,k)< 2− jε.

Then

S ⊂
∞�

j=1

∞�

k=1

R j,k.

As V (R j,k) is always positive, the sum over all j and k can be done in any order. In particular, it can
be done as

∞

∑
j=1

∞

∑
k=1

V (R j,k)<
∞

∑
j=1

2− jε = ε.

The next example is not just interesting, it will be useful later.

Example 10.3.5: Let P := {x ∈ Rn : xk = c} for a fixed k = 1,2, . . . ,n and a fixed constant c ∈ R.
Then P is of measure zero.

Proof: First fix s and let us prove that

Ps := {x ∈ Rn : xk = c,
��x j

��≤ s for all j �= k}

is of measure zero. Given any ε > 0 define the open rectangle

R := {x ∈ Rn : c− ε < xk < c+ ε,
��x j

��< s+1 for all j �= k}

It is clear that Ps ⊂ R. Furthermore

V (R) = 2ε
�
2(s+1)

�n−1
.

As s is fixed, we can make V (R) arbitrarily small by picking ε small enough.
Next we note that

P =
∞�

j=1

Pj

and a countable union of measure zero sets is measure zero.

Example 10.3.6: If a < b, then m∗([a,b]) = b−a.
Proof: In the case of R, open rectangles are open intervals. Since [a,b]⊂ (a− ε,b+ ε) for all

ε > 0. Hence, m∗([a,b])≤ b−a.
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Let us prove the other inequality. Suppose that {(a j,b j)} are open intervals such that

[a,b]⊂
∞�

j=1

(a j,b j).

We wish to bound ∑(b j −a j) from below. Since [a,b] is compact, then there are only finitely many
open intervals that still cover [a,b]. As throwing out some of the intervals only makes the sum
smaller, we only need to take the finite number of intervals still covering [a,b]. If (ai,bi)⊂ (a j,b j),
then we can throw out (ai,bi) as well. Therefore we have [a,b]⊂�k

j=1(a j,b j) for some k, and we
assume that the intervals are sorted such that a1 < a2 < · · · < ak. Note that since (a2,b2) is not
contained in (a1,b1) we have that a1 < a2 < b1 < b2. Similarly a j < a j+1 < b j < b j+1. Furthermore,
a1 < a and bk > b. Thus,

m∗([a,b])≥
k

∑
j=1

(b j −a j)≥
k−1

∑
j=1

(a j+1 −a j)+(bk −ak) = bk −a1 > b−a.

Proposition 10.3.7. Suppose E ⊂ Rn is a compact set of measure zero. Then for every ε > 0, there
exist finitely many open rectangles R1,R2, . . . ,Rk such that

E ⊂ R1 ∪R2 ∪ · · ·∪Rk and
k

∑
j=1

V (R j)< ε.

Also for any δ > 0, there exist finitely many open balls B1,B2, . . . ,Bk of radii r1,r2, . . . ,rk < δ such
that

E ⊂ B1 ∪B2 ∪ · · ·∪Bk and
k

∑
j=1

rn
j < ε.

Proof. Find a sequence of open rectangles {R j} such that

E ⊂
∞�

j=1

R j and
∞

∑
j=1

V (R j)< ε.

By compactness, finitely many of these rectangles still contain E. That is, there is some k such that
E ⊂ R1 ∪R2 ∪ · · ·∪Rk. Hence

k

∑
j=1

V (R j)≤
∞

∑
j=1

V (R j)< ε.

The proof that we can choose balls instead of rectangles is left as an exercise.
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10.3.3 Images of null sets
Before we look at images of measure zero sets, let us see what a continuously differentiable function
does to a ball.

Lemma 10.3.8. Suppose U ⊂Rn is an open set, B ⊂U is an open or closed ball of radius at most r,
f : B → Rn is continuously differentiable and suppose � f �(x)� ≤ M for all x ∈ B. Then f (B)⊂ B�,
where B� is a ball of radius at most Mr.

Proof. Without loss of generality assume B is a closed ball. The ball B is convex, and hence via
Proposition 8.4.2, that � f (x)− f (y)� ≤ M�x− y� for all x,y in B. In particular, suppose B =C(y,r),
then f (B)⊂C

�
f (y),Mr

�
.

