
Hermitian forms and rational maps of
hyperquadrics
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Hyperquadrics

Define

Q(a,b)
def
=
n

z ∈ Cn
�

�

�

a
∑

j=1

�

�zj
�

�

2 −
a+b
∑

j=a+1

�

�zj
�

�

2
= 1

o

Note that
S2n−1 = Q(n,0)
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CR maps

A map F : Q(a,b)→ Q(c,d) is CR if it is continuously
differentiable and satisfies the tangential Cauchy-Riemann
equations. A real-analytic CR map is a restriction of a
holomorphic map.

Natural question
Classify all CR mappings of Q(a,b) to Q(c,d).
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Q-equivalence

Let Aut(Q(a,b)) denote the set of linear fractional
transformations preserving Q(a,b).

F : Q(a,b)→ Q(c,d) and G : Q(a,b)→ Q(c,d) are Q-equivalent if
there exist linear fractional maps χ ∈ Aut(Q(a,b)) and
τ ∈ Aut(Q(a,b)) such that the following diagram commutes:

Q(a,b)

χ
��

F // Q(c,d)

τ
��

Q(a,b)
G // Q(c,d)

When both hyperquadrics are spheres, then Q-equivalence is
called spherical equivalence.
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Q-equivalence

Let F : Q(a,b)→ Q(c1,d1) and G : Q(a,b)→ Q(c2,d2) be CR
maps.

F and G are Q-equivalent if there exists a linear fractional map
L : Q(c1,d1)→ Q(c2,d2) and L ◦ F is Q-equivalent to G.

(or vice versa)

Note: Q(a,b) ∼= Q(b+ 1,a− 1) by a linear fractional mapping.
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Small dimensions

The only hyperquadric in C is S1.

All rational CR maps of S1 to S1 can be written as

z 7→ eiθ
k
∏

j=1

z− aj
1− ājz

for some aj ∈ C.
In C2 we need only consider S3 (as Q(1,1) ∼= Q(2,0)).
No CR maps from S3 to S1.
The only CR maps of S3 to S3 are automorphisms by a
theorem of Pinčuk (also others ...)
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C2 to C3

The only hyperquadric in C2 is S3.

In C3 there are two hyperquadrics S5 and Q(2,1).

Theorem (Faran ’82)
Let U ⊂ S3 be connected and open. Let F : U→ S5 be a
nonconstant C3 CR map. Then F is spherically equivalent to
exactly one of

(i) (z,w) 7→ (z, w, 0) (”Linear”)

(ii) (z,w) 7→ (z, zw, w2) (“Whitney map”)

(iii) (z,w) 7→ (z2,
p

2 zw, w2) (”Homogeneous”)

(iv) (z,w) 7→ (z3,
p

3 zw, w3) (“Faran map”)
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Theorem (— ’09)
Let U ⊂ Q(2,0) be connected and open. Let F : U→ Q(2,1) be a
nonconstant real-analytic CR map. Then F is Q-equivalent to
exactly one of:

(i) (z,w) 7→ (z,w,0),

(ii) (z,w) 7→ (z2,
p

2w,w2),

(iii) (z,w) 7→
�

1
z ,

w2

z2 ,
w
z2

�

,

(iv) (z,w) 7→
�

z2+
p

3zw+w2−z
w2+z+

p
3w−1

, w
2+z−

p
3w−1

w2+z+
p

3w−1
, z

2−
p

3zw+w2−z
w2+z+

p
3w−1

�

,

(v) (z,w) 7→
� 4p2(zw−iz)
w2+

p
2 iw+1

, w
2−
p

2 iw+1
w2+

p
2 iw+1

,
4p2(zw+iz)

w2+
p

2 iw+1

�

,

(vi) (z,w) 7→
�

2w3

3z2+1 ,
z3+3z
3z2+1 ,

p
3wz2−w

3z2+1

�

,

(vii) (z,w) 7→ (1,g(z,w),g(z,w)) for an arbitrary CR function g.
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Degree 2 maps

Theorem (— ’09)
Let F : S2n−1→ S2N−1, n ≥ 2, be a rational CR mapping with
degF ≤ 2. Then F is is spherically equivalent to a monomial
map (every component is a monomial).

