
Chapter 8

Several variables and partial derivatives

8.1 Vector spaces, linear mappings, and convexity

Note: ??? lectures

8.1.1 Vector spaces

The euclidean space Rn has already made an appearance in the metric space chapter. In this chapter,
we will extend the differential calculus we created for one variable to several variables. The key
idea in differential calculus is to approximate functions by lines and linear functions. In several
variables we must introduce a little bit of linear algebra before we can move on. So let us start with
vector spaces and linear functions on vector spaces.

While it is common to use�x or the bold x for elements of Rn, especially in the applied sciences,
we use just plain x, which is common in mathematics. That is, v ∈ Rn is a vector, which means
v = (v1,v2, . . . ,vn) is an n-tuple of real numbers.∗

It is common to write vectors as column vectors, that is, n×1 matrices:

v = (v1,v2, . . . ,vn) =




v1
v2
...

vn


 .

We will do so when convenient. We call real numbers scalars to distinguish them from vectors.
The set Rn has a so-called vector space structure defined on it. However, even though we will be

looking at functions defined on Rn, not all spaces we wish to deal with are equal to Rn. Therefore,
let us define the abstract notion of the vector space.

∗Subscripts are used for many purposes, so sometimes we may have several vectors which may also be identified
by subscript such as a finite or infinite sequence of vectors y1,y2, . . ..
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8 CHAPTER 8. SEVERAL VARIABLES AND PARTIAL DERIVATIVES

Definition 8.1.1. Let X be a set together with operations of addition, + : X ×X → X , and multipli-
cation, · : R×X → X , (we usually write ax instead of a · x). X is called a vector space (or a real
vector space) if the following conditions are satisfied:

(i) (Addition is associative) If u,v,w ∈ X , then u+(v+w) = (u+ v)+w.

(ii) (Addition is commutative) If u,v ∈ X , then u+ v = v+u.

(iii) (Additive identity) There is a 0 ∈ X such that v+0 = v for all v ∈ X .

(iv) (Additive inverse) For every v ∈ X , there is a −v ∈ X , such that v+(−v) = 0.

(v) (Distributive law) If a ∈ R, u,v ∈ X , then a(u+ v) = au+av.

(vi) (Distributive law) If a,b ∈ R, v ∈ X , then (a+b)v = av+bv.

(vii) (Multiplication is associative) If a,b ∈ R, v ∈ X , then (ab)v = a(bv).

(viii) (Multiplicative identity) 1v = v for all v ∈ X .

Elements of a vector space are usually called vectors, even if they are not elements of Rn (vectors in
the “traditional” sense).

If Y ⊂ X is a subset that is a vector space itself with the same operations, then Y is called a
subspace or vector subspace of X .

Example 8.1.2: An example vector space is Rn, where addition and multiplication by a constant is
done componentwise: if a ∈ R and x,y ∈ Rn, then

x+ y := (x1,x2, . . . ,xn)+(y1,y2, . . . ,yn) = (x1 + y1,x2 + y2, . . . ,xn + yn),

ax := a(x1,x2, . . . ,xn) = (ax1,ax2, . . . ,axn).

In this book we mostly deal with vector spaces that can be often regarded as subsets of Rn, but
there are other vector spaces useful in analysis. Let us give a couple of examples.

Example 8.1.3: A trivial example of a vector space (the smallest one in fact) is just X = {0}. The
operations are defined in the obvious way. You always need a zero vector to exist, so all vector
spaces are nonempty sets.

Example 8.1.4: The space C([0,1],R) of continuous functions on the interval [0,1] is a vector
space. For two functions f and g in C([0,1],R) and a ∈R we make the obvious definitions of f +g
and a f :

( f +g)(x) := f (x)+g(x), (a f )(x) := a
�

f (x)
�
.

The 0 is the function that is identically zero. We leave it as an exercise to check that all the vector
space conditions are satisfied.

Example 8.1.5: The space of polynomials c0 + c1t + c2t2 + · · ·+ cmtm is a vector space, let us
denote it by R[t] (coefficients are real and the variable is t). The operations can be defined in the
same way as for functions above. Again, a very easy exercise is to verify that the operations satisfy
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the vector space structure. Furthermore, suppose we have two polynomials, one of degree m and
one of degree n. Suppose that n ≥ m for simplicity. The reader should verify that the vector space
operations satisfy

(c0 + c1t + c2t2 + · · ·+ cmtm)+(d0 +d1t +d2t2 + · · ·+dntn) =

(c0 +d0)+(c1 +d1)t +(c2 +d2)t2 + · · ·+(cm +dm)tm +dm+1tm+1 + · · ·+dntn

and
a(c0 + c1t + c2t2 + · · ·+ cmtm) = (ac0)+(ac1)t +(ac2)t2 + · · ·+(acm)tm.

Despite what it looks like, R[t] is not equivalent to Rn for any n. In particular it is not “finite
dimensional”, we will make this notion precise in just a little bit. One can make a finite dimensional
vector subspace by restricting the degree. For example, if we say Pn is the space of polynomials of
degree n or less, then we have a finite dimensional vector space.

The space R[t] can be thought of as a subspace of C(R,R). If we restrict the range of t to [0,1],
R[t] can be identified with a subspace of C([0,1],R).

It is often better to think of even simpler “finite dimensional” vector spaces using the abstract
notion rather than always Rn. It is possible to use other fields than R in the definition (for example
it is common to use the complex numbers C), but let us stick with the real numbers∗.

A function f : X →Y , when Y is not R, is often called a mapping or a map rather than a function.

8.1.2 Linear combinations and dimension
Definition 8.1.6. Suppose X is a vector space, x1,x2, . . . ,xk ∈ X are vectors, and a1,a2, . . . ,ak ∈ R
are scalars. Then

a1x1 +a2x2 + · · ·+akxk

is called a linear combination of the vectors x1,x2, . . . ,xk.
If Y ⊂ X is a set then the span of Y , or in notation span(Y ), is the set of all linear combinations

of some finite number of elements of Y . We also say Y spans span(Y ).

Example 8.1.7: Let Y := {(1,1)}⊂ R2. Then

span(Y ) = {(x,x) ∈ R2 : x ∈ R}.
That is, span(Y ) is the line through the origin and the point (1,1).

Example 8.1.8: Let Y := {(1,1),(0,1)}⊂ R2. Then

span(Y ) = R2,

as any point (x,y) ∈ R2 can be written as a linear combination

(x,y) = x(1,1)+(y− x)(0,1).
∗If you want a very funky vector space over a different field, R itself is a vector space over the rational numbers.
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A sum of two linear combinations is again a linear combination, and a scalar multiple of a linear
combination is a linear combination, which proves the following proposition.

Proposition 8.1.9. Let X be a vector space. For any Y ⊂ X, the set span(Y ) is a vector space itself.

If Y is already a vector space then span(Y ) = Y .

Definition 8.1.10. A set of vectors {x1,x2, . . . ,xk}⊂ X is linearly independent, if the only solution
to

a1x1 +a2x2 + · · ·+akxk = 0 (8.1)

is the trivial solution a1 = a2 = · · · = ak = 0. A set that is not linearly independent, is linearly
dependent.

A linearly independent set B of vectors such that span(B) = X is called a basis of X . For
example the set Y of the two vectors in Example 8.1.8 is a basis of R2.

If a vector space X contains a linearly independent set of d vectors, but no linearly independent
set of d + 1 vectors then we say the dimension or dim X := d. If for all d ∈ N the vector space
X contains a set of d linearly independent vectors, we say X is infinite dimensional and write
dim X := ∞.

Clearly for the trivial vector space, dim{0}= 0. We will see in a moment that any vector space
that is a subset of Rn has a finite dimension, and that dimension is less than or equal to n.

If a set is linearly dependent, then one of the vectors is a linear combination of the others. In
other words, in (8.1) if a j �= 0, then we can solve for x j

x j =
a1

a j
x1 + · · ·+ a j−1

a j
x j−1 +

a j+1

a j
x j+1 + · · ·+ ak

ak
xk.

Clearly then the vector x j has at least two different representations as linear combinations of
{x1,x2, . . . ,xk}.

Proposition 8.1.11. If B = {x1,x2, . . . ,xk} is a basis of a vector space X, then every point y ∈ X
has a unique representation of the form

y =
k

∑
j=1

a jx j

for some scalars a1,a2, . . . ,ak.

Proof. Every y ∈ X is a linear combination of elements of B since X is the span of B. For uniqueness
suppose

y =
k

∑
j=1

a jx j =
k

∑
j=1

b jx j,
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then
k

∑
j=1

(a j −b j)x j = 0.

By linear independence of the basis a j = b j for all j.

For Rn we define

e1 := (1,0,0, . . . ,0), e2 := (0,1,0, . . . ,0), . . . , en := (0,0,0, . . . ,1),

and call this the standard basis of Rn. We use the same letters e j for any Rn, and which space Rn

we are working in is understood from context. A direct computation shows that {e1,e2, . . . ,en} is
really a basis of Rn; it is easy to show that it spans Rn and is linearly independent. In fact,

x = (x1,x2, . . . ,xn) =
n

∑
j=1

x je j.

Proposition 8.1.12. Let X be a vector space.

(i) If X is spanned by d vectors, then dim X ≤ d.

(ii) dim X = d if and only if X has a basis of d vectors (and so every basis has d vectors).

(iii) In particular, dim Rn = n.

(iv) If Y ⊂ X is a vector space and dim X = d, then dim Y ≤ d.

(v) If dim X = d and a set T of d vectors spans X, then T is linearly independent.

(vi) If dim X = d and a set T of m vectors is linearly independent, then there is a set S of d −m
vectors such that T ∪S is a basis of X.

Proof. Let us start with (i). Suppose S = {x1,x2, . . . ,xd} spans X , and T = {y1,y2, . . . ,ym} is a set
of linearly independent vectors of X . We wish to show that m ≤ d. Write

y1 =
d

∑
k=1

ak,1xk,

for some numbers a1,1,a2,1, . . . ,ad,1, which we can do as S spans X . One of the ak,1 is nonzero
(otherwise y1 would be zero), so suppose without loss of generality that this is a1,1. Then we can
solve

x1 =
1

a1,1
y1 −

d

∑
k=2

ak,1

a1,1
xk.

In particular {y1,x2, . . . ,xd} span X , since x1 can be obtained from {y1,x2, . . . ,xd}. Next,

y2 = a1,2y1 +
d

∑
k=2

ak,2xk.
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As T is linearly independent, we must have that one of the ak,2 for k ≥ 2 must be nonzero. Without
loss of generality suppose a2,2 �= 0. Proceed to solve for

x2 =
1

a2,2
y2 −

a1,2

a2,2
y1 −

d

∑
k=3

ak,2

a2,2
xk.

In particular {y1,y2,x3, . . . ,xd} spans X . The astute reader will think back to linear algebra and
notice that we are row-reducing a matrix.

We continue this procedure. If m < d, then we are done. So suppose m ≥ d. After d steps we ob-
tain that {y1,y2, . . . ,yd} spans X . Any other vector v in X is a linear combination of {y1,y2, . . . ,yd},
and hence cannot be in T as T is linearly independent. So m = d.

Let us look at (ii). First notice that if we have a set T of k linearly independent vectors that
do not span X , then we can always choose a vector v ∈ X \ span(T ). The set T ∪ {v} is linearly
independent (exercise). If dim X = d, then there must exist some linearly independent set of d
vectors T , and it must span X , otherwise we could choose a larger set of linearly independent
vectors. So we have a basis of d vectors. On the other hand if we have a basis of d vectors, it is
linearly independent and spans X . By (i) we know there is no set of d + 1 linearly independent
vectors, so dimension must be d.