The image of a measure zero set using a continuous map is not necessarily a measure zero set.
However if we assume the mapping is continuously differentiable, then the mapping cannot “stretch”
the set too much. The proposition does not require compactness, and this is left as an exercise.

Proposition 10.3.9. Suppose U ⊂Rn is an open set and f : U →Rn is a continuously differentiable
mapping. If E ⊂U is a compact measure zero set, then f (E) is measure zero.

Proof. We must first handle a couple of techicalities. First let us replace U by a smaller open set
to make � f �(x)� bounded. At each point x ∈ E pick an open ball B(x,rx) such that the closed ball
C(x,rx)⊂U . By compactness we only need to take finitely many points x1,x2, . . . ,xq to still conver
E. Define

U � :=
q�

j=1

B(x j,rx j), K :=
q�

j=1

C(x j,rx j). (10.3)

We have E ⊂U � ⊂ K ⊂U . The set K is compact. The function that takes x to � f �(x)� is continuous,
and therefore there exists an M > 0 such that � f �(x)� ≤ M for all x ∈ K.

So without loss of generality we may replace U by U � and from now on suppose that � f �(x)�≤M
for all x ∈U .

At each point x ∈ E pick a ball B(x,δx) of maximum radius so that B(x,δx) ⊂ U . Let δ =
infx∈E δx. Take a sequence {x j}⊂ E so that δx j → δ . As E is compact, we can pick the sequence to

be convergent to some y ∈ E. Once �x j − y�< δy
2 , then δx j >

δy
2 by the triangle inequality. Therefore

δ > 0.
Given ε > 0, there exist balls B1,B2, . . . ,Bk of radii r1,r2, . . . ,rk < δ such that

E ⊂ B1 ∪B2 ∪ · · ·∪Bk and
k

∑
j=1

rn
j < ε.

Suppose B�
1,B

�
2, . . . ,B

�
k are the balls of radius Mr1,Mr2, . . . ,Mrk from Lemma 10.3.8.

f (E)⊂ f (B1)∪ f (B2)∪ · · ·∪ f (Bk)⊂ B�
1 ∪B�

2 ∪ · · ·∪B�
k and

k

∑
j=1

Mrn
j < Mε.
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10.3.4 Exercises
Exercise 10.3.1: Finish the proof of Proposition 10.3.7, that is, show that you can use balls instead of
rectangles.

Exercise 10.3.2: If A ⊂ B then m∗(A)≤ m∗(B).

Exercise 10.3.3: Show that if R ⊂ Rn is a closed rectangle then m∗(R) =V (R).

Exercise 10.3.4: Prove a version of Proposition 10.3.9 without using compactness:
a) Mimic the proof to first prove that the proposition holds only if E is relatively compact; a set E ⊂U is
relatively compact if the closure of E in the subspace topology on U is compact, or in other words if there
exists a compact set K with K ⊂U and E ⊂ K.
Hint: The bound on the size of the derivative still holds, but you may need to use countably many balls. Be
careful as the closure of E need no longer be measure zero.
b) Now prove it for any null set E.
Hint: First show that {x ∈U : d(x,y)≥ 1/m for all y /∈U and d(0,x)≤ m} is a compact set for any m > 0.

Exercise 10.3.5: Let U ⊂ Rn be an open set and let f : U → R be a continuously differentiable function. Let
G := {(x,y) ∈U ×R : y = f (x)} be the graph of f . Show that f is of measure zero.

Exercise 10.3.6: Given a closed rectangle R ⊂ Rn, show that for any ε > 0 there exists a number s > 0 and
finitely many open cubes C1,C2, . . . ,Ck of side s such that R ⊂C1 ∪C2 ∪ · · ·∪Ck and

k

∑
j=1

V (Cj)≤V (R)+ ε.

Exercise 10.3.7: Show that there exists a number k = k(n,r,δ ) depending only on n, r and δ such the
following holds. Given B(x,r) ⊂ Rn and δ > 0, there exist k open balls B1,B2, . . . ,Bk of radius at most δ
such that B(x,r)⊂ B1 ∪B2 ∪ · · ·∪Bk. Note that you can find k that really only depends on n and the ratio δ/r.
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10.4 The set of Riemann integrable functions
Note: ??? lectures

10.4.1 Oscillation and continuity
Let S ⊂ Rn be a set and f : S → R a function. Instead of just saying that f is or is not continuous at
a point x ∈ S, we we need to be able to quantify how discontinuous f is at a function is at x. For any
δ > 0 define the oscillation of f on the δ -ball in subset topology that is BS(x,δ ) = BRn(x,δ )∩S as

o( f ,x,δ ) := sup
y∈BS(x,δ )

f (y)− inf
y∈BS(x,δ )

f (y) = sup
y1,y2∈BS(x,δ )

�
f (y1)− f (y2)

�
.

