
Finite Element Methods (version 7)

More modern (and somewhat more complicated) methods for approximate solutions than finite difference
methods (FDM) are the finite element methods (FEM). We first work in one dimension with an ODE, before
looking at a PDE. We study how to approximate the simple equation

du

dx
+ u = x, u(0) = 1, 0 < x < 1.

The idea is not to look for the solution u exactly, but look for the solution in some smaller class of functions.
We define a vector space of trial functions, let us call it S. This vector space is the span of some basis
functions {φ1(x), . . . , φn(x)}. So any element u of S is given as

u(x) =

n∑
j=1

ajφj(x) = a1φ1(x) + a2φ2(x) + · · ·+ anφn(x)

for some constants a1, a2, . . . , an. For example, we could pick polynomials of degree n − 1. Then we could
let our basis be φj(x) = xj−1. Our space S would be composed of functions of the form

u(x) = a1 + a2x+ a3x
2 + · · ·+ anx

n−1.

The trick is to now find the aj in such a way so that we get “as close to the real u as possible.”

There are several ways to do this, and we use the so-called Galerkin method. The idea is to minimize so
called “energy” and it is essentially like a “least squares” approximation. First let us figure out what is the
thing that we want to minimize, and that’s the so-called residual :

R(x) = u′(x) + u(x)− x.

If R is zero, we have the precise solution. Of course, that will not be possible to achieve with S. Since
we have n constants to choose, we should be able to pick n conditions (equations) to satisfy. The Galerkin
method says that what we want is to set for (essentially) all j.∫ 1

0

R(x)φj(x) dx = 0.

We also need to impose boundary conditions. In our model case there is only one boundary condition.

Let us do the example for the polynomial with n = 3 (degree 2). Our trial space S is

u(x) = a1 + a2x+ a3x
2.

As u(0) = 1, we set a1 = 1. We need two more conditions for a2 and a3. We find the residual

R(x) = u′(x) + u(x)− x = a2 + 2a3x+ a1 + a2x+ a3x
2 − x = (a2 + 1) + (2a3 + a2 − 1)x+ a3x

2

We impose the conditions first for φ2:

0 =

∫ 1

0

R(x)φ2(x) dx =

∫ 1

0

(
(a2 + 1) + (2a3 + a2 − 1)x+ a3x

2
)
x dx

= (a2 + 1)

∫ 1

0

x dx+ (2a3 + a2 − 1)

∫ 1

0

x2 dx+ a3

∫ 1

0

x3 dx

=
1

2
(a2 + 1) +

1

3
(2a3 + a2 − 1) +

1

4
a3.

So 5
6a2 + 11

12a3 = − 1
6 .
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The second equation we get is

0 =

∫ 1

0

R(x)φ3(x) dx =

∫ 1

0

(
(a2 + 1) + (2a3 + a2 − 1)x+ a3x

2
)
x2 dx

= (a2 + 1)

∫ 1

0

x2 dx+ (2a3 + a2 − 1)

∫ 1

0

x3 dx+ a3

∫ 1

0

x4 dx

=
1

3
(a2 + 1) +

1

4
(2a3 + a2 − 1) +

1

5
a3.

So 7
12a2 + 7

10a3 = − 1
12 . We solve to get a2 = −29

35 and a3 = 4
7 . Therefore our approximation is

uapprox(x) = 1− 29

35
x+

4

7
x2.

The real solution is
u(x) = x+ 2e−x − 1.

Let us plot the two functions to see that they are quite close:
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You may be wondering where are those elements from the title of the method. Well, we have really done
things only in some sense for “one-element”. Usually one does not want to do the approximation in some
large class like polynomials for the entire domain. We wish to use simpler functions that only make a
difference locally. There are many reasons for this, and one of the biggest ones is that if we use a class such
as polynomials of high degree, then the resulting linear system is very hard to solve if it is too big.

Let us look at the simplest types of basis functions that would commonly be encountered. Often what
are used are so called piecewise linear functions. First, let us split the domain into intervals, or so-called
elements: Write the interval [0, 1] as a series of subintervals, by picking points, which are the so-called nodes:
x1, x2, . . . , xn, with x1 = 0 and xn = 1.
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We define the basis functions as “peaks” at the nodes.

φ1(x) =

{
x2−x
x2−x1

if x1 ≤ x < x2

0 else
φn(x) =

{
x−xn−1

xn−xn−1
if xn−1 ≤ x ≤ xn

0 else

φj(x) =


x−xj−1

xj−xj−1
if xj−1 ≤ x < xj

xj+1−x
xj+1−xj

if xj ≤ x < xj+1

0 else

for 2 ≤ j ≤ n− 1 :

The functions are set up so that φj(xj) = 1 and φj(xk) = 0 for all k 6= j. The resulting linear system of
equations is “nice” because each φj only interacts with two elements, so the resulting equations (the matrix
to be inverted) have many zeros for large n. This niceness is not so visible for the small example we do next.

Example: still u′ + u = x, u(0) = 1. Take 3 nodes, x1 = 0, x2 = 1
3 , and x3 = 1. We do not have to divide

the domain evenly, this is one of the advantages of FEM.