For (iii) notice that {e1,e2, . . . ,en} is a basis of Rn.
To see (iv), suppose Y is a vector space and Y ⊂ X , where dim X = d. As X cannot contain

d +1 linearly independent vectors, neither can Y .
For (v) suppose T is a set of m vectors that is linearly dependent and spans X . Then one of the

vectors is a linear combination of the others. Therefore if we remove it from T we obtain a set of
m−1 vectors that still span X and hence dim X ≤ m−1.

For (vi) suppose T = {x1, . . . ,xm} is a linearly independent set. We follow the procedure above
in the proof of (ii) to keep adding vectors while keeping the set linearly independent. As the
dimension is d we can add a vector exactly d −m times.

8.1.3 Linear mappings
Definition 8.1.13. A mapping A : X → Y of vector spaces X and Y is linear (or a linear transfor-
mation) if for every a ∈ R and x,y ∈ X we have

A(ax) = aA(x) A(x+ y) = A(x)+A(y).

We usually write Ax instead of A(x) if A is linear.
If A is one-to-one an onto then we say A is invertible and we denote the inverse by A−1.
If A : X → X is linear then we say A is a linear operator on X .
We write L(X ,Y ) for the set of all linear transformations from X to Y , and just L(X) for the set

of linear operators on X . If a,b ∈ R and A,B ∈ L(X ,Y ), define the transformation aA+bB

(aA+bB)(x) = aAx+bBx.
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If A ∈ L(Y,Z) and B ∈ L(X ,Y ), define the transformation AB as

ABx := A(Bx).

Finally denote by I ∈ L(X) the identity: the linear operator such that Ix = x for all x.

It is not hard to see that aA+bB ∈ L(X ,Y ), and that AB ∈ L(X ,Z). In particular, L(X ,Y ) is a
vector space. It is obvious that if A is linear then A0 = 0.

Proposition 8.1.14. If A : X → Y is invertible, then A−1 is linear.

Proof. Let a ∈ R and y ∈ Y . As A is onto, then there is an x such that y = Ax, and further as it is
also one-to-one A−1(Az) = z for all z ∈ X . So

A−1(ay) = A−1(aAx) = A−1�A(ax)
�
= ax = aA−1(y).

Similarly let y1,y2 ∈ Y , and x1,x2 ∈ X such that Ax1 = y1 and Ax2 = y2, then

A−1(y1 + y2) = A−1(Ax1 +Ax2) = A−1�A(x1 + x2)
�
= x1 + x2 = A−1(y1)+A−1(y2).

Proposition 8.1.15. If A : X → Y is linear then it is completely determined by its values on a basis
of X. Furthermore, if B is a basis, then any function �A : B → Y extends to a linear function on X.

We will only prove this proposition for finite dimensional spaces, as we do not need infinite
dimensional spaces. For infinite dimensional spaces, the proof is essentially the same, but a little
trickier to write, so let us stick with finitely many dimensions.

Proof. Let {x1,x2, . . . ,xn} be a basis and suppose A(x j) = y j. Then every x ∈ X has a unique
representation

x =
n

∑
j=1

b jx j

for some numbers b1,b2, . . . ,bn. Then by linearity

Ax = A
n

∑
j=1

b jx j =
n

∑
j=1

b jAx j =
n

∑
j=1

b jy j.

The “furthermore” follows by defining the extension Ax = ∑n
j=1 b jy j, and noting that this is well

defined by uniqueness of the representation of x.

The next proposition only works for finite dimensional vector spaces. It is a special case of the
so called rank-nullity theorem from linear algebra.

Proposition 8.1.16. If X is a finite dimensional vector space and A : X → X is linear, then A is
one-to-one if and only if it is onto.
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Proof. Let {x1,x2, . . . ,xn} be a basis for X . Suppose A is one-to-one. Now suppose

n

∑
j=1

c jAx j = A
n

∑
j=1

c jx j = 0.

As A is one-to-one, the only vector that is taken to 0 is 0 itself. Hence,

0 =
n

∑
j=1

c jx j

and so c j = 0 for all j. Therefore, {Ax1,Ax2, . . . ,Axn} is linearly independent. By an above
proposition and the fact that the dimension is n, we have that {Ax1,Ax2, . . . ,Axn} span X . As any
point x ∈ X can be written as

x =
n

∑
j=1

a jAx j = A
n

∑
j=1

a jx j,

so A is onto.
Now suppose A is onto. As A is determined by the action on the basis we see that every element

of X has to be in the span of {Ax1, . . . ,Axn}. Suppose

A
n

∑
j=1

c jx j =
n

∑
j=1

c jAx j = 0.

By the same proposition as {Ax1,Ax2, . . . ,Axn} span X , the set is independent, and hence c j = 0 for
all j. This means that A is one-to-one. If Ax = Ay, then A(x− y) = 0 and so x = y.

We leave the proof of the next proposition as an exercise.

Proposition 8.1.17. If X and Y are finite dimensional vector spaces, then L(X ,Y ) is also finite
dimensional.

8.1.4 Convexity
A subset U of a vector space is convex if whenever x,y ∈U , the line segment from x to y lies in U .
That is, if the convex combination (1− t)x+ ty is in U for all t ∈ [0,1]. See Figure 8.1.

Note that in R, every connected interval is convex. In R2 (or higher dimensions) there are lots
of nonconvex connected sets. For example the set R2 \{0} is not convex but it is connected. To see
this simply take any x ∈ R2 \{0} and let y :=−x. Then (1/2)x+(1/2)y = 0, which is not in the set.
On the other hand, the ball B(x,r)⊂ Rn (using the standard metric on Rn) is always convex by the
triangle inequality.

Exercise 8.1.1: Show that in Rn any ball B(x,r) for x ∈ Rn and r > 0 is convex.
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x

y

(1− t)x+ ty

U

Figure 8.1: Convexity.

Example 8.1.18: Any subspace V of a vector space X is convex.

Example 8.1.19: A somewhat more complicated example is given by the following. Let C([0,1],R)
be the vector space of continuous real valued functions on R. Let X ⊂ C([0,1],R) be the set of
those f such � 1

0
f (x) dx ≤ 1 and f (x)≥ 0 for all x ∈ [0,1].

Then X is convex. Take t ∈ [0,1] and note that if f ,g ∈ X then t f (x)+ (1− t)g(x) ≥ 0 for all x.
Furthermore

� 1

0

�
t f (x)+(1− t)g(x)

�
dx = t

� 1

0
f (x) dx+(1− t)

� 1

0
g(x) dx ≤ 1.

Note that X is not a subspace of C([0,1],R).

Proposition 8.1.20. The intersection two convex sets is convex. In fact, If {Cλ}λ∈I is an arbitrary
collection of convex sets, then

C :=
�

λ∈I

Cλ

is convex.

Proof. The proof is easy. If x,y ∈ C, then x,y ∈ Cλ for all λ ∈ I, and hence if t ∈ [0,1], then
tx+(1− t)y ∈Cλ for all λ ∈ I. Therefore tx+(1− t)y ∈C and C is convex.

Proposition 8.1.21. Let T : V →W be a linear mapping between two vector spaces and let C ⊂V
be a convex set. Then T (C) is convex.

Proof. Take any two points p,q ∈ T (C). Then pick x,y ∈C such that T (x) = p and T (y) = q. As C
is convex then for all t ∈ [0,1] we have tx+(1− t)y ∈C, so

T
�
tx+(1− t)y

�
= tT (x)+(1− t)T (y) = t p+(1− t)q

is in T (C).
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For completeness, let us A very useful construction is the convex hull. Given any set S ⊂V of a
vector space, define the convex hull of S, by

co(S) :=
�
{C ⊂V : S ⊂C, and C is convex}.

That is, the convex hull is the smallest convex set containing S. Note that by a proposition above,
the intersection of convex sets is convex and hence, the convex hull is convex.

Example 8.1.22: The convex hull of 0 and 1 in R is [0,1]. Proof: Any convex set containing 0 and
1 must contain [0,1]. The set [0,1] is convex, therefore it must be the convex hull.

8.1.5 Exercises
Exercise 8.1.2: Verify that Rn is a vector space.

Exercise 8.1.3: Let X be a vector space. Prove that a finite set of vectors {x1, . . . ,xn} ⊂ X is linearly
independent if and only if for every j = 1,2, . . . ,n

span({x1, . . . ,x j−1,x j+1, . . . ,xn})� span({x1, . . . ,xn}).

That is, the span of the set with one vector removed is strictly smaller.

Exercise 8.1.4 (Challenging): Prove that C([0,1],R) is an infinite dimensional vector space where the
operations are defined in the obvious way: s = f + g and m = f g are defined as s(x) := f (x)+ g(x) and
m(x) := f (x)g(x). Hint: for the dimension, think of functions that are only nonzero on the interval (1/n+1, 1/n).

Exercise 8.1.5: Let k : [0,1]2 → R be continuous. Show that L : C([0,1],R)→C([0,1],R) defined by

L f (y) :=
� 1

0
k(x,y) f (x) dx

is a linear operator. That is, show that L is well defined (that L f is continuous), and that L is linear.

Exercise 8.1.6: Let Pn be the vector space of polynomials in one variable of degree n or less. Show that
Pn is a vector space of dimension n+1.

Exercise 8.1.7: Let R[t] be the vector space of polynomials in one variable t. Let D : R[t]→ R[t] be the
derivative operator (derivative in t). Show that D is a linear operator.

Exercise 8.1.8: Let us show that Proposition 8.1.16 only works in finite dimensions. Take R[t] and define the
operator A : R[t]→ R[t] by A

�
P(t)
�
= tP(t). Show that A is linear and one-to-one, but show that it is not

onto.

Exercise 8.1.9: Prove Proposition 8.1.17. Hint: A linear operator is determined by its action on a basis. So
given two bases {x1, . . . ,xn} and {y1, . . . ,ym} for X and Y respectively, consider the linear operators A jk that
send A jkx j = yk, and A jkx� = 0 if � �= j.
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Exercise 8.1.10 (Easy): Suppose X and Y are vector spaces and A ∈ L(X ,Y ) is a linear operator.
a) Show that the nullspace N := {x ∈ X : Ax = 0} is a vectorspace.
b) Show that the range R := {y ∈ Y : Ax = y for some x ∈ X} is a vectorspace.

Exercise 8.1.11 (Easy): Show by example that a union of convex sets need not be convex.

Exercise 8.1.12: Compute the convex hull of the set of 3 points {(0,0),(0,1),(1,1)} in R2.

Exercise 8.1.13: Show that the set {(x,y) ∈ R2 : y > x2} is a convex set.

Exercise 8.1.14: Show that every convex set in Rn is connected using the standard topology on Rn.

Exercise 8.1.15: Suppose K ⊂ R2 is a set such that the only point of the form (x,0) in K is the point (0,0).
Further suppose that there (0,1) ∈ K and (1,1) ∈ K. Then show that if (x,y) ∈ K then y > 0 unless x = 0.
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8.2 Analysis with vector spaces
Note: ??? lectures

8.2.1 Norms
Let us start measuring distance.

Definition 8.2.1. If X is a vector space, then we say a real valued function �·� is a norm if:

(i) �x� ≥ 0, with �x�= 0 if and only if x = 0.

(ii) �cx�= |c|�x� for all c ∈ R and x ∈ X .

(iii) �x+ y� ≤ �x�+�y� for all x,y ∈ X (Triangle inequality).