That is, o( f ,x,δ ) is the length of the smallest interval that contains the image f
�
BS(x,δ )

�
. Clearly

o( f ,x,δ ) ≥ 0 and notice o( f ,x,δ ) ≤ o( f ,x,δ �) whenever δ < δ �. Therefore, the limit as δ → 0
from the right exists and we define the oscillation of a function f at x as

o( f ,x) := lim
δ→0+

o( f ,x,δ ) = inf
δ>0

o( f ,x,δ ).

Proposition 10.4.1. f : S → R is continuous at x ∈ S if and only if o( f ,x) = 0.

Proof. First suppose that f is continuous at x ∈ S. Then given any ε > 0, there exists a δ > 0 such
that for y ∈ BS(x,δ ) we have | f (x)− f (y)|< ε . Therefore if y1,y2 ∈ BS(x,δ ) then

f (y1)− f (y2) = f (y1)− f (x)−
�

f (y2)− f (x)
�
< ε + ε = 2ε.

We take the supremum over y1 and y2

o( f ,x,δ ) = sup
y1,y2∈BS(x,δ )

�
f (y1)− f (y2)

�
≤ 2ε.

Hence, o(x, f ) = 0.
On the other hand suppose that o(x, f ) = 0. Given any ε > 0, find a δ > 0 such that o( f ,x,δ )< ε .

If y ∈ BS(x,δ ) then

| f (x)− f (y)|≤ sup
y1,y2∈BS(x,δ )

�
f (y1)− f (y2)

�
= o( f ,x,δ )< ε.

Proposition 10.4.2. Let S ⊂ Rn be closed, f : S → R, and ε > 0. The set {x ∈ S : o( f ,x) ≥ ε} is
closed.

Proof. Equivalently we want to show that G = {x ∈ S : o( f ,x)< ε} is open in the subset topology.
As infδ>0 o( f ,x,δ )< ε , find a δ > 0 such that

o( f ,x,δ )< ε
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Take any ξ ∈ BS(x,δ/2). Notice that BS(ξ ,δ/2)⊂ BS(x,δ ). Therefore,

o( f ,ξ ,δ/2) = sup
y1,y2∈BS(ξ ,δ/2)

�
f (y1)− f (y2)

�
≤ sup

y1,y2∈BS(x,δ )

�
f (y1)− f (y2)

�
= o( f ,x,δ )< ε.

So o( f ,ξ ) < ε as well. As this is true for all ξ ∈ BS(x,δ/2) we get that G is open in the subset
topology and S\G is closed as is claimed.

10.4.2 The set of Riemann integrable functions
We have seen that continuous functions are Riemann integrable, but we also know that certain kinds
of discontinuities are allowed. It turns out that as long as the discontinuities happen on a set of
measure zero, the function is integrable and vice versa.

Theorem 10.4.3 (Riemann-Lebesgue). Let R ⊂Rn be a closed rectangle and f : R → R a bounded
function. Then f is Riemann integrable if and only if the set of discontinuities of f is of measure
zero (a null set).

Proof. Let S ⊂ R be the set of discontinuities of f . That is S = {x ∈ R : o( f ,x)> 0}. The trick to
this proof is to isolate the bad set into a small set of subrectangles of a partition. There are only
finitely many subrectangles of a partition, so we will wish to use compactness. If S is closed, then it
would be compact and we could cover it by small rectangles as it is of measure zero. Unfortunately,
in general S is not closed so we need to work a little harder.

For every ε > 0, define
Sε := {x ∈ R : o( f ,x)≥ ε}.

By Proposition 10.4.2 Sε is closed and as it is a subset of R which is bounded, Sε is compact.
Furthermore, Sε ⊂ S and S is of measure zero. Via Proposition 10.3.7 there are finitely many open
rectangles S1,S2, . . . ,Sk that cover Sε and ∑V (S j)< ε .