φ1(x) =

{
(1/3)−x

1/3 = 1− 3x if 0 ≤ x < 1
3 ,

0 if 1
3 ≤ x ≤ 1,

φ2(x) =

{
x

1/3 = 3x if 0 ≤ x < 1
3 ,

1−x
1−(1/3) = 3

2 (1− x) if 1
3 ≤ x ≤ 1,

φ3(x) =

{
0 if 0 ≤ x < 1

3 ,
x−(1/3)
1−(1/3) = 3

2

(
x− 1

3

)
if 1

3 ≤ x ≤ 1.
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Let us differentiate. We do not really want to think of the derivatives at the nodes as they are undefined
there, but those are just a few points.

φ′1(x) =

{
−3 if 0 < x < 1

3 ,

0 if 1
3 < x < 1,

φ′2(x) =

{
3 if 0 < x < 1

3 ,
−3
2 if 1

3 < x < 1,

φ′3(x) =

{
0 if 0 < x < 1

3 ,
3
2 if 1

3 < x < 1.

Our trial space is composed of functions of the form

u(x) = a1φ1(x) + a2φ2(x) + a3φ3(x).

The boundary condition u(0) = 1 gives a1 = 1 (the only way to satisfy this condition). The other two
conditions give a2 and a3:

0 =

∫ 1

0

R(x)φ2(x) dx =

∫ 1

0

(
u′(x) + u(x)− x

)
φ2 dx

= a1

∫ 1

0

(
φ′1(x) + φ1(x)

)
φ2(x) dx+ a2

∫ 1

0

(
φ′2(x) + φ2(x)

)
φ2(x) dx

+ a3

∫ 1

0

(
φ′3(x) + φ3(x)

)
φ2(x) dx+

∫ 1

0

(−x)φ2(x) dx

= a1

∫ 1/3

0

(−3 + 1− 3x)3x dx+ a2

(∫ 1/3

0

(3 + 3x)3x dx+

∫ 1

1/3

(
−3

2
+

3

2
(1− x)

)
3

2
(1− x) dx

)

+ a3

∫ 1

1/3

(
3

2
+

3

2

(
x− 1

3

))
3

2
(1− x) dx+

∫ 1/3

0

(−x)3x dx+

∫ 1

1/3

(−x)
3

2
(1− x) dx

=
−4

9
a1 +

(
11

18
− 5

18

)
a2 +

11

18
a3 −

1

27
− 5

27
.

So as a1 = 1, the condition says 6
18a2 + 11

18a3 = 2
3 .

0 =

∫ 1

0

R(x)φ3(x) dx =

∫ 1

0

(
u′(x) + u(x)− x

)
φ3 dx

= a1

∫ 1

0

(
φ′1(x) + φ1(x)

)
φ3(x) dx+ a2

∫ 1

0

(
φ′2(x) + φ2(x)

)
φ3(x) dx

+ a3

∫ 1

0

(
φ′3(x) + φ3(x)

)
φ3(x) dx+

∫ 1

0

(−x)φ3(x) dx

= a2

(∫ 1

1/3

(
−3

2
+

3

2
(1− x)

)
3

2

(
x− 1

3

)
dx

)

+ a3

∫ 1

1/3

(
3

2
+

3

2

(
x− 1

3

))
3

2

(
x− 1

3

)
dx+

∫ 1

1/3

(−x)
3

2

(
x− 1

3

)
dx

=
−7

18
a2 +

13

18
a3 −

7

27
.

So −7
18 a2 + 13

18a3 = 7
27 . Solving we get a2 = 314

465 and a3 = 112
155 . Hence the approximate solution is

uapprox(x) = φ1(x) +
314

465
φ2(x) +

112

155
φ3(x).
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Let us move to two dimensions. Instead of the abstract details let us simply
solve a specific two dimensional example:

PDE: ∇2u = 0, 0 < x, y < 1
BC: u(x, 0) = 0, u(0, y) = 0, u(x, 1) = x, u(1, y) = y.

We divide the domain into elements. We use triangular elements and piece-
wise linear basis functions. Normally we would divide the domain into many
triangles, where the vertices of the triangles are the nodes as in the picture
to the right. The nodes are marked in red.

Let us consider a simple situation. Take the nodes (x1, y1) = (0, 0),
(x2, y2) = (1, 0), (x3, y3) = (1/2, 1/2), (x4, y4) = (0, 1), (x5, y5) = (1, 1).
We have 4 triangular elements, labeled e1, e2, e3, e4 in the following picture:

We define the basis functions φ1, φ2, φ3, φ4, φ5. We arrange things so that φj(xj , yj) = 1, and φj(xk, yk) = 0
if k 6= j. For example, on the next picture we have φ3 and φ5.
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We define these piecewise

φ3(x, y) =


2y if x > y and x ≤ 1− y,
2x if x ≤ y and x ≤ 1− y,
2− 2y if x ≤ y and x > 1− y,
2− 2x if x > y and x > 1− y.

