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9.3 Path independence
Note: ??? lectures

9.3.1 Path independent integrals

Let U ⊂Rn be a set and ω a one-form defined on U , The integral of ω is said to be path independent
if for any two points x,y ∈U and any two piecewise smooth paths γ : [a,b]→U and β : [c,d]→U
such that γ(a) = β (c) = x and γ(b) = β (d) = y we have

�

γ
ω =

�

β
ω.

In this case we simply write � y

x
ω =

�

γ
ω =

�

β
ω.

Not every one-form gives a path independent integral. In fact, most do not.

Example 9.3.1: Let γ : [0,1] → R2 be the path γ(t) = (t,0) going from (0,0) to (1,0). Let
β : [0,1]→ R2 be the path β (t) =

�
t,(1− t)t

�
also going between the same points. Then

�

γ
ydx =

� 1

0
γ2(t)γ �1(t)dt

� 1

0
0(1)dt = 0,

�

β
ydx =

� 1

0
β2(t)β �

1(t)dt
� 1

0
(1− t)t(1)dt =

1
6
.

So the integral of ydx is not path independent. In particular,
� (1,0)
(0,0) ydx does not make sense.

Definition 9.3.2. Let U ⊂ Rn be an open set and f : U → R a continuously differentiable function.
Then the one-form

d f :=
∂ f
∂x1

dx1 +
∂ f
∂x2

dx2 + · · ·+ ∂ f
∂xn

dxn

is called the total derivative of f .
An open set U ⊂ Rn is said to be path connected∗ if for every two points x and y in U , there

exists a piecewise smooth path starting at x and ending at y.

We will leave as an exercise that every connected open set is path connected.

∗Normally only a continuous path is used in this definition, but for open sets two two definitions are equivalent.
See the exercises.
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Proposition 9.3.3. Let U ⊂Rn be a path connected open set and ω a one-form defined on U. Then
� y

x
ω

is path independent (for all x,y ∈ U) if and only if there exists a continuously differentiable
f : U → R such that ω = d f .

In fact, if such an f exists, then for any two points x,y ∈U
� y

x
ω = f (y)− f (x).

In other words if we fix x0, then f (x) =C+
� x

x0
ω .

Proof. First suppose that the integral is path independent. Pick x0 ∈U and define

f (x) =
� x

x0

ω.

Let e j be an arbitrary standard basis vector. Compute

f (x+he j)− f (x)
h

=
1
h

�� x+he j

x0

ω −
� x

x0

ω
�
=

1
h

� x+he j

x
ω,

which follows by Proposition 9.2.10 and path indepdendence as
� x+he j

x0
ω =

� x
x0

ω +
� x+he j

x ω .
Write ω = ω1dx1+ω2dx2+ · · ·+ωndxn. Now pick the simplest path possible from x to x+he j,

that is γ(t) = x+ the j for t ∈ [0,1]. Notice that γ �(t) has only a simple nonzero component and that
is the jth component which is h. Therefore

1
h

� x+he j

x
ω =

1
h

� 1

0
ω j(x+ the j)hdt =

� 1

0
ω j(x+ the j)dt.

We wish to take the limit as h → 0. The function ω j is continuous. So given ε > 0, h can
be small enough so that

��ω(x)−ω j(x+ the j)
�� < ε . Therefore for such small h we find that���

� 1
0 ω j(x+ the j)dt −ω(x)

���< ε . That is

lim
h→0

f (x+he j)− f (x)
h

= ω j(x),

which is what we wanted that is d f = ω . As ω j are continuous for all j, we find that f has
continuous partial derivatives and therefore is continuously differentiable.

For the other direction suppose f exists such that d f = ω . Suppose we take a smooth path
γ : [a,b]→U such that γ(a) = x and γ(b) = y, then

�

γ
d f =

� b

a

�
∂ f
∂x1

�
γ(t)

�
γ �1(t)+

∂ f
∂x2

�
γ(t)

�
γ �2(t)+ · · ·+ ∂ f

∂xn

�
γ(t)

�
γ �n(t)

�
dt

=
� b

a

d
dt

�
f
�
γ(t)

��
dt

= f (y)− f (x).



68 CHAPTER 9. ONE DIMENSIONAL INTEGRALS IN SEVERAL VARIABLES

The value of the integral only depends on x and y, not the path taken. Therefore the integral is path
independent. We leave checking this for a piecewise smooth path as an exercise to the reader.

