Rigidity of CR maps of hyperquadrics

Jiří Lebl

joint work with Dusty Grundmeier and Liz Vivas

Department of Mathematics, University of Wisconsin-Madison

July 2012

Setup

Let $M \subset \mathbb{C}^n$ and $M' \subset \mathbb{C}^N$ be real submanifolds.

 $F \colon M \to M'$ is CR if it satisfies tangential Cauchy-Riemann equations.

Setup

Let $M \subset \mathbb{C}^n$ and $M' \subset \mathbb{C}^N$ be real submanifolds.

 $F \colon M \to M'$ is CR if it satisfies tangential Cauchy-Riemann equations.

Goal

Classify CR maps from M to M'.

Setup

Let $M \subset \mathbb{C}^n$ and $M' \subset \mathbb{C}^N$ be real submanifolds.

 $F \colon M \to M'$ is CR if it satisfies tangential Cauchy-Riemann equations.

Goal

Classify CR maps from M to M'.

This is very hard.

So perhaps we can ask the question in some specific scenario.

Spheres

We could study spheres. That is

$$S^{2n-1} = \{z \in \mathbb{C}^n : \sum_{j=1}^n |z_j|^2 = \|z\|^2 = 1\}$$

Consider CR maps $F \colon S^{2n-1} \to S^{2N-1}$, with $n \ge 2$.

Spheres

We could study spheres. That is

$$S^{2n-1} = \{z \in \mathbb{C}^n : \sum_{j=1}^n |z_j|^2 = \|z\|^2 = 1\}$$

Consider CR maps $F: S^{2n-1} \to S^{2N-1}$, with $n \ge 2$.

The smallest N' such that $F(S^{2n-1})$ lies in an N'-dimensional affine space is the *embedding dimension* of F.

If $F(S^{2n-1}) \not\subset H$ for any affine complex hyperplane $H \subset \mathbb{C}^N$, then we'll say F has minimal target dimension (N = N').

Which embedding dimensions are possible?

Which embedding dimensions are possible?

No maps possible if N < n.

Which embedding dimensions are possible?

No maps possible if N < n.

If n = N then the only map is an automorphism of the unit ball (a linear fractional map) (Poincaré '07, Pinčuk '75).

Which embedding dimensions are possible?

No maps possible if N < n.

If n = N then the only map is an automorphism of the unit ball (a linear fractional map) (Poincaré '07, Pinčuk '75).

Theorem (Webster '79)

If $n \geq 3$ there is no C^3 smooth CR map of spheres with embedding dimension N = n + 1.

Which embedding dimensions are possible?

No maps possible if N < n.

If n = N then the only map is an automorphism of the unit ball (a linear fractional map) (Poincaré '07, Pinčuk '75).

Theorem (Webster '79)

If $n \geq 3$ there is no C^3 smooth CR map of spheres with embedding dimension N = n + 1.

Dor ('90) constructed a continuous CR map with embedding dimension N = n + 1.

Gaps for maps $F \colon S^{2n-1} o S^{2N-1}$

No CR maps of spheres with minimal target dimension for the following "gaps":

n	Target dimension	Regularity
		real-analytic (Faran '86) C^{N-n+1} (Forstnerič '86, Cima-Suffridge '90) C^2 (Huang '99)
		C³ (Huang-Ji-Xu '06)
n > 7	3n < N < 4n - 6	C ³ (Huang-Ji-Yin '12)

Conjectured kth gap is $kn < N < (k+1)n - \frac{k(k+1)}{2}$.

For n=2 there are no gaps.

Large codimension

Theorem (D'Angelo, L. '09)

Let $n \geq 2$. \exists an M such that $\forall N \geq M$ there exists a polynomial CR map $F \colon S^{2n-1} \to S^{2N-1}$ with minimal target dimension.

So everything is possible for the sphere (beyond a certain point).

Large codimension

Theorem (D'Angelo, L. '09)

Let $n \geq 2$. \exists an M such that $\forall N \geq M$ there exists a polynomial CR map $F: S^{2n-1} \to S^{2N-1}$ with minimal target dimension.

So everything is possible for the sphere (beyond a certain point).

The sphere is defined by a positive definite form. What about surfaces defined by nondegenerate forms.

