All the homework problems and even the unassigned problems are good sample problems. This is just a list of possible extra problems

1. Find steady state solution to $u_{t}=u_{x x}, u_{x}(0, t)=u_{x}(1, t)=0, u(x, 0)=x^{2}$.
2. Use separation of variables to solve

$$
\begin{aligned}
(\mathrm{PDE}) & u_{t}=u_{x x} \quad 0<x<\pi, \quad t>0 \\
(\mathrm{BC}) & u(0, t)=0, \quad u(\pi, t)=0, \quad t>0 \\
(\mathrm{IC}) & u(x, 0)=\sin (3 x)-3 \sin (5 x) \quad 0<x<\pi
\end{aligned}
$$

3. Convert the problem to one with homogeneous BC

$$
\begin{aligned}
(\mathrm{PDE}) & u_{t}=u_{x x} \quad 0<x<\pi, \quad t>0 \\
(\mathrm{BC}) & u_{x}(0, t)=1, \quad u_{x}(\pi, t)=0, \quad t>0 \\
(\mathrm{IC}) & u(x, 0)=\cos (x) \quad 0<x<\pi
\end{aligned}
$$

4. Find Fourier series for $f(x)=x^{2}$ on $[-1,1]$ (extended to a 2-periodic function).
5. Solve

$$
\begin{aligned}
(\mathrm{PDE}) & u_{t}=-5 u_{x} \quad 0<x<\infty, \quad t>0 \\
(\mathrm{BC}) & u(0, t)=1, \quad t>0 \\
(\mathrm{IC}) & u(x, 0)=e^{-x}, \quad 0<x<\infty
\end{aligned}
$$

using Laplace transform.
6. Find Fourier transform of

$$
f(x)= \begin{cases}x & \text { if } 0<x<1 \\ 0 & \text { otherwise }\end{cases}
$$

7. Solve

$$
\begin{array}{rlc}
(\mathrm{PDE}) & u_{t}=u_{x x}+t \sin (2 \pi x) & 0<x<1, \quad t>0 \\
(\mathrm{BC}) & u(0, t)=0, \quad u(1, t)=0, & t>0, \\
(\mathrm{IC}) & u(x, 0)=\sin (\pi x), \quad 0<x<1
\end{array}
$$

8. Find the 2-periodic Fourier series of the 2-peridic functions:
a) $f(x)=3 \sin (2 \pi x)-\cos (4 \pi x)$
b) $f(x)=\sin ^{2}(\pi x)$
9. Solve
(PDE) $\quad \nabla^{2} u=0 \quad$ in the unit circle,
(BC) $u(1, \theta)=\sin ^{2}(\theta)$
10. Solve

$$
(\mathrm{PDE}) \quad u_{t t}=u_{x x} \quad-\infty<x<\infty, \quad t>0
$$

(IC) $\quad u(x, 0)=\sin (x), \quad u_{t}(x, 0)=\cos (x)$
11. Use separation of variables to solve

$$
\begin{aligned}
(\mathrm{PDE}) & u_{t t}=u_{x x} \quad 0<x<\pi, \quad t>0 \\
(\mathrm{BC}) & u(0, t)=0, \quad u(\pi, t)=0, \quad t>0 \\
(\mathrm{IC}) & u(x, 0)=\sin (3 x)-3 \sin (5 x), \quad u_{t}(x, 0)=0 \quad 0<x<\pi
\end{aligned}
$$

12. Convert the problem to a dimensionless one

$$
\begin{aligned}
(\mathrm{PDE}) & u_{t}=4 u_{x x} \quad 0<x<\pi, \quad t>0 \\
(\mathrm{BC}) & u(0, t)=3, \quad u(\pi, t)=-1, \quad t>0 \\
(\mathrm{IC}) & u(x, 0)=\cos (x) \quad 0<x<\pi
\end{aligned}
$$