The set T = R\(S1∪ · · ·∪Sk) is closed, bounded, and therefore compact. Furthermore for x ∈ T ,
we have o( f ,x) < ε . Hence for each x ∈ T , there exists a small closed rectangle Tx with x in the
interior of Tx, such that

sup
y∈Tx

f (y)− inf
y∈Tx

f (y)< 2ε.

The interiors of the rectangles Tx cover T . As T is compact there exist finitely many such rectangles
T1,T2, . . . ,Tm that covers T .

Now take all the rectangles T1,T2, . . . ,Tm and S1,S2, . . . ,Sk and construct a partition out of their
endpoints. That is construct a partition P with subrectangles R1,R2, . . . ,Rp such that every R j is
contained in T� for some � or the closure of S� for some �. Suppose we order the rectangles so
that R1,R2, . . . ,Rq are those that are contained in some T�, and Rq+1,Rq+2, . . . ,Rp are the rest. In
particular, we have

q

∑
j=1

V (R j)≤V (R) and
p

∑
j=q+1

V (R j)≤ ε.
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Let m j and Mj be the inf and sup over R j as before. If R j ⊂ T� for some �, then (Mj −m j) < 2ε .
Let B ∈ R be such that | f (x)|≤ B for all x ∈ R, so (Mj −m j)< 2B over all rectangles. Then

U(P, f )−L(P, f ) =
p

∑
j=1

(Mj −m j)V (R j)

=

�
q

∑
j=1

(Mj −m j)V (R j)

�
+

�
p

∑
j=q+1

(Mj −m j)V (R j)

�

≤
�

q

∑
j=1

2εV (R j)

�
+

�
p

∑
j=q+1

2BV (R j)

�

≤ 2εV (R)+2Bε = ε(2V (R)+2B).

Clearly, we can make the right hand side as small as we want and hence f is integrable.
For the other direction, suppose that f is Riemann integrable over R. Let S be the set of

discontinuities again and now let

Sk := {x ∈ R : o( f ,x)≥ 1/k}.

Fix a k ∈ N. Given an ε > 0, find a partition P with subrectangles R1,R2, . . . ,Rp such that

U(P, f )−L(P, f ) =
p

∑
j=1

(Mj −m j)V (R j)< ε

Suppose that R1,R2, . . . ,Rp are order so that the interiors of R1,R2, . . . ,Rq intersect Sk, while the
interiors of Rq+1,Rq+2, . . . ,Rp are disjoint from Sk. If x ∈ R j ∩Sk and x is in the interior of R j so
sufficiently small balls are completely inside R j, then by definition of Sk we have Mj −m j ≥ 1/k.
Then

ε >
p

∑
j=1

(Mj −m j)V (R j)≥
q

∑
j=1

(Mj −m j)V (R j)≥
1
k

q

∑
j=1

V (R j)

In other words ∑q
j=1V (R j)< kε . Let G be the set of all boundaries of all the subrectangles of P.

The set G is of measure zero (see Example 10.3.5). Let R◦
j denote the interior of R j, then

Sk ⊂ R◦
1 ∪R◦

2 ∪ · · ·∪R◦
q ∪G.

As G can be covered by open rectangles arbitrarily small volume, Sk must be of measure zero. As

S =
∞�

k=1

Sk

and a countable union of measure zero sets is of measure zero, S is of measure zero.
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10.4.3 Exercises
Exercise 10.4.1: Suppose that f : (a,b)× (c,d) → R is a bounded continuous function. Show that the
integral of f over R = [a,b]× [c,d] makes sense and is uniquely defined. That is, set f to be anything on the
boundary of R and compute the integral.

Exercise 10.4.2: Suppose R ⊂ Rn is a closed rectangle. Show that R(R), the set of Riemann integrable
functions, is an algebra. That is, show that if f ,g ∈ R(R) and a ∈ R, then a f ∈ R(R), f +g ∈ R(R) and
f g ∈ R(R).

Exercise 10.4.3: Suppose R ⊂ Rn is a closed rectangle and f : R → R is a bounded function which is zero
except on a closed set E ⊂ R of measure zero. Show that

�
R f exists and compute it.

Exercise 10.4.4: Suppose R ⊂ Rn is a closed rectangle and f : R → R and g : R → R are two Riemann
integrable functions. Suppose f = g except for a closed set E ⊂ R of measure zero. Show that

�
R f =

�
R g.