Hyperquadrics

Define

$$Q(a,b) \stackrel{def}{=} \left\{z \in \mathbb{C}^{a+b} \ : \ \sum_{j=1}^{a} |z_j|^2 - \sum_{j=a+1}^{a+b} |z_j|^2 = 1
ight\}$$

Note that

$$S^{2n-1} = Q(n,0)$$

Hyperquadrics

Define

$$Q(a,b) \stackrel{def}{=} \left\{z \in \mathbb{C}^{a+b} \ : \ \sum_{j=1}^{a} |z_j|^2 - \sum_{j=a+1}^{a+b} |z_j|^2 = 1
ight\}$$

Note that

$$S^{2n-1} = Q(n,0)$$

- 1) $a \ge 1$.
- 2) Levi-form of Q(a, b) is of signature (a 1, b).

Starting with a sphere

Theorem (D'Angelo, L. '11)

Let $n \geq 2$. $\exists M$ such that $\forall A, B$ with $A \geq 1$, $B \geq 0$, $A + B \geq M$, there exists a rational CR map $F: S^{2n-1} \to Q(A, B)$ with minimal target dimension.

Minimal target dimension is the same idea: $F(S^{2n-1})$ not contained in an affine complex hyperplane.

So really everything is possible when starting from a sphere (if we go far enough out).

CR maps between hyperquadrics

Suppose $F: U \subset Q(a, b) \to Q(A, B)$ is CR.

CR maps between hyperquadrics

Suppose $F: U \subset Q(a, b) \to Q(A, B)$ is CR.

When Q(a, b) is not equivalent to a sphere, it is enough to consider real-analytic CR maps by a theorem of Lewy.

CR maps between hyperquadrics

Suppose $F: U \subset Q(a, b) \rightarrow Q(A, B)$ is CR.

When Q(a, b) is not equivalent to a sphere, it is enough to consider real-analytic CR maps by a theorem of Lewy.

 $Q(a, b) \cong Q(b + 1, a - 1)$ by a linear fractional map. So always assume that a > b and A > B. Then Q(a, b) is not equivalent to a sphere when $b \ge 1$.

Minimal target dimension

Let $F: U \subset Q(a, b) \to Q(A, B)$ be CR.

Minimal target dimension

Let $F: U \subset Q(a, b) \rightarrow Q(A, B)$ be CR.

If $F(U) \subset H$, where $H \subset \mathbb{C}^{A+B}$ is an affine complex hyperplane, then after an affine change of variables on the target side we have a map:

$$ilde{F}\colon\thinspace U o Q(A',B') imes \mathbb{C}^k$$

For some k, some $A' \leq A$, and $B' \leq B$.

Minimal target dimension

Let $F \colon U \subset Q(a,b) \to Q(A,B)$ be CR.

If $F(U) \subset H$, where $H \subset \mathbb{C}^{A+B}$ is an affine complex hyperplane, then after an affine change of variables on the target side we have a map:

$$ilde{F}\colon\thinspace U o Q(A',B') imes\mathbb{C}^k$$

For some k, some $A' \leq A$, and $B' \leq B$.

Example: Let F be

$$(z_1,z_2,z_3)\mapsto (z_1,z_2,arphi(z),z_3,arphi(z))$$

takes Q(2,1) to Q(3,2) (φ is arbitrary CR function). $H = \{w_3 = w_5\}$. Changing coordinates we obtain:

$$(z_1,z_2,z_3)\mapsto (z_1,z_2,z_3,\varphi(z),0)$$

Note $Q(3,2) \cap H$ is equivalent to $Q(2,1) \times \mathbb{C}$.

Super-rigidity

Let

$$F\colon\thinspace U\subset Q(a,b) o Q(A,B)$$

be a real-analytic CR map. Suppose that $a > b \ge 1$, $A > B \ge 1$. Further suppose that F has minimal target dimension.

Super-rigidity

Let

$$F\colon\thinspace U\subset Q(a,b) o Q(A,B)$$

be a real-analytic CR map. Suppose that $a > b \ge 1$, $A > B \ge 1$. Further suppose that F has minimal target dimension.

Theorem (Baouendi-Huang '05)

If b = B, then a = A and F is equivalent (via an LFT) to the identity.

Super-rigidity

Let

$$F\colon\thinspace U\subset Q(a,b) o Q(A,B)$$

be a real-analytic CR map. Suppose that $a > b \ge 1$, $A > B \ge 1$. Further suppose that F has minimal target dimension.

Theorem (Baouendi-Huang '05)

If b = B, then a = A and F is equivalent (via an LFT) to the identity.

Theorem (Baouendi-Ebenfelt-Huang '09)

If B < 2b, then a = A, b = B and F is equivalent to the identity.