Before defining the standard norm on Rn, let us define the standard scalar dot product on Rn.
For two vectors if x = (x1,x2, . . . ,xn) ∈ Rn and y = (y1,y2, . . . ,yn) ∈ Rn, define

x · y :=
n

∑
j=1

x jy j.

It is easy to see that the dot product is linear in each variable separately, that is, it is a linear mapping
when you keep one of the variables constant. The Euclidean norm is then defined as

�x� :=
√

x · x =
�
(x1)2 +(x2)2 + · · ·+(xn)2.

It is easy to see that the Euclidean norm satisfies (i) and (ii). To prove that (iii) holds, the key key
inequality in the so-called Cauchy-Schwarz inequality that we have seen before. As this inequality
is so important let us restate and reprove it using the notation of this chapter.

Theorem 8.2.2 (Cauchy-Schwarz inequality). Let x,y ∈ Rn, then

|x · y|≤ �x��y�=√
x · x√y · y,

with equality if and only if the vectors are scalar multiples of each other.

Proof. If x = 0 or y = 0, then the theorem holds trivially. So assume x �= 0 and y �= 0.
If x is a scalar multiple of y, that is x = λy for some λ ∈R, then the theorem holds with equality:

|λy · y|= |λ | |y · y|= |λ | �y�2 = �λy��y�.

Next take x+ ty,

�x+ ty�2 = (x+ ty) · (x+ ty) = x · x+ x · ty+ ty · x+ ty · ty = �x�2 +2t(x · y)+ t2�y�2.
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If x is not a scalar multiple of y, then �x+ ty�2 > 0 for all t. So the above polynomial in t is never
zero. From elementary algebra it follows that the discriminant must be negative:

4(x · y)2 −4�x�2�y�2 < 0,

or in other words (x · y)2 < �x�2�y�2.

Item (iii), the triangle inequality, follows via a simple computation:

�x+ y�2 = x · x+ y · y+2(x · y)≤ �x�2 +�y�2 +2(�x�+�y�) = (�x�+�y�)2.

The distance d(x,y) := �x− y� is the standard distance function on Rn that we used when we
talked about metric spaces.

In fact, on any vector space X , once we have a norm (any norm), we define a distance d(x,y) :=
�x− y� that makes X into a metric space (an easy exercise).

Definition 8.2.3. Let A ∈ L(X ,Y ). Define

�A� := sup{�Ax� : x ∈ X with �x�= 1}.

The number �A� is called the operator norm. We will see below that indeed it is a norm (at least for
finite dimensional spaces).

By linearity we get

�A�= sup{�Ax� : x ∈ X with �x�= 1}= sup
x∈X
x �=0

�Ax�
�x� .

This implies that
�Ax� ≤ �A��x�.

It is not hard to see from the definition that �A�= 0 if and only if A = 0, that is, if A takes every
vector to the zero vector.

It is also not difficult to see the norm of the identity operator:

�I�= sup
x∈X
x �=0

�Ix�
�x� = sup

x∈X
x �=0

�x�
�x� = 1.

For finite dimensional spaces �A� is always finite as we prove below. This also implies that
A is continuous. For infinite dimensional spaces neither statement needs to be true. For a simple
example, take the vector space of continuously differentiable functions on [0,1] and as the norm
use the uniform norm. The functions sin(nx) have norm 1, but the derivatives have norm n. So
differentiation (which is a linear operator) has unbounded norm on this space. But let us stick to
finite dimensional spaces now.
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When we talk about finite dimensional vector space, it is usually fine to just think Rn, although
if we have a norm, the norm might perhaps not be the standard euclidean norm. In the exercises, you
can prove that every norm is in some sense “equivalent” to the euclidean norm in that the topology
it generates is the same.

Therefore, for simplicity we restrict our attention to Rn with the euclidean norm. The following
propositions are stated for Rn, but work in any finite dimensional vector space. See the exercises.

Proposition 8.2.4.

(i) If A ∈ L(Rn,Rm), then �A�< ∞ and A is uniformly continuous (Lipschitz with constant �A�).

(ii) If A,B ∈ L(Rn,Rm) and c ∈ R, then

�A+B� ≤ �A�+�B�, �cA�= |c|�A�.

In particular, the operator norm is a norm on the vector space L(Rn,Rm).

(iii) If A ∈ L(Rn,Rm) and B ∈ L(Rm,R�), then

�BA� ≤ �B��A�.

Proof. Let us start with (i). Let {e1,e2, . . . ,en} be the standard basis. Write x ∈ X , with �x�= 1, as

x =
n

∑
j=1

c je j.

Since e j · e� = 0 whenever j �= � and e j · e j = 1, we find
��c j
��=
��x · e j

��≤ �x��e j�= 1.

Then

�Ax�=
�����

n

∑
j=1

c jAe j

�����≤
n

∑
j=1

��c j
���Ae j� ≤

n

∑
j=1

�Ae j�

The right hand side does not depend on x. We have found a finite upper bound independent of x, so
�A�< ∞.

Next, for any x,y ∈ Rn,
�A(x− y)� ≤ �A��x− y�

If �A�< ∞, then this says that A is Lipschitz with constant �A�.
For (ii), let us note that

�(A+B)x�= �Ax+Bx� ≤ �Ax�+�Bx� ≤ �A��x�+�B��x�= (�A�+�B�)�x�.

So �A+B� ≤ �A�+�B�.
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Similarly
�(cA)x�= |c|�Ax� ≤ (|c|�A�)�x�.

Thus �cA� ≤ |c|�A�. Next note

|c|�Ax�= �cAx� ≤ �cA��x�.

Hence |c|�A� ≤ �cA�.
That we have a metric space follows pretty easily, and is left to student.
For (iii) write

�BAx� ≤ �B��Ax� ≤ �B��A��x�.
As a norm defines a metric, we have defined a metric space topology on L(Rn,Rm) so we can

talk about open/closed sets, continuity, and convergence.

Proposition 8.2.5. Let U ⊂ L(Rn) be the set of invertible linear operators.

(i) If A ∈U and B ∈ L(Rn), and

�A−B�< 1
�A−1� , (8.2)

then B is invertible.

(ii) U is open and A �→ A−1 is a continuous function on U.

To make sense of this on a simple example. Think back to R1, where linear operators are just
numbers a. The operator a is invertible (a−1 = 1/a) whenever a �= 0. Of course a �→ 1/a is continuous.
When n > 1, then there are other noninvertible operators than just zero, and in general things are a
bit more difficult.

Proof. Let us prove (i). First a straight forward computation

�x�= �A−1Ax� ≤ �A−1��Ax�
≤ �A−1�(�(A−B)x�+�Bx�)
≤ �A−1��A−B��x�+�A−1��Bx�.

Now assume x �= 0 and so �x� �= 0. Using (8.2) we obtain

�x�< �x�+�A−1��Bx�,

or in other words �Bx� �= 0 for all nonzero x, and hence Bx �= 0 for all nonzero x. This is enough to
see that B is one-to-one (if Bx = By, then B(x− y) = 0, so x = y). As B is one-to-one operator from
Rn to Rn it is onto and hence invertible.

Let us look at (ii). Let B be invertible and near A−1, that is (8.2) is satisfied. In fact, suppose
�A−B��A−1�< 1/2. Then we have shown above (using B−1y instead of x)

�B−1y� ≤ �A−1��A−B��B−1y�+�A−1��y� ≤ 1/2�B−1y�+�A−1��y�,
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or
�B−1y� ≤ 2�A−1��y�.

So �B−1� ≤ 2�A−1�.
Now note that

A−1(A−B)B−1 = A−1(AB−1 − I) = B−1 −A−1,

and
�B−1 −A−1�= �A−1(A−B)B−1� ≤ �A−1��A−B��B−1� ≤ 2�A−1�2�A−B�.

8.2.2 Matrices

Finally let us get to matrices, which are a convenient way to represent finite-dimensional operators.
Suppose we have bases {x1,x2, . . . ,xn} and {y1,y2, . . . ,ym} for vector spaces X and Y respectively.
A linear operator is determined by its values on the basis. Given A ∈ L(X ,Y ), Ax j is an element of
Y . Therefore, define the numbers {ai, j} as follows

Ax j =
m

∑
i=1

ai, jyi,

and write them as a matrix

A =




a1,1 a1,2 · · · a1,n
a2,1 a2,2 · · · a2,n

...
... . . . ...

am,1 am,2 · · · am,n


 .

And we say A is an m-by-n matrix. Note that the columns of the matrix are precisely the coefficients
that represent Ax j. Let us derive the familiar rule for matrix multiplication.

When

z =
n

∑
j=1

c jx j,

then

Az =
n

∑
j=1

m

∑
i=1

c jai, jyi,=
m

∑
i=1

�
n

∑
j=1

c jai, j

�
yi,

which gives rise to the familiar rule for matrix multiplication.
There is a one-to-one correspondence between matrices and linear operators in L(X ,Y ). That

is, once we fix a basis in X and in Y . If we would choose a different basis, we would get different
matrices. This is important, the operator A acts on elements of X , the matrix is something that works
with n-tuples of numbers.
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If B is an n-by-r matrix with entries b j,k, then the matrix for C = AB is an m-by-r matrix whose
i,kth entry ci,k is

ci,k =
n

∑
j=1

ai, jb j,k.

A linear mapping changing one basis to another is then just a square matrix in which the columns
represent basis elements of the second basis in terms of the first basis. We call such a linear mapping
an change of basis.

Now suppose all the bases are just the standard bases and X = Rn and Y = Rm. If we recall the
Cauchy-Schwarz inequality we note that

�Az�2 =
m

∑
i=1

�
n

∑
j=1

c jai, j

�2

≤
m

∑
i=1

�
n

∑
j=1

(c j)
2

��
n

∑
j=1

(ai, j)
2

�
=

m

∑
i=1

�
n

∑
j=1

(ai, j)
2

�
�z�2.

In other words, we have a bound on the operator norm

�A� ≤
�

m

∑
i=1

n

∑
j=1

(ai, j)
2.

If the entries go to zero, then �A� goes to zero. In particular, if A if fixed and B is changing such
that the entries of A−B go to zero then B goes to A in operator norm. That is B goes to A in the
metric space topology induced by the operator norm. We have proved the first part of:

Proposition 8.2.6. If f : S → Rnm is a continuous function for a metric space S, then taking
the components of f as the entries of a matrix, f is a continuous mapping from S to L(Rn,Rm).
Conversely if f : S→ L(Rn,Rm) is a continuous function then the entries of the matrix are continuous
functions.

The proof of the second part is rather easy. Take f (x)e j and note that is a continuous function to
Rm with standard Euclidean norm (Note �(A−B)e j� ≤ �A−B�). Such a function recall from last
semester that such a function is continuous if and only if its components are continuous and these
are the components of the jth column of the matrix f (x).

8.2.3 Determinants
It would be nice to have an easy test for when is a matrix invertible. This is where determinants
come in. First define the symbol sgn(x) for a number is defined by

sgn(x) :=





−1 if x < 0,
0 if x = 0,
1 if x > 0.
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Suppose σ = (σ1,σ2, . . . ,σn) is a permutation of the integers (1,2, . . . ,n), that is, a reordering
of (1,2, . . . ,n). Any permutation can be obtained by a sequence of transpositions (switchings
of two elements). Call a permutation even (resp. odd) if it takes an even (resp. odd) number of
transpositions to get from σ to (1,2, . . . ,n). It can be shown that this is well defined (exercise), in
fact it is not hard to show that

sgn(σ) := sgn(σ1, . . . ,σn) = ∏
p<q

sgn(σq −σp) (8.3)

is 1 if σ is even and −1 if σ is odd. This fact can be proved by noting that applying a transposition
changes the sign, which is not hard to prove by induction on n. Then note that the sign of (1,2, . . . ,n)
is 1.