Proposition 9.3.4. Let U ⊂ Rn be a path connected open set and ω a 1-form defined on U. Then
ω = d f for some continuously differentiable f : U : R if and only if

�

γ
ω = 0

for every piecewise smooth closed path γ : [a,b]→U.

Proof. Suppose first that ω = d f and let γ be a piecewise smooth closed path. Then we from above
we have that �

γ
ω = f

�
γ(b)

�
− f

�
γ(a)

�
= 0,

because γ(a) = γ(b) for a closed path.
Now suppose that for every piecewise smooth closed path γ ,

�
γ ω = 0. Let x,y be two points in

U and let α : [0,1]→U and β : [0,1]→U be two piecewise smooth paths with α(0) = β (0) = x
and α(1) = β (1) = y. Then let γ : [0,2]→U be defined by

γ(t) :=

�
α(t) if t ∈ [0,1],
β (2− t) if t ∈ (1,2].

This is a piecewise smooth closed path and so

0 =
�

γ
ω =

�

α
ω −

�

β
ω.

This follows first by Proposition 9.2.10, and then noticing that the second part is β travelled
backwards so that we get minus the β integral. Thus the integral of ω on U is path independent.

There is a local criterion, that is a differential equation, that guarantees path independence. That
is, under the right condition there exists an antiderivative f whose total derivative is the given one
form ω . However, since the criterion is local, we only get the result locally. We can define the
antiderivative in any so-called simply connected domain, which informally is a domain where any
path between two points can be “continuously deformed” into any other path between those two
points. To make matters simple, the usual way this result is proved is for so-called star-shaped
domains.

Definition 9.3.5. Let U ⊂ Rn be an open set and x0 ∈U . We say U is a star shaped domain with
respect to x0 if for any other point x ∈ U , the line segment between x0 and x is in U , that is, if
(1− t)x0 + tx ∈U for all t ∈ [0,1]. If we say simply star shaped then U is star shaped with respect
to some x0 ∈U .
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Notice the difference between star shaped and convex. A convex domain is star shaped, but a
star shaped domain need not be convex.

Theorem 9.3.6 (Poincarè lemma). Let U ⊂ Rn be a star shaped domain and ω a continuously
differentiable one-form defined on U. That is, if

ω = ω1dx1 +ω2dx2 + · · ·+ωndxn,

then ω1,ω2, . . . ,ωn are continuously differentiable functions. Suppose that for every j and k

∂ω j

∂xk
=

∂ωk

∂x j
,

then there exists a twice continuously differentiable function f : U → R such that d f = ω .

The condition on the derivatives of ω is precisely the condition that the second partial derivatives
commute. That is, if d f = ω , then

∂ω j

∂xk
=

∂ 2 f
∂xk∂x j

.

Proof. Suppose U is star shaped with respect to y = (y1,y2, . . . ,yn) ∈U .
Given x = (x1,x2, . . . ,xn) ∈U , define the path γ : [0,1]→U as γ(t) = (1− t)y+ tx, so γ �(t) =

y− x. Then let

f (x) =
�

γ
ω =

� 1

0

�
n

∑
k=1

ωk
�
(1− t)y+ tx

�
(yk − xk)

�
dt

Now we can differentiate in x j under the integral. We can do that since everything, including the
partials themselves are continuous.

∂ f
∂x j

(x) =
� 1

0

��
n

∑
k=1

∂ωk

∂x j

�
(1− t)y+ tx

�
t(yk − xk)

�
−ω j

�
(1− t)y+ tx

�
�

dt

=
� 1

0

��
n

∑
k=1

∂ω j

∂xk

�
(1− t)y+ tx

�
t(yk − xk)

�
−ω j

�
(1− t)y+ tx

�
�

dt

=
� 1

0

d
dt

�
tω j

�
(1− t)y+ tx

��
dt

= ω j(x).

And this is precisely what we wanted.

Example 9.3.7: Without some hypothesis on U the theorem is not true. Let

ω(x,y) =
−y

x2 + y2 dx+
x

x2 + y2 dy
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be defined on R2 \{0}. It is easy to see that

∂
∂y

� −y
x2 + y2

�
=

∂
∂x

�
x

x2 + y2

�
.

However, there is no f : R2 \{0}→ R such that d f = ω . We saw in if we integrate from (1,0) to
(1,0) along the unit circle, that is γ(t) =

�
cos(t),sin(t)

�
for t ∈ [0,2π] we got 2π and not 0 as it

should be if the integral is path independent or in other words if there would exist an f such that
d f = ω .