Failure of super-rigidity

Let
$$(z,w)\in\mathbb{C}^a imes\mathbb{C}^b$$
. Then $(z,w)\mapsto (z_1,\ldots,z_{a-1},z_az_1,\ldots,z_a^2,z_aw_1,\ldots,z_aw_b,w_1,\ldots,w_b)$ takes $Q(a,b)$ to $Q(2a-1,2b)$.

Rigidity

Theorem (Grundmeier, L., Vivas, '11)

Let $a > b \ge 1$. Let $U \subset Q(a, b)$ be a connected open set and $F \colon U \to Q(A, B)$ be a real-analytic CR map with minimal target dimension, then

$$A \leq N(a, b, B),$$

where N(a, b, B) is a constant depending only a, b, and B.

Stability

Theorem (Grundmeier, L., Vivas, '11)

Suppose $a > b \ge 1$, then there exists an N such that if $A + B \ge N$, and

$$rac{B-b+3}{A} \geq rac{b}{a}$$
 and $rac{A-b+2}{B+1} \geq rac{b}{a}$,

then there exists a rational CR map $F: Q(a, b) \rightarrow Q(A, B)$ whose image does not lie in an affine complex hyperplane.

Picture is worth a thousand words Q(4,1)

Picture is worth a thousand words Q(4,1)

Hermitian forms

Let r be a real-analytic function. Write

$$r(z,\bar{z}) = \|f(z)\|^2 - \|g(z)\|^2$$

for holomorphic Hilbert-space valued maps $f: \mathbb{C}^n \to \mathbb{C}^A$ and $g: \mathbb{C}^n \to \mathbb{C}^B$ with linearly independent components. Allow A and B to be ∞ . (See D'Angelo '93)

Hermitian forms

Let r be a real-analytic function. Write

$$r(z,\bar{z}) = \|f(z)\|^2 - \|g(z)\|^2$$

for holomorphic Hilbert-space valued maps $f:\mathbb{C}^n\to\mathbb{C}^A$ and $g:\mathbb{C}^n\to\mathbb{C}^B$ with linearly independent components. Allow A and B to be ∞ . (See D'Angelo '93)

Define

rank
$$r = A + B$$
 signature pair of $r = (A, B)$

The decomposition non-unique, but A and B are well-defined.

Hermitian forms

Let r be a real-analytic function. Write

$$r(z,\bar{z}) = \|f(z)\|^2 - \|g(z)\|^2$$

for holomorphic Hilbert-space valued maps $f:\mathbb{C}^n\to\mathbb{C}^A$ and $g:\mathbb{C}^n\to\mathbb{C}^B$ with linearly independent components. Allow A and B to be ∞ . (See D'Angelo '93)

Define

$$rank r = A + B$$
 signature pair of $r = (A, B)$

The decomposition non-unique, but A and B are well-defined.

Note that it looks like we are plugging $f \oplus g$ into the defining equation of a hyperquadric.

Matrix of coefficients

Assuming r is defined near 0 we can write

$$r(z,ar{z})=\langle C\mathcal{Z},\mathcal{Z}
angle$$

where $\mathcal{Z} = (1, z_1, z_2, \dots, z_1^2, z_1 z_2, \dots)$ is the vector of all monomials and C is a (formal) Hermitian matrix (called the *matrix of coefficients*).

Matrix of coefficients

Assuming r is defined near 0 we can write

$$r(z,ar{z})=\langle C\mathcal{Z},\mathcal{Z}
angle$$

where $\mathcal{Z} = (1, z_1, z_2, \dots, z_1^2, z_1 z_2, \dots)$ is the vector of all monomials and C is a (formal) Hermitian matrix (called the *matrix of coefficients*).

After possibly rescaling r, C is a Hermitian trace-class operator on ℓ^2 of rank A+B, and A positive and B negative eigenvalues.

Matrix of coefficients

Assuming r is defined near 0 we can write

$$r(z,ar{z})=\langle C\mathcal{Z},\mathcal{Z}
angle$$

where $\mathcal{Z} = (1, z_1, z_2, \dots, z_1^2, z_1 z_2, \dots)$ is the vector of all monomials and C is a (formal) Hermitian matrix (called the *matrix of coefficients*).

After possibly rescaling r, C is a Hermitian trace-class operator on ℓ^2 of rank A+B, and A positive and B negative eigenvalues.