Let Sn be the set of all permutations on n elements (the symmetric group). Let A = [ai, j] be a
matrix. Define the determinant of A

det(A) := ∑
σ∈Sn

sgn(σ)
n

∏
i=1

ai,σi .

Proposition 8.2.7.
(i) det(I) = 1.

(ii) det([x1 x2 · · · xn]) as a function of column vectors x j is linear in each variable x j separately.

(iii) If two columns of a matrix are interchanged, then the determinant changes sign.

(iv) If two columns of A are equal, then det(A) = 0.

(v) If a column is zero, then det(A) = 0.

(vi) A �→ det(A) is a continuous function.

(vii) det
�

a b
c d

�
= ad −bc, and det[a] = a.

In fact, the determinant is the unique function that satisfies (i), (ii), and (iii). But we digress. By
(ii), we mean that if we fix all the vectors x1, . . . ,xn except for x j and think of the determinant as
function of x j, it is a linear function, that is, if v,w ∈ Rn are two vectors, and a,b ∈ R are scalars
then

det([x1 · · · x j−1 (av+bw) x j+1 · · · xn]) =

adet([x1 · · · x j−1 v x j+1 · · · xn])+bdet([x1 · · · x j−1 w x j+1 · · · xn]).

Proof. We go through the proof quickly, as you have likely seen this before.
(i) is trivial. For (ii), notice that each term in the definition of the determinant contains exactly

one factor from each column.
Part (iii) follows by noting that switching two columns is like switching the two corresponding

numbers in every element in Sn. Hence all the signs are changed. Part (iv) follows because if
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two columns are equal and we switch them we get the same matrix back and so part (iii) says the
determinant must have been 0.

Part (v) follows because the product in each term in the definition includes one element from
the zero column. Part (vi) follows as det is a polynomial in the entries of the matrix and hence
continuous. We have seen that a function defined on matrices is continuous in the operator norm if
it is continuous in the entries. Finally, part (vii) is a direct computation.

Proposition 8.2.8. If A and B are n×n matrices, then det(AB) = det(A)det(B). In particular, A is
invertible if and only if det(A) �= 0 and in this case, det(A−1) = 1

det(A) .

Proof. Let b1,b2, . . . ,bn be the columns of B. Then

AB = [Ab1 Ab2 · · · Abn].

That is, the columns of AB are Ab1,Ab2, . . . ,Abn.
Let b j,k denote the elements of B and a j the columns of A. Note that Ae j = a j. By linearity of

the determinant as proved above we have

det(AB) = det([Ab1 Ab2 · · · Abn]) = det

��
n

∑
j=1

b j,1a j Ab2 · · · Abn

��

=
n

∑
j=1

b j,1 det([a j Ab2 · · · Abn])

= ∑
1≤ j1, j2,..., jn≤n

b j1,1b j2,2 · · ·b jn,n det([a j1 a j2 · · · a jn ])

=

�
∑

( j1, j2,..., jn)∈Sn

b j1,1b j2,2 · · ·b jn,n sgn( j1, j2, . . . , jn)

�
det([a1 a2 · · · an]).

In the above, go from all integers between 1 and n, to just elements of Sn by noting that when two
columns in the determinant are the same then the determinant is zero. We then reorder the columns
to the original ordering and obtain the sgn.

The conclusion follows by recognizing the determinant of B. The rows and columns are swapped,
but a moment’s reflection reveals it does not matter. We could also just plug in A = I above.

To prove the second part of the theorem, suppose A is invertible. Then A−1A = I and conse-
quently det(A−1)det(A) = det(A−1A) = det(I) = 1. If A is not invertible, then the columns are
linearly dependent. That is, suppose

n

∑
j=1

γ ja j = 0,
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where not all γ j are equal to 0. Without loss of generality suppose γ1 �= 1. Take

B :=




γ1 0 0 · · · 0
γ2 1 0 · · · 0
γ3 0 1 · · · 0
...

...
... . . . ...

γn 0 0 · · · 1



.

Applying the definition of the derivative we see det(B) = γ1 �= 0. Then det(AB) = det(A)det(B) =
γ1 det(A). The first column of AB is zero, and hence det(AB) = 0. Thus det(A) = 0.

There are three types of so-called elementary matrices. First for some j = 1,2, . . . ,n and some
λ ∈ R, λ �= 0, an n×n matrix E defined by

Eei =

�
ei if i �= j,
λei if i = j.

Given any n×m matrix M the matrix EM is the same matrix as M except with the kth row multiplied
by λ . It is an easy computation (exercise) that det(E) = λ .

Second, for some j and k with j �= k, and λ ∈ R an n×n matrix E defined by

Eei =

�
ei if i �= j,
ei +λek if i = j.

Given any n×m matrix M the matrix EM is the same matrix as M except with λ times the kth row
added to the jth row. It is an easy computation (exercise) that det(E) = 1.

Finally for some j and k with j �= k an n×n matrix E defined by

Eei =





ei if i �= j and i �= k,
ek if i = j,
e j if i = k.

Given any n×m matrix M the matrix EM is the same matrix with jth and kth rows swapped. It is
an easy computation (exercise) that det(E) =−1.

Elementary matrices are useful for computing the determinant. The proof of the following
proposition is left as an exercise.

Proposition 8.2.9. Let T be an n× n invertible matrix. Then there exists a finite sequence of
elementary matrices E1,E2, . . . ,Ek such that

T = E1E2 · · ·Ek,

and
det(T ) = det(E1)det(E2) · · ·det(Ek).
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Proposition 8.2.10. Determinant is independent of the basis. In other words, if B is invertible then,

det(A) = det(B−1AB).

The proof is immediate. If in one basis A is the matrix representing a linear operator, then for
another basis we can find a matrix B such that the matrix B−1AB takes us to the first basis, applies
A in the first basis, and takes us back to the basis we started with. Therefore, the determinant can
be defined as a function on the space L(X) for some finite dimensional metric space X , not just
on matrices. We choose a basis on X , and we can represent a linear mapping using a matrix with
respect to this basis. We obtain the same determinant as if we had used any other basis. It follows
from the two propositions that

det : L(X)→ R
is a well-defined and continuous function.

8.2.4 Exercises
Exercise 8.2.1: If X is a vector space with a norm �·�, then show that d(x,y) := �x− y� makes X a metric
space.

Exercise 8.2.2 (Easy): Show that det(AB) = det(BA).

Exercise 8.2.3: For Rn define
�x�∞ := max{|x1| , |x2| , . . . , |xn|},

sometimes called the sup or the max norm. a) Show that �·�∞ is a norm on Rn (defining a different distance).
b) What is the unit ball B(0,1) in this norm?

Exercise 8.2.4: For Rn define

�x�1 :=
n

∑
j=1

|x j|,

sometimes called the 1-norm (or L1 norm). a) Show that �·�1 is a norm on Rn (defining a different distance,
sometimes called the taxicab distance). b) What is the unit ball B(0,1) in this norm?

Exercise 8.2.5: Using the euclidean norm on R2. Compute the operator norm of the operators in L(R2)
given by the matrices:
a)
�

1 0
0 2

�
b)
�

0 1
−1 0
�

c)
�

1 1
0 1

�
d)
�

0 1
0 0

�

Exercise 8.2.6: Using the standard euclidean norm Rn. Show
a) If A ∈ L(R,Rn) is defined by Ax = ax for a vector a ∈ Rn. Then the operator norm �A�= �a�.
b) If B ∈ L(Rn,R) is defined by Bx = b · x for a vector b ∈ Rn. Then the operator norm �B�= �b�.

Exercise 8.2.7: Suppose σ = (σ1,σ2, . . . ,σn) is a permutation of (1,2, . . . ,n).
a) Show that we can make a finite number of transpositions (switching of two elements) to get to (1,2, . . . ,n).
b) Show that the sign of sigma is well defined. That is, if it takes an even number of transpositions to get to
(1,2, . . . ,n) it cannot be achieved in an odd number of transpositions. And vice versa.
c) Using the definition (8.3) show that σ is even if sgn(σ) = 1 and σ is odd if sgn(σ) =−1.
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Exercise 8.2.8: Verify the computation of the determinant for the three types of elementary matrices.

Exercise 8.2.9: Prove Proposition 8.2.9.

Exercise 8.2.10: a) Suppose D = [di, j] is an n-by-n diagonal matrix, that is, di, j = 0 whenever i �= j. Show
that det(D) = d1,1d2,2 · · ·dn,n.
b) Suppose A is a diagonalizable matrix. That is, there exists a matrix B such that B−1AB = D for a diagonal
matrix D = [di, j]. Show that det(A) = d1,1d2,2 · · ·dn,n.

Exercise 8.2.11: Take the vectorspace of polynomials R[t] and the linear operator D ∈ L(R[t]) that is
the differentiation (we proved in an earlier exercise that D is a linear operator). Define the norm on
P(t) = c0 + c1t + · · ·+ cntn as �P� := sup{

��c j
�� : j = 0,1, . . . ,n}.

a) Show that �P� is a norm on R[t].
b) Show that D does not have bounded operator norm, that is �D�= ∞. Hint: consider the polynomials tn as
n tends to infinity.

The one part of the proof of propositions 8.2.4 and 8.2.5 needed to state and prove them for all finite
dimensional vector spaces is to show that in finite dimensional vector spaces a linear operators always have
finite operator norm.

Exercise 8.2.12: Let X be any finite dimensional vector space with a norm. Let {x1,x2, . . . ,xn} be a basis.
a) Show that the function f : Rn → R

f (c1,c2, . . . ,cn) = �c1x1 + c2x2 + · · ·+ cnxn�

is continuous.
b) Show that there exists a number M such that if c = (c1, . . . ,cn) ∈ Rn with �c� ≤ 1 (standard euclidean
norm), then �c1x1 + c2x2 + · · ·+ cnxn� ≤ M (the norm on X).
c) Show that there exists a number B such that if x = c1x1 + c2x2 + · · ·+ cnxn, and �x�= 1, then

��c j
��≤ B.

d) Use part (c) to show that if X and Y are finite dimensional vector spaces and A ∈ L(X ,Y ), then �A�< ∞.

Exercise 8.2.13: Let X be any finite dimensional vector space with a norm �·�. Let {x1,x2, . . . ,xn} be a
basis. Let c = (c1, . . . ,cn) ∈ Rn and �c� be the standard euclidean norm on Rn.
a) Find that there exist positive numbers m,M > 0 such that for

m�c� ≤ �c1x1 + c2x2 + · · ·+ cnxn� ≤ M�c�.

b) Use part (a) to show that of �·�1 and �·�1 are two norms on X, then there exist positive numbers m,M > 0
(perhaps different than above) such that for all x ∈ X we have

m�x�1 ≤ �x�2 ≤ M�x�1.

c) Now show that U ⊂ X is open in the metric defined by �x− y�1 if and only if it is open in the metric defined
by �x− y�2. In other words, convergence of sequences, continuity of functions is the same in either norm.
Hint: See previous exercise.
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8.3 The derivative
Note: ??? lectures

8.3.1 The derivative
Recall that for a function f : R→ R, we defined the derivative at x as

lim
h→0

f (x+h)− f (x)
h

.

In other words, there was a number a (the derivative of f at x) such that

lim
h→0

����
f (x+h)− f (x)

h
−a
����= lim

h→0

����
f (x+h)− f (x)−ah

h

����= lim
h→0

| f (x+h)− f (x)−ah|
|h| = 0.