13. Find finite Fourier sine series for $f(x)=x^{2}$ on $[0,1]$.
14. Classify $u_{x x}-u_{x y}=u_{x}$, and put it into cannonical form.
15. Classify
a) $u_{x y}-u_{x x}+u_{y y}+u_{x}-u=0$.
b) $u_{x x}+u_{y y}+u_{x}-u=0$.
c) $u_{x x}+u_{y y}-8 u_{x y}+u_{y}-u=0$.
d) $u_{x x}+u_{y}-u=0$.
16. Suppose $u(x, t)$ for $-\infty<x<\infty, t>0$, satisfies $u_{t t}=0, u(x, 0)=\sin (x), u_{t}(x, 0)=\cos (x)$. Find u.
17. Suppose $v_{x x}+v_{y y}=x y$, and $w_{x x}+w_{y y}=1$. Using v and w, find a solution $u(x, y)$ of $u_{x x}+u_{y y}=3 x y-5$.
18. Solve
(PDE) $\quad \nabla^{2} u=0 \quad$ in the square $0<x<1,0<y<1$,
(BC) $\quad u=x y \quad$ on the boundary
19. Take
(PDE) $\quad u_{t}=3 u_{x x} \quad$ where $0<x<2, t>0$,
(BC) $\quad u(0, t)=0, u_{x}(2, t)=0$
(IC) $\quad u(x, 0)=1$
Using the explicit finite difference method with $\delta x=h=0.5$, and $\delta t=k=0.1$, find the approximate values of the solution at $t=0.2$.
20. Using the Galerkin method using FEM with just two nodes 0 and 1 , find the approximate solution to $u^{\prime}+u=1, u(0)=3$.
21. Using the method of characteristics, solve

$$
\begin{aligned}
(\mathrm{PDE}) & 2 u_{x}+u_{t}+2 u=0 \quad \infty<x<\infty, \quad t>0 \\
(\mathrm{IC}) & u(x, 0)=\sin (x) \quad-\infty<x<\infty
\end{aligned}
$$

22. Solve

$$
\begin{aligned}
(\mathrm{PDE}) & u_{t}+2 u u_{x}=0 \quad \quad \infty<x<\infty, \quad t>0 \\
(\mathrm{IC}) & u(x, 0)=3 x \quad-\infty<x<\infty
\end{aligned}
$$

23. Guess solutions to the following problems (possibly challenging):
a)

$$
\begin{aligned}
(\mathrm{PDE}) & u_{t}+\sin (u) u_{x}=0 \quad \infty<x<\infty, \quad t>0 \\
(\mathrm{IC}) & u(x, 0)=2 \quad-\infty<x<\infty
\end{aligned}
$$

b)
$(\mathrm{PDE}) \quad u_{t}+u u_{x}=1 \quad \infty<x<\infty, \quad t>0$,
(IC) $u(x, 0)=0 \quad-\infty<x<\infty$.
24. What does Huygen's principle say?
25. (challenging) Suppose that $u_{y}+u_{x}=0$ on the unit square. Can you find boundary conditions so that the problem is not well-posed? That is, find boundary conditions so that the problem is not solvable. Make your boundary condition a continuous function.
26. Solve intuitively: Suppose I have a very long pipe of inner radius 1 meter and outer radius 1.5 meters. The pipe is in siberia so outside temperature is exactly 0 degrees. We are running hot water through the pipe at temperature 100 degrees. What is the steady state temperature of the pipe material. Use polar coordinates to describe the temperature.
27. Change $u_{x y}-u_{y}+u=0$ into polar coordinates.
28. Let u be a harmonic function, that is $\nabla^{2} u=0$. Suppose on circle of radius 0.1 , the value of the function is $1+\sin \theta$. What is the value of u at the origin.
29. Using finite difference method with $h=k=0.5$, what is the approximate value of $u(0.5,0.5)$ if $\nabla^{2} u=u$ on the unit square $0<x, y<1$, where boundary conditions are $u(0, y)=y, u(1, y)=1-y, u(x, 0)=x$, $u(x, 1)=1-x$.