We obtain f and g in $r = ||f||^2 - ||g||^2$ by diagonalizing C.

Hermitian forms: example (finite dimensional)

Key ingredient

Let $G_{m,n}$ be the affine Grassmanian (affine complex m-planes in \mathbb{C}^n)

Theorem (Grundmeier, L., Vivas, '11)

Let $n \geq 2$ and let $1 \leq m \leq n-1$. Let $r: \Omega \subset \mathbb{C}^n \to \mathbb{R}$ be a nonzero real-analytic function (Ω connected and "small enough"). If

$$\max_{L\in G_{m,n}} \operatorname{rank} r|_L < \infty.$$

Then rank $r < \infty$.

Moreover, $\exists R_{m,n} \colon \mathbb{N} \to \mathbb{N}$ such that for all such r

$$\operatorname{rank} r \leq R_{m,n} \left(\max_{L \in G_{m,n}} \operatorname{rank} r|_L
ight).$$

Actually not quite enough

The hypothesis "for all $L \in G_{m,n}$ " is not good enough.

Actually not quite enough

The hypothesis "for all $L \in G_{m,n}$ " is not good enough.

Let $\mathcal{L} \subset G_{m,n}$ be a generic subset (not contained in any complex subvariety of $G_{m,n}$).

We show that if r is positive semi-definite (B = 0), then

$$\operatorname{\mathsf{rank}} r \leq R_{m,n} \left(\max_{L \in \mathcal{L}} \operatorname{\mathsf{rank}} r|_L
ight).$$

When looking only at \mathcal{L} then r must be positive semi-definite for any bound to hold.

Interesting consequence

Suppose $f \colon U \subset \mathbb{C}^n \to \mathbb{C}^N$ is holomorphic and fix m < n.

If for each affine m-plane L intersecting U the set $f(U \cap L)$ lies in an affine M-plane in \mathbb{C}^N , then f(U) lies in an affine $R_{m,n}(M)$ -plane.

Interesting consequence

Suppose $f \colon U \subset \mathbb{C}^n \to \mathbb{C}^N$ is holomorphic and fix m < n.

If for each affine m-plane L intersecting U the set $f(U \cap L)$ lies in an affine M-plane in \mathbb{C}^N , then f(U) lies in an affine $R_{m,n}(M)$ -plane.

Here also a generic set of L will do as well.

If $a > b \ge 1$, then Q(a, b) contains a generic set \mathcal{L} of affine b-planes.

If $a > b \ge 1$, then Q(a, b) contains a generic set \mathcal{L} of affine b-planes. Let $f \oplus g$ map some neighbourhood $U \subset Q(a, b)$ to Q(A, B) where A + B is the minimal target dimension.

If $a > b \ge 1$, then Q(a, b) contains a generic set $\mathcal L$ of affine b-planes. Let $f \oplus g$ map some neighbourhood $U \subset Q(a, b)$ to Q(A, B) where A + B is the minimal target dimension. Look at

$$r(z,ar{z})=\left\|f(z)
ight\|^2-\left\|g(z)
ight\|^2$$

f maps to \mathbb{C}^A and g maps to \mathbb{C}^B .

If $a > b \ge 1$, then Q(a, b) contains a generic set $\mathcal L$ of affine b-planes. Let $f \oplus g$ map some neighbourhood $U \subset Q(a, b)$ to Q(A, B) where A + B is the minimal target dimension. Look at

$$r(z,ar{z})=\left\|f(z)
ight\|^2-\left\|g(z)
ight\|^2$$

f maps to \mathbb{C}^A and g maps to \mathbb{C}^B .

As r=1 on $U\subset Q(a,b)$, then for every L in $\mathcal L$ that also intersects U

$$1 = r|_L = \left\| f|_L
ight\|^2 - \left\| g|_L
ight\|^2$$

If $a > b \ge 1$, then Q(a, b) contains a generic set \mathcal{L} of affine b-planes. Let $f \oplus g$ map some neighbourhood $U \subset Q(a, b)$ to Q(A, B) where A + B is the minimal target dimension. Look at

$$r(z,ar{z})=\left\|f(z)
ight\|^2-\left\|g(z)
ight\|^2$$

f maps to \mathbb{C}^A and g maps to \mathbb{C}^B .

As r=1 on $U\subset Q(a,b)$, then for every L in $\mathcal L$ that also intersects U

$$1=r|_L=\left\|f|_L
ight\|^2-\left\|g|_L
ight\|^2$$

In other words, $||f|_L||^2 = ||g|_L||^2 + 1$. The rank of $||g|_L||^2$ is bounded by B and hence rank of $||f|_L||^2$ is bounded by B + 1.