Multiplying by a is a linear map in one dimension. That is, we think of a ∈ L(R1,R1). We use
this definition to extend differentiation to more variables.

Definition 8.3.1. Let U ⊂ Rn be an open subset and f : U → Rm. We say f is differentiable at
x ∈U if there exists an A ∈ L(Rn,Rm) such that

lim
h→0
h∈Rn

� f (x+h)− f (x)−Ah�
�h� = 0.

We write D f (x) := A, or f �(x) := A, and we say A is the derivative of f at x. When f is differentiable
at all x ∈U , we say simply that f is differentiable.

For a differentiable function, the derivative of f is a function from U to L(Rn,Rm). Compare
to the one dimensional case, where the derivative is a function from U to R, but we really want to
think of R here as L(R1,R1).

The norms above must be in the right spaces of course. The norm in the numerator is in Rm,
and the norm in the denominator is Rn where h lives. Normally it is understood that h ∈ Rn from
context. We will not explicitly say so from now on.

We have again cheated somewhat and said that A is the derivative. We have not shown yet that
there is only one, let us do that now.

Proposition 8.3.2. Let U ⊂ Rn be an open subset and f : U → Rm. Suppose x ∈U and there exist
A,B ∈ L(Rn,Rm) such that

lim
h→0

� f (x+h)− f (x)−Ah�
�h� = 0 and lim

h→0

� f (x+h)− f (x)−Bh�
�h� = 0.

Then A = B.
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Proof.

�(A−B)h�
�h� =

� f (x+h)− f (x)−Ah− ( f (x+h)− f (x)−Bh)�
�h�

≤ � f (x+h)− f (x)−Ah�
�h� +

� f (x+h)− f (x)−Bh�
�h� .

So �(A−B)h�
�h� → 0 as h → 0. That is, given ε > 0, then for all h in some δ -ball around the origin

ε >
�(A−B)h�

�h� =

����(A−B)
h

�h�

���� .

For any x with �x�= 1 let h = (δ/2)x, then �h�< δ and h
�h� = x. So �(A−B)x�< ε . Taking the

supremum over all x with �x�= 1 we get the operator norm �A−B� ≤ ε . As ε > 0 was arbitrary
�A−B�= 0 or in other words A = B.

Example 8.3.3: Let f : R2 →R2 be defined by f (x,y)=
�

f1(x,y), f2(x,y)
�

:=(1+x+2y+x2,2x+
3y+xy). Let us show that f is differentiable at the origin and let us compute compute the derivative,
directly using the definition. The derivative is in L(R2,R2) so it can be represented by a 2×2 matrix�

a b
c d

�
. Suppose h = (h1,h2). We need the following expression to go to zero.

� f (h1,h2)− f (0,0)− (ah1 +bh2,ch1 +dh2)�
�(h1,h2)�

=

��
(1−a)h1 +(2−b)h2 +h2

1
�2

+
�
(2− c)h1 +(3−d)h2 +h1h2

�2
�

h2
1 +h2

2

.

If we choose a = 1, b = 2, c = 2, d = 3, the expression becomes
�

h4
1 +h2

1h2
2�

h2
1 +h2

2

= |h1|

�
h2

1 +h2
2�

h2
1 +h2

2

= |h1| .

And this expression does indeed go to zero as h → 0. Therefore the function is differentiable at the
origin and the derivative can be represented by the matrix

�
1 2
2 3
�
.

Example 8.3.4: If f (x) = Ax for a linear mapping A, then f �(x) = A. This is easily seen:

� f (x+h)− f (x)−Ah�
�h� =

�A(x+h)−Ax−Ah�
�h� =

0
�h� = 0.

Proposition 8.3.5. Let U ⊂ Rn be open and f : U → Rm be differentiable at p ∈ U. Then f is
continuous at p.
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Proof. Another way to write the differentiability of f at p is to first write

r(h) := f (p+h)− f (p)− f �(p)h,

and �r(h)�
�h� must go to zero as h → 0. So r(h) itself must go to zero. The mapping h �→ f �(p)h is

linear mapping between finite dimensional spaces, it is therefore continuous and goes to zero as
h → 0. Therefore, f (p+h) must go to f (p) as h → 0. That is, f is continuous at p.

Theorem 8.3.6 (Chain rule). Let U ⊂ Rn be open and let f : U → Rm be differentiable at p ∈U.
Let V ⊂ Rm be open, f (U)⊂V and let g : V → R� be differentiable at f (p). Then

F(x) = g
�

f (x)
�

is differentiable at p and
F �(p) = g�

�
f (p)
�

f �(p).

Without the points where things are evaluated, this is sometimes written as F � = ( f ◦g)� = g� f �.
The way to understand it is that the derivative of the composition g◦ f is the composition of the
derivatives of g and f . That is, if A := f �(p) and B := g�

�
f (p)
�
, then F �(p) = BA.

Proof. Let A := f �(p) and B := g�
�

f (p)
�
. Take h ∈ Rn and write q = f (p), k = f (p+h)− f (p).

Let
r(h) := f (p+h)− f (p)−Ah = k−Ah.

Then

�F(p+h)−F(p)−BAh�
�h� =

�g
�

f (p+h)
�
−g
�

f (p)
�
−BAh�

�h�

=
�g(q+ k)−g(q)−B

�
k− r(h)

�
�

�h�

≤ �g(q+ k)−g(q)−Bk�
�h� +�B��r(h)�

�h�

=
�g(q+ k)−g(q)−Bk�

�k�
� f (p+h)− f (p)�

�h� +�B��r(h)�
�h� .

First, �B� is constant and f is differentiable at p, so the term �B��r(h)�
�h� goes to 0. Next as f is

continuous at p, we have that as h goes to 0, then k goes to 0. Therefore �g(q+k)−g(q)−Bk�
�k� goes to 0

because g is differentiable at q. Finally

� f (p+h)− f (p)�
�h� ≤ � f (p+h)− f (p)−Ah�

�h� +
�Ah�
�h� ≤ � f (p+h)− f (p)−Ah�

�h� +�A�.

As f is differentiable at p, the term � f (p+h)− f (p)�
�h� stays bounded as h goes to 0. Therefore,

�F(p+h)−F(p)−BAh�
�h� goes to zero, and F �(p) = BA, which is what was claimed.
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8.3.2 Partial derivatives

There is another way to generalize the derivative from one dimension. We can hold all but one
variables constant and take the regular derivative.

Definition 8.3.7. Let f : U → R be a function on an open set U ⊂ Rn. If the following limit exists
we write

∂ f
∂x j

(x) := lim
h→0

f (x1, . . . ,x j−1,x j +h,x j+1, . . . ,xn)− f (x)
h

= lim
h→0

f (x+he j)− f (x)
h

.

We call ∂ f
∂x j

(x) the partial derivative of f with respect to x j. Sometimes we write D j f instead.
For a mapping f : U → Rm we write f = ( f1, f2, . . . , fm), where fk are real-valued functions.

Then we define ∂ fk
∂x j

(or write it as D j fk).

Partial derivatives are easier to compute with all the machinery of calculus, and they provide a
way to compute the derivative of a function.

Proposition 8.3.8. Let U ⊂Rn be open and let f : U →Rm be differentiable at p ∈U. Then all the
partial derivatives at p exist and in terms of the standard basis of Rn and Rm, f �(p) is represented
by the matrix 



∂ f1
∂x1

(p) ∂ f1
∂x2

(p) . . . ∂ f1
∂xn

(p)
∂ f2
∂x1

(p) ∂ f2
∂x2

(p) . . . ∂ f2
∂xn

(p)
...

... . . . ...
∂ fm
∂x1

(p) ∂ fm
∂x2

(p) . . . ∂ fm
∂xn

(p)



.

In other words

f �(p)e j =
m

∑
k=1

∂ fk

∂x j
(p)ek.

If h = ∑n
j=1 c je j, then

f �(p)h =
n

∑
j=1

m

∑
k=1

c j
∂ fk

∂x j
(p)ek.

Proof. Fix a j and note that
����

f (p+he j)− f (p)
h

− f �(p)e j

����=
����

f (p+he j)− f (p)− f �(p)he j

h

����

=
� f (p+he j)− f (p)− f �(p)he j�

�he j�
.
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As h goes to 0, the right hand side goes to zero by differentiability of f , and hence

lim
h→0

f (p+he j)− f (p)
h

= f �(p)e j.

Note that f is vector valued. So represent f by components f = ( f1, f2, . . . , fm), and note that taking
a limit in Rm is the same as taking the limit in each component separately. Therefore for any k the
partial derivative

∂ fk

∂x j
(p) = lim

h→0

fk(p+he j)− fk(p)
h

exists and is equal to the kth component of f �(p)e j, and we are done.

One of the consequences of the theorem is that if f is differentiable on U , then f � : U →
L(Rn,Rm) is a continuous function if and only if all the ∂ fk

∂x j
are continuous functions.

The converse of the proposition is not true. Just because the partial derivatives exist, does not
mean that the function is differentiable. See the exercises.

8.3.3 Gradient and directional derivatives
Let U ⊂ Rn be open and f : U → R is a differentiable function. We define the gradient as

∇ f (x) :=
n

∑
j=1

∂ f
∂x j

(x)e j.

Suppose γ : (a,b) ⊂ R→ Rn is a differentiable function and the image γ
�
(a,b)

�
⊂ U . Such

a function and its image is sometimes called a curve, or a differentiable curve. Write γ =
(γ1,γ2, . . . ,γn). Let

g(t) := f
�
γ(t)
�
.

The function g is differentiable. For purposes of computation we identify identify L(R1) with R,
and hence g�(t) can be computed as a number:

g�(t) = f �
�
γ(t)
�
γ �(t) =

n

∑
j=1

∂ f
∂x j

�
γ(t)
�dγ j

dt
(t) =

n

∑
j=1

∂ f
∂x j

dγ j

dt
.

For convenience, we sometimes leave out the points where we are evaluating as on the right hand
side above. Notice

g�(t) = (∇ f )
�
γ(t)
�
· γ �(t) = ∇ f · γ �,

where the dot is the standard scalar dot product.
We use this idea to define derivatives in a specific direction. A direction is simply a vector

pointing in that direction. So pick a vector u ∈ Rn such that �u�= 1. Fix x ∈U . Then define

γ(t) := x+ tu.
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It is easy to compute that γ �(t) = u for all t. By chain rule

d
dt

���
t=0

�
f (x+ tu)

�
= (∇ f )(x) ·u,

where the notation d
dt

��
t=0 represents the derivative evaluated at t = 0. We also compute directly

d
dt

���
t=0

�
f (x+ tu)

�
= lim

h→0

f (x+hu)− f (x)
h

.

We obtain the directional derivative, denoted by

Du f (x) :=
d
dt

���
t=0

�
f (x+ tu)

�
,

which can be computed by one of the methods above.
Let us suppose (∇ f )(x) �= 0. By Cauchy-Schwarz inequality we have

|Du f (x)|≤ �(∇ f )(x)�.

Equality is achieved when u is a scalar multiple of (∇ f )(x). That is, when

u =
(∇ f )(x)

�(∇ f )(x)� ,

we get Du f (x) = �(∇ f )(x)�. The gradient points in the direction in which the function grows
fastest, in other words, in the direction in which Du f (x) is maximal.

8.3.4 The Jacobian
Definition 8.3.9. Let U ⊂Rn and f : U →Rn be a differentiable mapping. Then define the Jacobian
of f at x as

Jf (x) := det
�

f �(x)
�
.

Sometimes this is written as
∂ ( f1, f2, . . . , fn)

∂ (x1,x2, . . . ,xn)
.