9.3.2 Vector fields

A common object to integrate is a so-called vector field. That is an assignment of a vector at each
point of a domain.

Definition 9.3.8. Let U ⊂ Rn be a set. A continuous function v : U → Rn is called a vector field.
Write v = (v1,v2, . . . ,vn)

Given a smooth path γ : [a,b] → Rn with γ
�
[a,b]

�
⊂ U we define the path integral of the

vectorfield v as �

γ
v ·dγ :=

� b

a
v
�
γ(t)

�
· γ �(t)dt,

where the dot in the definition is the standard dot product. Again the definition of a piecewise
smooth path is done by integrating over each smooth interval and adding the result.

If we unravel the definition we find that
�

γ
v ·dγ =

�

γ
v1dx1 + v2dx2 + · · ·+ vndxn.

Therefore what we know about integration of one-forms carries over to the integration of vector
fields. For example path independence for integration of vector fields is simply that

� y

x
v ·dγ

is path independent (so for any γ) if and only if v = ∇ f , that is the gradient of a function. The
function f is then called the potential for v.

A vector field v whose path integrals are path independent is called a conservative vector field.
The naming comes from the fact that such vector fields arise in physical systems where a certain
quantity, the energy is conserved.
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9.3.3 Exercises
Exercise 9.3.1: Find an f : R2 → R such that d f = xex2+y2

dx+ yex2+y2
dy.

Exercise 9.3.2: Finish the proof of Proposition 9.3.3, that is, we only proved the second direction for a
smooth path, not a piecewise smooth path.

Exercise 9.3.3: Show that a star shaped domain U ⊂ Rn is path connected.

Exercise 9.3.4: Show that U :=R2 \{(x,y)∈R2 : x ≤ 0,y = 0} is star shaped and find all points (x0,y0)∈U
such that U is star shaped with respect to (x0,y0).

Exercise 9.3.5: Let γ : [a,b] → Rn be a simple nonclosed path (so γ is one-to-one). Suppose that ω is a
continuously differentiable one-form defined on some open set V with γ

�
[a,b]

�
⊂V and ∂ω j

∂xk
= ∂ωk

∂x j
for all j

and k. Prove that there exists an open set U with γ
�
[a,b]

�
⊂U ⊂V and a twice continuously differentiable

function f : U → R such that d f = ω .
Hint 1: γ

�
[a,b]

�
is compact.

Hint 2: Piecing together several different functions f can be tricky, but notice that the intersection of any
number of balls is always convex as balls are convex, and convex sets are in particular connected (path
connected).

Exercise 9.3.6: a) Show that a connected open set is path connected. Hint: Start with two points x and y in a
connected set U, and let Ux ⊂U is the set of points that are reachable by a path from x and similarly for Uy.
Show that both sets are open, since they are nonempty (x ∈Ux and y ∈Uy) it must be that Ux =Uy =U.
b) Prove the converse that is, a path connected set U ⊂Rn is connected. Hint: for contradiction assume there
exist two open and disjoint nonempty open sets and then assume there is a piecewise smooth (and therefore
continuous) path between a point in one to a point in the other.

Exercise 9.3.7: Usually path connectedness is defined using just continuous paths rather than piecewise
smooth paths. Prove that the definitions are equivalent, in other words prove the following statement:
Suppose U ⊂ Rn is such that for any x,y ∈ U, there exists a continuous function γ : [a,b] → U such that
γ(a) = x and γ(b) = y. Then U is path connected (in other words, then there exists a piecewise smooth path).

Exercise 9.3.8 (Hard): Take

ω(x,y) =
−y

x2 + y2 dx+
x

x2 + y2 dy

defined on R2 \{(0,0)}. Let γ : [a,b]→ R2 \{(0,0)} be a closed piecewise smooth path. Let R := {(x,y) ∈
R2 : x ≤ 0 and y = 0}. Suppose that R∩ γ

�
[a,b]

�
is a finite set of k points. Then

�

γ
ω = 2π�

for some integer � with |�|≤ k.
Hint 1: First prove that for a path β that starts and end on R but does not intersect it otherwise, you find that�

β ω is −2π , 0, or 2π . Hint 2: You proved above that R2 \R is star shaped.
Note: The number � is called the winding number it it measures how many times does γ wind around the
origin in the clockwise direction.