If $a > b \ge 1$, then Q(a, b) contains a generic set \mathcal{L} of affine b-planes. Let $f \oplus g$ map some neighbourhood $U \subset Q(a, b)$ to Q(A, B) where A + B is the minimal target dimension. Look at

$$r(z,ar{z})=\left\|f(z)
ight\|^2-\left\|g(z)
ight\|^2$$

f maps to \mathbb{C}^A and g maps to \mathbb{C}^B .

As r=1 on $U\subset Q(a,b)$, then for every L in ${\mathcal L}$ that also intersects U

$$1=r|_L=\left\|f|_L
ight\|^2-\left\|g|_L
ight\|^2$$

In other words, $||f|_L||^2 = ||g|_L||^2 + 1$. The rank of $||g|_L||^2$ is bounded by B and hence rank of $||f|_L||^2$ is bounded by B + 1.

As $||f||^2$ is positive semi-definite, the rank of $||f||^2$ (which is A) is bounded by some function of B. Which is exactly what we wanted.

If $a > b \ge 1$, then Q(a, b) contains a generic set \mathcal{L} of affine b-planes. Let $f \oplus g$ map some neighbourhood $U \subset Q(a, b)$ to Q(A, B) where A + B is the minimal target dimension. Look at

$$r(z,ar{z})=\left\|f(z)
ight\|^2-\left\|g(z)
ight\|^2$$

f maps to \mathbb{C}^A and g maps to \mathbb{C}^B .

As r=1 on $U\subset Q(a,b)$, then for every L in $\mathcal L$ that also intersects U

$$1=r|_L=\left\|f|_L
ight\|^2-\left\|g|_L
ight\|^2$$

In other words, $||f|_L||^2 = ||g|_L||^2 + 1$. The rank of $||g|_L||^2$ is bounded by B and hence rank of $||f|_L||^2$ is bounded by B + 1.

As $||f||^2$ is positive semi-definite, the rank of $||f||^2$ (which is A) is bounded by some function of B. Which is exactly what we wanted. QED!

Proof of stability

Define Q(a, b) by

$$s(z,ar{z}) = \sum_{j=1}^a |z_j|^2 - \sum_{j=a+1}^{a+b} |z_j|^2 = 1$$

Suppose r = 1 on Q(a, b), where

$$r(z,ar{z})=\left\|f(z)
ight\|^2-\left\|g(z)
ight\|^2$$

i.e. $f \oplus g$ takes Q(a, b) to Q(A, B).

Proof of stability

Define Q(a, b) by

$$s(z, \bar{z}) = \sum_{j=1}^{a} |z_j|^2 - \sum_{j=a+1}^{a+b} |z_j|^2 = 1$$

Suppose r = 1 on Q(a, b), where

$$r(z,ar{z})=\left\|f(z)
ight\|^2-\left\|g(z)
ight\|^2$$

i.e. $f \oplus g$ takes Q(a, b) to Q(A, B).

Then for an arbitrary holomorphic function φ

$$|r_1 = \|f\|^2 - \|g\|^2 + |arphi|^2 \, (s-1)$$

generically adds a positive and b+1 negative eigenvalues.

Proof of stability

Define Q(a, b) by

$$s(z, \bar{z}) = \sum_{j=1}^{a} |z_j|^2 - \sum_{j=a+1}^{a+b} |z_j|^2 = 1$$

Suppose r = 1 on Q(a, b), where

$$r(z,ar{z})=\left\|f(z)
ight\|^2-\left\|g(z)
ight\|^2$$

i.e. $f \oplus g$ takes Q(a, b) to Q(A, B).

Then for an arbitrary holomorphic function φ

$$|r_1| = ||f||^2 - ||g||^2 + |arphi|^2 (s-1)$$

generically adds a positive and b+1 negative eigenvalues.

$$|r_2| ||f||^2 - ||g||^2 + |arphi|^2 (1-s)$$

generically adds b+1 positive and a negative eigenvalues.

Continued...

Let $f = (f', f_A)$.

$$r_3 = ||f'||^2 + |f_A|^2 s - ||g||^2$$

generically adds a-1 positive and b negative eigenvalues.

$$r_4 = \|f'\|^2 + rac{|f_A|^2}{2} + rac{|f_A|^2}{2} s - \|g\|^2$$

generically adds a positive and b negative eigenvalues.