Similarly

φ5(x, y) =

{
0 if x ≤ 1− y,
x+ y − 1 if x > 1− y.

We write our approximate solution as

u(x, y) =

5∑
j=1

ajφj(x, y).

We will not bother with defining φ1, φ2, and φ4, because the boundary value is 0 at the 3 corners corre-
sponding to the nodes number 1, 2, and 4. The boundary value is 1 at the fifth node. Therefore we have
that a1 = a2 = a4 = 0 and a5 = 1. We have

u(x, y) = a3φ3(x, y) + φ5(x, y).

Let Ω be the unit square 0 < x, y < 1. The one condition we need to solve for is∫∫
Ω

(∇2u)φ3 dA = 0.

As u is composed of piecewise linear functions, computing second derivatives involves the delta function.
While that is certainly possible, it is best to avoid via the use of Green’s theorem. It is really integration by
parts, since we will apply the divergence, ∇·, to the product (∇u)φ3. That is,

∇ ·
(
(∇u)φ3

)
= (∇2u)φ3 +∇u · ∇φ3.

Applying Green’s (or Divergence theorem) theorem gets us∫∫
Ω

(∇2u)φ3 dA =

∫
∂Ω

(∇u · ~n)φ3 ds−
∫∫

Ω

∇u · ∇φ3 dA,
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where ∂Ω is the boundary of the unit square, and ~n is the outer unit normal. Because φ3 is zero on the
boundary, the boundary term just disappears. We are left with the second term.

0 =

∫∫
Ω

(∇2u)φ3 dA = −
∫∫

Ω

∇u · ∇φ3 dA

= −a3

∫∫
Ω

∇φ3 · ∇φ3 dA−
∫∫

Ω

∇φ5 · ∇φ3 dA.

The gradients are constant vectors. In e1, ∇φ3 = 〈0, 2〉, in e2, ∇φ3 = 〈2, 0〉,
in e3, ∇φ3 = 〈0,−2〉, in e4, ∇φ3 = 〈−2, 0〉. Similarly In e1, ∇φ5 = 〈0, 0〉, in
e2, ∇φ5 = 〈0, 0〉, in e3, ∇φ5 = 〈1, 1〉, in e4, ∇φ5 = 〈1, 1〉.

Therefore

0 = −a3

∫∫
Ω

∇φ3 · ∇φ3 dA−
∫∫

Ω

∇φ5 · ∇φ3 dA

= −a3

(∫∫
e1

∇φ3 · ∇φ3 dA+

∫∫
e2

∇φ3 · ∇φ3 dA+

∫∫
e3

∇φ3 · ∇φ3 dA+

∫∫
e4

∇φ3 · ∇φ3 dA

)
−
(∫∫

e1

∇φ5 · ∇φ3 dA+

∫∫
e2

∇φ5 · ∇φ3 dA+

∫∫
e3

∇φ5 · ∇φ3 dA+

∫∫
e4

∇φ5 · ∇φ3 dA

)
= −a3

(∫∫
e1

〈0, 2〉 · 〈0, 2〉 dA+

∫∫
e2

〈2, 0〉 · 〈2, 0〉 dA+

∫∫
e3

〈0,−2〉 · 〈0,−2〉 dA+

∫∫
e4

〈−2, 0〉 · 〈−2, 0〉 dA
)

−
(∫∫

e1

〈0, 0〉 · 〈0, 2〉 dA+

∫∫
e2

〈0, 0〉 · 〈2, 0〉 dA+

∫∫
e3

〈1, 1〉 · 〈0,−2〉 dA+

∫∫
e4

〈1, 1〉 · 〈−2, 0〉 dA
)

= −4a3

(∫∫
e1

dA+

∫∫
e2

dA+

∫∫
e3

dA+

∫∫
e4

dA

)
+ 2

(∫∫
e3

dA+

∫∫
e4

dA

)
= −4a3 + 1.

So a3 = 1
4 and hence our approximate solution is

u(x, y) =
1

4
φ3(x, y) + φ5(x, y).

Here are the plots of this approximate and the real solution:
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Exercises:

1) Using piecewise linear basis functions, solve u′ + u = 1, u(0) = 3, on 0 < x < 1, with nodes at x1 = 0,
x2 = 1

2 , x3 = 1.
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2) Using polynomial trial functions with degree going up to 3, solve u′ + u = x, u(0) = 1 on 0 < x < 1.

3) Using piecewise linear basis functions, solve u′′ + u = 0, u(0) = 0, u(1) = 1, on 0 < x < 1, with x1 = 0,
x2 = 1

2 , x3 = 1. Be careful, you are doing second order derivatives of piecwise linear functions, you should
do integration by parts if you do not want to deal with delta functions.

4) Do the 2-dimensional example with ∇2u = 1 instead and same boundary conditions.

5) In the 2-dimensional example, divide elements e3 and e4 exactly in half to add two new elements (that
is, add another two nodes on the sides). Write out the formulas for all the basis functions φ.

6) Triangulate the square with 8 triangles with at least two internal nodes so that at no node do more than
4 elements meet.

8