In particular, f is equivalent to a map taking (z1, . . . , zn) to
�
p

t1 z1,
p

t2 z2, . . . ,
p

tn zn,
p

1− t1 z2
1,
p

1− t2 z2
2, . . . ,

p

1− tn z2
n
,

p

1− t1 − t2 z1z2,
p

1− t1 − t3 z1z3, . . . ,
p

1− tn−1 − tn zn−1zn
�

for 0 ≤ t1 ≤ t2 ≤ . . . ≤ tn ≤ 1.

Furthermore, all maps of the above form are mutually
spherically inequivalent for different parameters (t1, . . . , tn).

The moduli space is a closed n-simplex.
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In particular, every equivalence class can be represented by

Lz⊕
�

(
p

I− L∗Lz)⊗ z
�

where L is a diagonal matrix with entries in the interval [0,1]
and sorted by size.

The theorem is optimal. The conclusion is not true if n = 1,
and it is not true if degF ≥ 3.
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Previous work

For n = 2, a classification of proper maps of degree 2 was
known previously by a paper of Ji and Zhang (’09).

Previously, Faran, Huang, Ji, and Zhang (’10) have shown that
for n = 2, all degree two maps are equivalent to a polynomial.
They also construct a degree 3 mapping which is not
equivalent to a polynomial mapping.
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Real polynomials

Let p(x,y) be a real polynomial defined on Rn × Rn (or Cn

where z = x+ iy).

Define the polynomial r on Cn ×Cn by

r(z, w̄) = p

�

z + w̄

2
,
z− w̄

2i

�

.

So r(z, z̄) = p(x,y) and r is Hermitian symmetric in the sense
that r(z, w̄) = r(w, z̄).
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Let’s bihomogenize

It is better at this point to work in projective space CPn (the
space of complex lines through the origin in Cn+1). From now
on let

z = (z1, z2, . . . , zn+1)

be the homogeneous coordinates on CPn.

We assume will assume that r is bihomogeneous of bidegree
(d,d), that is

tdr(z, z̄) = r(tz, z̄) = r(z, tz̄).
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The matrix of coefficients

Write r in multi-index notation

r(z, w̄) =
∑

α,β

cαβz
αw̄β.

The matrix C = [cαβ] is Hermitian symmetric.

If C has a positive and b negative eigenvalues. Write

C =
a
∑

j=1

v
j
v∗
j
−

a+b
∑

j=a+1

v
j
v∗
j

for some vectors vj (for example eigenvectors of C).
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The decomposition

Suppose r is of bidegree (d,d). Let Z be the Veronese
mapping of degree d, that is the vector of all monomials
Z = (. . . , zα, . . .)t.

r(z, z̄) = 〈CZ,Z〉 = Z∗CZ =

a
∑

j=1

Z∗v
j
v∗
j
Z −

a+b
∑

j=a+1

Z∗v
j
v∗
j
Z =

a
∑

j=1

�

�ϕj(z)
�

�

2 −
a+b
∑

j=a+1

�

�ϕj(z)
�

�

2
,

where ϕj(z) is the polynomial v∗
j
Z.

If we let f = (ϕ1, . . . , ϕa) and g = (ϕa+1, . . . , ϕa+b). Then
r(z, z̄) =





f (z)






2 −




g(z)






2.
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Hyperquadrics in CPn

Suppose that a+ b = n+ 1. Let τ : Cn+1 \ {0}→ CPn be the
standard projection. Define

HQ(a,b)
def
=
n

τ(z) ∈ CPn
�

�

�

a
∑

j=1

�

�zj
�

�

2 −
a+b
∑

j=a+1

�

�zj
�

�

2
= 0

o

Note that Q(a,b) is the dehomogenized HQ(a,b+ 1).

Therefore the sphere S2n−1 is HQ(n,1).
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Hyperquadrics in CPn

The defining equation for HQ(a,b) is

|z1|2 + · · ·+ |za|2 − |za+1|2 − · · · − |za+b|2 = 0

Let V = Va,b be the n+ 1 by n+ 1 matrix















1 0 . . . 0 0
0 1 . . . 0 0
...

...
. . .

...
...

0 0 . . . −1 0
0 0 . . . 0 −1















with a ones and b negative ones on the diagonal.

Then HQ(a,b) is defined by 〈Va,b z, z〉 = 0.
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Hermitian forms and CR maps of hyperquadrics

Suppose r vanishes on HQ(a,b), i.e.

r(z, z̄) = q(z, z̄)〈Va,b z, z〉.

If the Hermitian form of r has signature (c,d). Write

r(z, z̄) =




f (z)






2 −




g(z)






2
.