This last piece of notation may seem somewhat confusing, but it is useful when you need to
specify the exact variables and function components used.

The Jacobian Jf is a real valued function, and when n = 1 it is simply the derivative. When f is
C1, then Jf is a continuous function. From the chain rule it follows that:

Jf◦g(x) = Jf
�
g(x)
�
Jg(x).
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It can be computed directly that the determinant tells us what happens to area/volume. Suppose
we are in R2. Then if A is a linear transformation, it follows by direct computation that the direct
image of the unit square A([0,1]2) has area |det(A)|. Note that the sign of the determinant determines
“orientation”. If the determinant is negative, then the two sides of the unit square will be flipped in
the image. We claim without proof that this follows for arbitrary figures, not just the square.

Similarly, the Jacobian measures how much a differentiable mapping stretches things locally,
and if it flips orientation.

8.3.5 Exercises
Exercise 8.3.1: Suppose γ : (−1,1) → Rn and α : (−1,1) → Rn be two differentiable curves such that
γ(0) = α(0) and γ �(0) = α �(0). Suppose F : Rn → R is a differentiable function. Show that

d
dt

���
t=0

F
�
γ(t)
�
=

d
dt

���
t=0

F
�
α(t)
�
.

Exercise 8.3.2: Let f : R2 → R be given by f (x,y) =
�

x2 + y2. Show that f is not differentiable at the
origin.

Exercise 8.3.3: Define a function f : R2 → R by

f (x,y) :=

�
xy

x2+y2 if (x,y) �= (0,0),

0 if (x,y) = (0,0).

a) Show that partial derivatives ∂ f
∂x and ∂ f

∂y exist at all points (including the origin).
b) Show that f is not continuous at the origin (and hence not differentiable).

Exercise 8.3.4: Define a function f : R2 → R by

f (x,y) :=

�
x2y

x2+y2 if (x,y) �= (0,0),

0 if (x,y) = (0,0).

a) Show that partial derivatives ∂ f
∂x and ∂ f

∂y exist at all points.
b) Show that for all u ∈ R2 with �u�= 1, the directional derivative Du f exists at all points.
c) Show that f is continuous at the origin.
d) Show that f is not differentiable at the origin.

Exercise 8.3.5: Suppose f : Rn → Rn is one-to-one, onto, differentiable at all points, and such that f−1 is
also differentiable at all points.
a) Show that f �(p) is invertible at all points p and compute ( f−1)

�� f (p)
�
. Hint: consider p = f−1

�
f (p)
�
.

b) Let g : Rn → Rn be a function differentiable at q ∈ Rn and such that g(q) = q. Suppose f (p) = q for some
p ∈ Rn. Show Jg(q) = Jf−1◦g◦ f (p) where Jg is the Jacobian determinant.

Exercise 8.3.6: Suppose f : R2 → R is differentiable and such that f (x,y) = 0 if and only if y = 0 and such
that ∇ f (0,0) = (1,1). Prove that f (x,y)> 0 whenever y > 0 and f (x,y)< 0 whenever y < 0.
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Exercise 8.3.7: Suppose U ⊂ Rn is open and f : U → R is differentiable. Suppose that f has a local
maximum at p ∈U. Show that f �(p) = 0, that is the zero mapping in L(Rn,R).

Exercise 8.3.8: Suppose f : R2 →R is differentiable and suppose that whenever x2+y2 = 1, then f (x,y) = 0.
Prove that there exists at least one point (x0,y0) such that ∂ f

∂x (x0,y0) =
∂ f
∂y (x0,y0) = 0.

Exercise 8.3.9: Suppose f : R→ Rn is differentiable and � f (t)�= 1 for all t (that is, we have a curve in the
unit sphere). Then show that for all t, treating f � as a vector we have, f �(t) · f (t) = 0.
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8.4 Continuity and the derivative
Note: ??? lectures

8.4.1 Bounding the derivative
Let us prove a “mean value theorem” for vector valued functions.

Lemma 8.4.1. If ϕ : [a,b]→Rn is differentiable on (a,b) and continuous on [a,b], then there exists
a t0 ∈ (a,b) such that

�ϕ(b)−ϕ(a)� ≤ (b−a)�ϕ �(t0)�.

Proof. By mean value theorem on the function
�
ϕ(b)−ϕ(a)

�
·ϕ(t) (the dot is the scalar dot product

again) we obtain there is a t0 ∈ (a,b) such that
�
ϕ(b)−ϕ(a)

�
·ϕ(b)−

�
ϕ(b)−ϕ(a)

�
·ϕ(a) = �ϕ(b)−ϕ(a)�2 = (b−a)

�
ϕ(b)−ϕ(a)

�
·ϕ �(t0)

where we treat ϕ � as a simply a column vector of numbers by abuse of notation. Note that in this
case, if we think of ϕ �(t) as simply a vector, then by Exercise 8.2.6, �ϕ �(t)�L(R,Rn) = �ϕ �(t)�Rn .

By Cauchy-Schwarz inequality

�ϕ(b)−ϕ(a)�2 = (b−a)
�
ϕ(b)−ϕ(a)

�
·ϕ �(t0)≤ (b−a)�ϕ(b)−ϕ(a)��ϕ �(t0)�.

Recall that a set U is convex if whenever x,y ∈U , the line segment from x to y lies in U .

Proposition 8.4.2. Let U ⊂ Rn be a convex open set, f : U → Rm a differentiable function, and an
M such that

� f �(x)� ≤ M

for all x ∈U. Then f is Lipschitz with constant M, that is

� f (x)− f (y)� ≤ M�x− y�

for all x,y ∈U.

Proof. Fix x and y in U and note that (1− t)x+ ty ∈U for all t ∈ [0,1] by convexity. Next

d
dt

�
f
�
(1− t)x+ ty

��
= f �
�
(1− t)x+ ty

�
(y− x).

By mean value theorem above we get

� f (x)− f (y)� ≤
����

d
dt

�
f
�
(1− t)x+ ty

������≤ � f �
�
(1− t)x+ ty

�
��y− x� ≤ M�y− x�.
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Example 8.4.3: If U is not convex the proposition is not true. To see this fact, take the set

U = {(x,y) : 0.9 < x2 + y2 < 1.1}\{(x,0) : x < 0}.

Let f (x,y) be the angle that the line from the origin to (x,y) makes with the positive x axis. You
can even write the formula for f :

f (x,y) = 2arctan

�
y

x+
�

x2 + y2

�
.

Think spiral staircase with room in the middle. See Figure 8.2.

(x,y)

θ = f (x,y)

Figure 8.2: A non-Lipschitz function with uniformly bounded derivative.

The function is differentiable, and the derivative is bounded on U , which is not hard to see.
Thinking of what happens near where the negative x-axis cuts the annulus in half, we see that the
conclusion cannot hold.

Let us solve the differential equation f � = 0.

Corollary 8.4.4. If U ⊂ Rn is connected and f : U → Rm is differentiable and f �(x) = 0, for all
x ∈U, then f is constant.

Proof. For any x ∈U , there is a ball B(x,δ ) ⊂U . The ball B(x,δ ) is convex. Since � f �(y)� ≤ 0
for all y ∈ B(x,δ ) then by the theorem, � f (x)− f (y)� ≤ 0�x− y� = 0, so f (x) = f (y) for all
y ∈ B(x,δ ).

This means that f−1(c) is open for any c ∈ Rm. Suppose f−1(c) is nonempty. The two sets

U � = f−1(c), U �� = f−1(Rm \{c}) =
�

a∈Rm

a�=c

f−1(a)
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are open disjoint, and further U =U � ∪U ��. So as U � is nonempty, and U is connected, we have that
U �� = /0. So f (x) = c for all x ∈U .

8.4.2 Continuously differentiable functions
Definition 8.4.5. We say f : U ⊂Rn →Rm is continuously differentiable, or C1(U) if f is differen-
tiable and f � : U → L(Rn,Rm) is continuous.

Proposition 8.4.6. Let U ⊂ Rn be open and f : U → Rm. The function f is continuously differen-
tiable if and only if all the partial derivatives exist and are continuous.

Without continuity the theorem does not hold. Just because partial derivatives exist does not
mean that f is differentiable, in fact, f may not even be continuous. See the exercises for the last
section and also for this section.

Proof. We have seen that if f is differentiable, then the partial derivatives exist. Furthermore, the
partial derivatives are the entries of the matrix of f �(x). So if f � : U → L(Rn,Rm) is continuous,
then the entries are continuous, hence the partial derivatives are continuous.

To prove the opposite direction, suppose the partial derivatives exist and are continuous. Fix
x ∈U . If we can show that f �(x) exists we are done, because the entries of the matrix f �(x) are then
the partial derivatives and if the entries are continuous functions, the matrix valued function f � is
continuous.

Let us do induction on dimension. First let us note that the conclusion is true when n = 1. In
this case the derivative is just the regular derivative (exercise: you should check that the fact that the
function is vector valued is not a problem).

Suppose the conclusion is true for Rn−1, that is, if we restrict to the first n−1 variables, the
conclusion is true. It is easy to see that the first n−1 partial derivatives of f restricted to the set
where the last coordinate is fixed are the same as those for f . In the following we think of Rn−1 as a
subset of Rn, that is the set in Rn where xn = 0. Let

A =




∂ f1
∂x1

(x) . . . ∂ f1
∂xn

(x)
... . . . ...

∂ fm
∂x1

(x) . . . ∂ fm
∂xn

(x)


 , A1 =




∂ f1
∂x1

(x) . . . ∂ f1
∂xn−1

(x)
... . . . ...

∂ fm
∂x1

(x) . . . ∂ fm
∂xn−1

(x)


 , v =




∂ f1
∂xn

(x)
...

∂ fm
∂xn

(x)


 .

Let ε > 0 be given. Let δ > 0 be such that for any k ∈ Rn−1 with �k�< δ we have

� f (x+ k)− f (x)−A1k�
�k� < ε.

By continuity of the partial derivatives, suppose δ is small enough so that
����
∂ f j

∂xn
(x+h)− ∂ f j

∂xn
(x)
����< ε,
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for all j and all h with �h�< δ .
Let h = h1 + ten be a vector in Rn where h1 ∈ Rn−1 such that �h�< δ . Then �h1� ≤ �h�< δ .

Note that Ah = A1h1 + tv.

� f (x+h)− f (x)−Ah�= � f (x+h1 + ten)− f (x+h1)− tv+ f (x+h1)− f (x)−A1h1�
≤ � f (x+h1 + ten)− f (x+h1)− tv�+� f (x+h1)− f (x)−A1h1�
≤ � f (x+h1 + ten)− f (x+h1)− tv�+ ε�h1�.

As all the partial derivatives exist then by the mean value theorem for each j there is some θ j ∈ [0, t]
(or [t,0] if t < 0), such that

f j(x+h1 + ten)− f j(x+h1) = t
∂ f j

∂xn
(x+h1 +θ jen).

Note that if �h�< δ then �h1 +θ jen� ≤ �h�< δ . So to finish the estimate

� f (x+h)− f (x)−Ah� ≤ � f (x+h1 + ten)− f (x+h1)− tv�+ ε�h1�

≤

����
m

∑
j=1

�
t
∂ f j

∂xn
(x+h1 +θ jen)− t

∂ f j

∂xn
(x)
�2

+ ε�h1�

≤ √
mε |t|+ ε�h1�

≤ (
√

m+1)ε�h�.

8.4.3 Exercises
Exercise 8.4.1: Define f : R2 → R as

f (x,y) :=

�
(x2 + y2)sin

�
(x2 + y2)

−1� if (x,y) �= (0,0),
0 else.