Continued...

Let $f = (f', f_A)$.

$$r_3 = ||f'||^2 + |f_A|^2 s - ||g||^2$$

generically adds a-1 positive and b negative eigenvalues.

$$r_4 = \left\| f'
ight\|^2 + rac{\left| f_A
ight|^2}{2} + rac{\left| f_A
ight|^2}{2} \, s - \left\| g
ight\|^2$$

generically adds a positive and b negative eigenvalues.

By variations on the above obtain maps to:

$$Q(A + a, B + b + 1), Q(A + a, B + b), Q(A + a - 1, B + b + 1), Q(A + a - 1, B + b).$$

And also to:

$$Q(A + b + 1, B + a), Q(A + b + 1, B + a - 1), Q(A + b, B + a), Q(A + b, B + a - 1)$$

In the following pictures the B axis (vertical) is shifted by one for symmetry.

We show the construction of maps $Q(4,1) \rightarrow Q(A,B-1)$.

```
1600000000000
2 3 4 5 6 7 8 9 10111121314151617181920
```



```
1600000000000
4 0 0 • 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 3 4 5 6 7 8 9 10111121314151617181920
```


There exist strictly pseudoconvex real-analytic compact hypersurfaces that cannot be embedded via a real-analytic map into a sphere of any finite dimension (Forstnerič '86).

Every such hypersurface embeds (via a real-analytic map) into a sphere in ℓ^2 (Lempert '90).

There exist strictly pseudoconvex real-analytic compact hypersurfaces that cannot be embedded via a real-analytic map into a sphere of any finite dimension (Forstnerič '86).

Every such hypersurface embeds (via a real-analytic map) into a sphere in ℓ^2 (Lempert '90).

What about non-pseudoconvex Levi-nondegenerate hypersurfaces?

There exist strictly pseudoconvex real-analytic compact hypersurfaces that cannot be embedded via a real-analytic map into a sphere of any finite dimension (Forstnerič '86).

Every such hypersurface embeds (via a real-analytic map) into a sphere in ℓ^2 (Lempert '90).

What about non-pseudoconvex Levi-nondegenerate hypersurfaces?

$$Q(\infty,b) := \Big\{z \in oldsymbol{\ell}^2 : -\sum_{j=1}^b |z_j|^2 + \sum_{j=b+1}^\infty |z_j|^2 = 1 \Big\},$$

$$Q(\infty,\infty) := \Big\{z \in oldsymbol{\ell}^2 : \sum_{j=1}^\infty ig(|z_{2j-1}|^2 - |z_{2j}|^2ig) = 1\Big\}.$$

Note $Q(\infty, 0)$ is the unit sphere in ℓ^2 .

4 D > 4 A > 4 B > 4 B > B 900

For every real-analytic hypersurface there exists a CR map into some Q(A, B) if we allow A and B to be infinite (using holomorphic decomposition, D'Angelo '93).

For every real-analytic hypersurface there exists a CR map into some Q(A, B) if we allow A and B to be infinite (using holomorphic decomposition, D'Angelo '93).

Corollary (Grundmeier, L., Vivas, '11)

Let $\infty > a > b \ge 1$. Let $U \subset Q(a,b)$ be a connected open set and $f: U \to Q(\infty,B)$, where $B \in \mathbb{N}_0 \cup \{\infty\}$, be a real-analytic CR mapping such that f(U) is not contained in any complex hyperplane of ℓ^2 . Then $B = \infty$.

Indefinite Levi-form

$$r(z,ar{z})=e^{|z_1+1|^2+|z_2|^2}-e-|z_3|^2$$

has signature pair $(\infty, 2)$ and

$$r(z, \bar{z}) = 2e \operatorname{Re} z_1 + |z_2|^2 - |z_3|^2 + \text{higher order terms.}$$

So $M = \{r = 0\}$ has indefinite Levi-form at the origin.

Indefinite Levi-form

$$r(z,ar{z})=e^{|z_1+1|^2+|z_2|^2}-e-|z_3|^2$$

has signature pair $(\infty, 2)$ and

$$r(z, \bar{z}) = 2e \operatorname{Re} z_1 + |z_2|^2 - |z_3|^2 + \text{higher order terms.}$$

So $M = \{r = 0\}$ has indefinite Levi-form at the origin.

We obtain

$$f\colon M o Q(\infty,1)$$

whose image is not contained in a hyperplane.