Show that f is differentiable at the origin, but that it is not continuously differentiable.

Exercise 8.4.2: Let f : R2 → R be the function from Exercise 8.3.3, that is,

f (x,y) :=

�
xy

x2+y2 if (x,y) �= (0,0),

0 if (x,y) = (0,0).

Compute the partial derivatives ∂ f
∂x and ∂ f

∂y at all points and show that these are not continuous functions.
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Exercise 8.4.3: Suppose f : R2 → R is a function such that in the closed unit ball C(0,1), that is for
x2 + y2 ≤ 1 we have | f (0,0)|≤ 1,

��� ∂ f
∂x

���≤ 1, and
��� ∂ f

∂y

���≤ 1.

a) Find an M ∈ R such that � f �(x,y)� ≤ M for all (x,y) ∈C(0,1).
b) Find a B ∈ R such that | f (x,y)|≤ B.

Exercise 8.4.4: Define ϕ : [0,2π]→R2 by ϕ(t) =
�
sin(t),cos(t)

�
. Compute ϕ �(t) for all t. Compute �ϕ �(t)�

for all t. Notice that ϕ �(t) is never zero, yet ϕ(0) = ϕ(2π), therefore, Rolle’s theorem is not true in more
than one dimension.

Exercise 8.4.5: Let f : R2 → R be a function whose partial derivatives exist at all points and are bounded
functions. Show that f is continuous.

Exercise 8.4.6: Let f : R2 → R be a function such that f (0,0) = 0, M ∈ R, and for all u ∈ R2 with �u�= 1,
the directional derivative Du f (0,0) exists, and �Du f (0,0)� ≤ M. Show that f is continuous at the origin.
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8.5 Inverse and implicit function theorem
Note: ??? lectures

To prove the inverse function theorem we use the contraction mapping principle we have seen
in chapter 7 and that we have used to prove Picard’s theorem. Recall that a mapping f : X → X �

between two metric spaces (X ,d) and (X �,d�) is called a contraction if there exists a k < 1 such that

d�� f (x), f (y)
�
≤ kd(x,y) for all x,y ∈ X .

The contraction mapping principle says that if f : X → X is a contraction and X is a complete metric
space, then there exists a unique fixed point, that is, there exists a unique x ∈ X such that f (x) = x.

Intuitively if a function is differentiable, then it locally “behaves like” the derivative (which is a
linear function). The idea of the inverse function theorem is that if a function is differentiable and
the derivative is invertible, the function is (locally) invertible.

Theorem 8.5.1 (Inverse function theorem). Let U ⊂ Rn be a set and let f : U → Rn be a con-
tinuously differentiable function. Also suppose p ∈ U, f (p) = q, and f �(p) is invertible (that is,
Jf (p) �= 0). Then there exist open sets V,W ⊂ Rn such that p ∈ V ⊂ U, f (V ) = W and f |V is
one-to-one and onto. Furthermore, the inverse g(y) = ( f |V )−1(y) is continuously differentiable and

g�(y) =
�

f �(x)
�−1

, for all x ∈V , y = f (x).

Proof. Write A = f �(p). As f � is continuous, there exists an open ball V around p such that

�A− f �(x)�< 1
2�A−1� for all x ∈V .

Note that f �(x) is invertible for all x ∈V .
Given y ∈ Rn we define ϕy : C → Rn

ϕy(x) = x+A−1�y− f (x)
�
.

As A−1 is one-to-one, then ϕy(x) = x (x is a fixed point) if only if y− f (x) = 0, or in other words
f (x) = y. Using chain rule we obtain

ϕ �
y(x) = I −A−1 f �(x) = A−1�A− f �(x)

�
.

So for x ∈V we have
�ϕ �

y(x)� ≤ �A−1��A− f �(x)�< 1/2.

As V is a ball it is convex, and hence

�ϕy(x1)−ϕy(x2)� ≤
1
2
�x1 − x2� for all x1,x2 ∈V .
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In other words ϕy is a contraction defined on V , though we so far do not know what is the range of
ϕy. We cannot apply the fixed point theorem, but we can say that ϕy has at most one fixed point
(note proof of uniqueness in the contraction mapping principle). That is, there exists at most one
x ∈V such that f (x) = y, and so f |V is one-to-one.

Let W = f (V ). We need to show that W is open. Take a y1 ∈W , then there is a unique x1 ∈V
such that f (x1) = y1. Let r > 0 be small enough such that the closed ball C(x1,r)⊂V (such r > 0
exists as V is open).

Suppose y is such that

�y− y1�<
r

2�A−1� .

If we can show that y ∈W , then we have shown that W is open. Define ϕy(x) = x+A−1�y− f (x)
�

as before. If x ∈C(x1,r), then

�ϕy(x)− x1� ≤ �ϕy(x)−ϕy(x1)�+�ϕy(x1)− x1�

≤ 1
2
�x− x1�+�A−1(y− y1)�

≤ 1
2

r+�A−1��y− y1�

<
1
2

r+�A−1� r
2�A−1� = r.

So ϕy takes C(x1,r) into B(x1,r)⊂C(x1,r). It is a contraction on C(x1,r) and C(x1,r) is complete
(closed subset of Rn is complete). Apply the contraction mapping principle to obtain a fixed point x,
i.e. ϕy(x) = x. That is f (x) = y. So y ∈ f

�
C(x1,r)

�
⊂ f (V ) =W . Therefore W is open.

Next we need to show that g is continuously differentiable and compute its derivative. First let
us show that it is differentiable. Let y ∈W and k ∈ Rn, k �= 0, such that y+ k ∈W . Then there are
unique x ∈V and h ∈ Rn, h �= 0 and x+h ∈V , such that f (x) = y and f (x+h) = y+ k as f |V is a
one-to-one and onto mapping of V onto W . In other words, g(y) = x and g(y+ k) = x+h. We can
still squeeze some information from the fact that ϕy is a contraction.

ϕy(x+h)−ϕy(x) = h+A−1� f (x)− f (x+h)
�
= h−A−1k.

So

�h−A−1k�= �ϕy(x+h)−ϕy(x)� ≤
1
2
�x+h− x�= �h�

2
.

By the inverse triangle inequality �h�−�A−1k� ≤ 1
2�h� so

�h� ≤ 2�A−1k� ≤ 2�A−1��k�.

In particular as k goes to 0, so does h.
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As x ∈V , then f �(x) is invertible. Let B =
�

f �(x)
�−1, which is what we think the derivative of g

at y is. Then

�g(y+ k)−g(y)−Bk�
�k� =

�h−Bk�
�k�

=
�h−B

�
f (x+h)− f (x)

�
�

�k�

=
�B
�

f (x+h)− f (x)− f �(x)h
�
�

�k�

≤ �B��h�
�k�

� f (x+h)− f (x)− f �(x)h�
�h�

≤ 2�B��A−1�� f (x+h)− f (x)− f �(x)h�
�h� .

As k goes to 0, so does h. So the right hand side goes to 0 as f is differentiable, and hence the left
hand side also goes to 0. And B is precisely what we wanted g�(y) to be.

We have g is differentiable, let us show it is C1(W ). Now, g : W → V is continuous (it is
differentiable), f � is a continuous function from V to L(Rn), and X → X−1 is a continuous function.
g�(y) =

�
f �
�
g(y)
��−1 is the composition of these three continuous functions and hence is continuous.

Corollary 8.5.2. Suppose U ⊂Rn is open and f : U →Rn is a continuously differentiable mapping
such that f �(x) is invertible for all x ∈U. Then given any open set V ⊂U, f (V ) is open. ( f is an
open mapping).

Proof. Without loss of generality, suppose U = V . For each point y ∈ f (V ), we pick x ∈ f−1(y)
(there could be more than one such point), then by the inverse function theorem there is a neigh-
bourhood of x in V that maps onto an neighbourhood of y. Hence f (V ) is open.

Example 8.5.3: The theorem, and the corollary, is not true if f �(x) is not invertible for some x.
For example, the map f (x,y) = (x,xy), maps R2 onto the set R2 \{(0,y) : y �= 0}, which is neither
open nor closed. In fact f−1(0,0) = {(0,y) : y ∈ R}. This bad behaviour only occurs on the y-axis,
everywhere else the function is locally invertible. If we avoid the y-axis, f is even one-to-one.

Example 8.5.4: Also note that just because f �(x) is invertible everywhere does not mean that f
is one-to-one globally. It is “locally” one-to-one but perhaps not “globally.” For an example, take
the map f : R2 \{0}→ R2 defined by f (x,y) = (x2 − y2,2xy). It is left to student to show that f is
differentiable and the derivative is invertible

On the other hand, the mapping is 2-to-1 globally. For every (a,b) that is not the origin, there
are exactly two solutions to x2 − y2 = a and 2xy = b. We leave it to the student to show that there
is at least one solution, and then notice that replacing x and y with −x and −y we obtain another
solution.



8.5. INVERSE AND IMPLICIT FUNCTION THEOREM 45

The invertibility of the derivative is not a necessary condition, just sufficient, for having a
continuous inverse and being an open mapping. For example the function f (x) = x3 is an open
mapping from R to R and is globally one-to-one with a continuous inverse, although the inverse is
not differentiable at x = 0.

8.5.1 Implicit function theorem
The inverse function theorem is really a special case of the implicit function theorem which we
prove next. Although somewhat ironically we prove the implicit function theorem using the inverse
function theorem. What we were showing in the inverse function theorem was that the equation
x− f (y) = 0 was solvable for y in terms of x if the derivative in terms of y was invertible, that is if
f �(y) was invertible. That is there was locally a function g such that x− f

�
g(x)
�
= 0.

OK, so how about we look at the equation f (x,y) = 0. Obviously this is not solvable for y in
terms of x in every case. For example, when f (x,y) does not actually depend on y. For a slightly
more complicated example, notice that x2 + y2 −1 = 0 defines the unit circle, and we can locally
solve for y in terms of x when 1) we are near a point which lies on the unit circle and 2) when we
are not at a point where the circle has a vertical tangency, or in other words where ∂ f

∂y = 0.
To make things simple we fix some notation. We let (x,y) ∈ Rn+m denote the coordinates

(x1, . . . ,xn,y1, . . . ,ym). A linear transformation A ∈ L(Rn+m,Rm) can then always be written as
A = [Ax Ay] so that A(x,y) = Axx+Ayy, where Ax ∈ L(Rn,Rm) and Ay ∈ L(Rm).

Proposition 8.5.5. Let A = [Ax Ay] ∈ L(Rn+m,Rm) and suppose Ay is invertible. If B =−(Ay)
−1Ax,

then
0 = A(x,Bx) = Axx+AyBx.

The proof is obvious. We simply solve and obtain y = Bx. Let us therefore show that the same
can be done for C1 functions.

Theorem 8.5.6 (Implicit function theorem). Let U ⊂Rn+m be an open set and let f : U →Rm be a
C1(U) mapping. Let (p,q) ∈U be a point such that f (p,q) = 0 and such that

∂ ( f1, . . . , fm)

∂ (y1, . . . ,ym)
(p,q) �= 0.

Then there exists an open set W ⊂ Rn with p ∈ W, an open set W � ⊂ Rm with q ∈ W �, with
W ×W � ⊂U, and a C1(W ) mapping g : W →W �, with g(p) = q, and for all x ∈W, the point g(x)
is the unique point in W � such that

f
�
x,g(x)

�
= 0.

Furthermore, if [Ax Ay] = f �(p,q), then

g�(p) =−(Ay)
−1Ax.
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The condition ∂ ( f1,..., fm)
∂ (y1,...,ym)

(p,q) = det(Ay) �= 0 simply means that Ay is invertible.

Proof. Define F : U → Rn+m by F(x,y) :=
�
x, f (x,y)

�
. It is clear that F is C1, and we want to

show that the derivative at (p,q) is invertible.
Let us compute the derivative. We know that

� f (p+h,q+ k)− f (p,q)−Axh−Ayk�
�(h,k)�

goes to zero as �(h,k)�=
�

�h�2 +�k�2 goes to zero. But then so does

�
�
h, f (p+h,q+ k)− f (p,q)

�
− (h,Axh+Ayk)�

�(h,k)� =
� f (p+h,q+ k)− f (p,q)−Axh−Ayk�

�(h,k)� .

So the derivative of F at (p,q) takes (h,k) to (h,Axh+Ayk). If (h,Axh+Ayk) = (0,0), then h = 0,
and so Ayk = 0. As Ay is one-to-one, then k = 0. Therefore F �(p,q) is one-to-one or in other words
invertible and we can apply the inverse function theorem.

That is, there exists some open set V ⊂ Rn+m with (p,0) ∈V , and an inverse mapping G : V →
Rn+m, that is F

�
G(x,s)

�
= (x,s) for all (x,s) ∈V (where x ∈ Rn and s ∈ Rm). Write G = (G1,G2)

(the first n and the second m components of G). Then

F
�
G1(x,s),G2(x,s)

�
=
�
G1(x,s), f (G1(x,s),G2(x,s))

�
= (x,s).

So x = G1(x,s) and f
�
G1(x,s),G2(x,s)

�
= f
�
x,G2(x,s)

�
= s. Plugging in s = 0 we obtain

f
�
x,G2(x,0)

�
= 0.

The set G(V ) contains a whole neighbourhood of the point (p,q) and therefore there are some open
The set V is open and hence there exist some open sets �W and W � such that �W ×W � ⊂ G(V ) with
p ∈ �W and q ∈W �. Then take W = {x ∈ �W : G2(x,0) ∈W �}. The function that takes x to G2(x,0)
is continuous and therefore W is open. We define g : W → Rm by g(x) := G2(x,0) which is the g in
the theorem. The fact that g(x) is the unique point in W � follows because W ×W � ⊂ G(V ) and G is
one-to-one and onto G(V ).

Next differentiate
x �→ f

�
x,g(x)

�
,

at p, which should be the zero map. The derivative is done in the same way as above. We get that
for all h ∈ Rn

0 = A
�
h,g�(p)h

�
= Axh+Ayg�(p)h,

and we obtain the desired derivative for g as well.
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In other words, in the context of the theorem we have m equations in n+m unknowns.

f1(x1, . . . ,xn,y1, . . . ,ym) = 0
...

fm(x1, . . . ,xn,y1, . . . ,ym) = 0

And the condition guaranteeing a solution is that this is a C1 mapping (that all the components are
C1, or in other words all the partial derivatives exist and are continuous), and the matrix




∂ f1
∂y1

. . . ∂ f1
∂ym

... . . . ...
∂ fm
∂y1

. . . ∂ fm
∂ym




is invertible at (p,q).

Example 8.5.7: Consider the set x2 + y2 − (z+1)3 =−1, ex + ey + ez = 3 near the point (0,0,0).
The function we are looking at is

f (x,y,z) = (x2 + y2 − (z+1)3 +1,ex + ey + ez −3).

We find that

f � =
�

2x 2y −3(z+1)2

ex ey ez

�
.

The matrix �
2(0) −3(0+1)2

e0 e0

�
=

�
0 −3
1 1

�

is invertible. Hence near (0,0,0) we can find y and z as C1 functions of x such that for x near 0 we
have

x2 + y(x)2 −
�
z(x)+1

�3
=−1, ex + ey(x) + ez(x) = 3.

The theorem does not tell us how to find y(x) and z(x) explicitly, it just tells us they exist. In other
words, near the origin the set of solutions is a smooth curve in R3 that goes through the origin.

Note that there are versions of the theorem for arbitrarily many derivatives. If f has k continuous
derivatives, then the solution also has k derivatives.

8.5.2 Exercises
Exercise 8.5.1: Let C = {(x,y) ∈ R2 : x2 + y2 = 1}.
a) Solve for y in terms of x near (0,1).
b) Solve for y in terms of x near (0,−1).
c) Solve for x in terms of y near (−1,0).
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Exercise 8.5.2: Define f : R2 → R2 by f (x,y) :=
�
x,y+ h(x)

�
for some differentiable function h of one

variable.
a) Show that f is one-to-one and onto.
b) Compute f �.
c) Show that f � is invertible at all points, and compute its inverse.

Exercise 8.5.3: Define f : R2 → R2 by f (x,y) :=
�
ex cos(y),ex sin(y)

�
.

a) Show that f is onto.
b) Show that f � is invertible at all points.
c) Show that f is not one-to-one, in fact for every (a,b) ∈ R2, there exist infinitely many different points
(x,y) ∈ R2 such that f (x,y) = (a,b).
Therefore, invertible derivative at every point does not mean that f is invertible globally.

Exercise 8.5.4: Find a map f : Rn → Rn that is one-to-one, onto, differentiable, but f �(0) = 0. Hint:
Generalize f (x) = x3 from one to n dimensions.

Exercise 8.5.5: Consider z2 + xz+ y = 0 in R3. Find an equation in D(x,y) = 0, such that if D(x0,y0) �= 0,
then for points near (x0,y0) there exist exactly two distinct continuously differentiable functions r1(x,y) and
r2(x,y) such that z = r1(x,y) and z = r2(x,y) solve x+ yz+ z2. Do you recognize the expression D from
algebra?

Exercise 8.5.6: Suppose f : (a,b) → R2 is continuously differentiable and ∂ f
∂x (t) �= 0 for all t ∈ (a,b).

Prove that there exists an interval (c,d) and a continuously differentiable function g : (c,d)→ R such that
(x,y) ∈ f

�
(a,b)

�
if and only if x ∈ (c,d) and y = g(x). In other words, the set f

�
(a,b)

�
is a graph of g.

Exercise 8.5.7: Define f : R2 → R2

f (x,y) :=

�
(x2 sin

�
1/x
�
+ x

2 ,y) if x �= 0,
(0,y) if x = 0.

a) Show that f is differentiable everywhere.
b) Show that f �(0,0) is invertible.
b) Show that f is not one-to-one in any neighbourhood of the origin (it is not locally invertible, that is, the
inverse theorem does not work).
c) Show that f is not continuously differentiable.
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8.6 Differentiation under the integral
Note: less than 1 lecture

Let f (x,y) be a function of two variables and define

g(y) :=
� b

a
f (x,y) dx

Suppose that f is differentiable in y. The question we ask is when can we simply “differentiate
under the integral”, that is, when is it true that g is differentiable and its derivative

g�(y) ?
=
� b

a

∂ f
∂y

(x,y) dx.

Differentiation is a limit and therefore we are really asking when do the two limitting operations of
integration and differentiation commute. As we have seen, this is not always possible. In particular,
the first question we would face is the integrability of ∂ f

∂y .
Let us prove a simple, but the most useful version of this theorem.

Theorem 8.6.1 (Leibniz integral rule). Suppose f : [a,b]× [c,d]→R is a continuous function, such
that ∂ f

∂y exists for all (x,y) ∈ [a,b]× [c,d] and is continuous. Define

g(y) :=
� b

a
f (x,y) dx.

Then g : [c,d]→ R is differentiable and

g�(y) =
� b

a

∂ f
∂y

(x,y) dx.

Note that the continuity requirements for f and ∂ f
∂y can be weakened but not dropped outright.

Proof. Fix y ∈ [c,d] and let ε > 0 be given. As ∂ f
∂y is continuous on [a,b]× [c,d] it is uniformly

continuous. In particular, there exists δ > 0 such that whenever y1 ∈ [c,d] with |y1 − y|< δ and all
x ∈ [a,b] we have ����

∂ f
∂y

(x,y1)−
∂ f
∂y

(x,y)
����< ε.

Now suppose h is such that y+h ∈ [c,d] and |h|< δ . Fix x for a moment and apply mean value
theorem to find a y1 between y and y+h such that

f (x,y+h)− f (x,y)
h

=
∂ f
∂y

(x,y1).
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If |h|< δ then
����

f (x,y+h)− f (x,y)
h

− ∂ f
∂y

(x,y)
����=
����
∂ f
∂y

(x,y1)−
∂ f
∂y

(x,y)
����< ε.

This argument worked for every x ∈ [a,b]. Therefore, as a function of x

x �→ f (x,y+h)− f (x,y)
h

converges uniformly to x �→ ∂ f
∂y

(x,y) as h → 0.

We only defined uniform convergence for sequences although the idea is the same. If you wish you
can replace h with 1/n above and let n → ∞.

Now consider the difference quotient

g(y+h)−g(y)
h

=

� b
a f (x,y+h) dx− � b

a f (x,y) dx
h

=
� b

a

f (x,y+h)− f (x,y)
h

dx.

Uniform convergence can be taken underneath the integral and therefore

lim
h→0

g(y+h)−g(y)
h

=
� b

a
lim
h→0

f (x,y+h)− f (x,y)
h

dx =
� b

a

∂ f
∂y

(x,y) dx.

Example 8.6.2: Let

f (y) =
� 1

0
sin(x2 − y2) dx.

Then

f �(y) =
� 1

0
−2ycos(x2 − y2) dx.

Example 8.6.3: Suppose we start with
� 1

0

x−1
ln(x)

dx.

The function under the integral can be checked to be continuous, and in fact extends to be continuous
on [0,1], and hence the integral exists. Trouble is finding it. Introduce a parameter y and define a
function.

f (y) :=
� 1

0

xy −1
ln(x)

dx.

Again it can be checked that xy−1
ln(x) is a continuous function (that is extends to be continuous) of x and

y for (x,y) ∈ [0,1]× [0,1]. Therefore f is a continuous function of on [0,1]. In particular f (0) = 0.
Let y > 0 and differentiate under the integral sign

f �(y) =
� 1

0

ln(x)xy

ln(x)
dx =

� 1

0
xy dx =

1
y+1

.
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We need to figure out f (1), knowing f �(y) = 1
y+1 and f (0) = 0. By elementary calculus we find

f (1) =
� 1

0 f �(y) dy = ln(2). Therefore

� 1

0

x−1
ln(x)

dx = ln(2).

Exercise 8.6.1: Prove the two statements that were asserted in the example.
a) Prove x−1

ln(x) extends to a continuous function of [0,1].

b) Prove xy−1
ln(x) extends to be a continuous function on [0,1]× [0,1].

8.6.1 Exercises
Exercise 8.6.2: Suppose h : R→R is a continuous function. Suppose that g : R→R is which is continuously
differentiable and compactly supported. That is there exists some M > 0 such that g(x) = 0 whenever |x|≥ M.
Define

f (x) :=
� ∞

−∞
h(y)g(x− y) dy.

Show that f is differentiable.

Exercise 8.6.3: Suppose f is an infinitely differentiable function (all derivatives exist) such that f (0) = 0.
Then show that there exists another infinitely differentiable function g(x) such that f (x) = xg(x). Finally
show that if f �(0) �= 0 then g(0) �= 0. Hint: first write f (x) =

� x
0 f �(s)ds and then rewrite the integral to go

from 0 to 1.

Exercise 8.6.4: Compute
� 1

0 etx dx. Derive the formula for
� 1

0 xnex dx not using itnegration by parts, but by
differentiation underneath the integral.