The map z 7→ (f (z),g(z)) takes HQ(a,b) to HQ(c,d).

Conversely if we have a map F : HQ(a,b)→ HQ(c,d) then let
r(z, z̄) = 〈Va,b F(z),F(z)〉.
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Linear independence

It is enough to consider maps with linearly independent
components.

If F : HQ(a,b)→ HQ(c,d) does not have linearly independent
components, then after a linear change of coordinates on the
target we have a map from HQ(a,b) to HQ(c′,d′)×Ck for
some c′ ≤ c, d′ ≤ d (c′ + d′ < c+ d) and k ≥ 1.
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Key idea

Lemma
Let H be a nonsingular Hermitian matrix. Let F and G be
homogeneous polynomial maps of Cn+1 to CN+1 such that

〈HF(z),F(z)〉 = 〈HG(z),G(z)〉.

Suppose that F has linearly independent components. Then

G(z) = LF(z)

for some invertible matrix L such that L∗HL = H.

In other words, if two maps F and G of hyperquadrics (with
linearly independent components) give the same Hermitian
form, then they differ by an automorphism of the target.
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Let us repeat

To classify maps from HQ(a,b) to HQ(c,d) up to
Q-equivalence, it is enough to classify (up to Aut(HQ(a,b)))
real polynomials of signature pair (c,d) that vanish on HQ(a,b)

We have removed the automorphism group of the
target from the classification problem!
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Degree 2 maps

Degree 2 maps correspond to bidegree (2,2) bihomogeneous
polynomials vanishing on HQ(a,b)

Write
r(z, z̄) = 〈Az, z〉〈Va,bz, z〉.

An element of Aut(HQ(a,b)) is represented by a matrix T such
that T∗Va,bT = J. Hence,

r(Tz,Tz) = 〈ATz,Tz〉〈Va,bTz,Tz〉 =

〈T∗ATz, z〉〈T∗Va,bTz, z〉 = 〈T∗ATz, z〉〈Va,bz, z〉.
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The classification

Therefore to classify degree 2 maps, we simply need to find a
normal form for the pair of Hermitian matrices (A,Va,b) under
∗-congruence.

Done in the 1930s almost independently by Trott, Turnbull,
Ingraham and Wegner, and Williamson. It was rediscovered
later many times.

The normal form for the matrix pair gives all normal forms for
all degree 2 maps between all hyperquadrics.

Calculation required now.

For example, we can show that the only normal forms that
correspond to sphere maps are diagonal ones (hence
monomial).
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Rigidity for hyperquadrics

Let U ⊂ HQ(a,b) be connected and open. Let F : U→ HQ(c,d)
be a real analytic CR map with linearly independent
components. Assume 2 ≤ b ≤ a, c ≥ a, and d ≥ b.

Theorem (Baouendi-Huang ’05)
If d = b then F is Q-equivalent to a linear embedding (and
hence c = a).

Theorem (Baouendi-Ebenfelt-Huang ’09)
If d < 2b−1 then F is Q-equivalent to a linear embedding (and
hence c = a and d = b).
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Stability for spheres

There are lots of sphere maps.

Theorem (D’Angelo, — ’08)

For every N ≥ n2 − 2n+ 2 there exists a CR map
F : HQ(n,1)→ HQ(N,1) with linearly independent components.

That is, there exist CR (polynomial) maps of S2n−1 to S2N−1

where N is the minimal embedding dimension.
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More stability

Theorem (D’Angelo, — ’10)
Given n ≥ 1, there exists an integer M such that for any pair
(A,B) with A+B ≥M and A,B ≥ 2, there exist rational
mappings from HQ(n,1) to HQ(A,B) with linearly independent
components and whose degrees can be chosen arbitrarily
large.
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Maximal degrees for n = 2

Maximal degrees for maps of HQ(2,1) to HQ(A,B) with linearly
independent components.

...
...

...
...

...
...

...
5 - f ∞ ∞ ∞ ∞ · · ·
4 - f ∞ ∞ ∞ ∞ · · ·
3 - 3 e ∞ ∞ ∞ · · ·
2 - 1 3 e ∞ ∞ · · ·
1 - - 1 3 f f · · ·
0 0 - - - - - · · ·

B/A 0 1 2 3 4 5 · · ·
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Construction of unbounded maps

Let F : HQ(a,b)→ HQ(c,d) is a CR map with linearly
independent components. Let g be an arbitrary CR function
on HQ(a,b).

Let r(z, z̄) be the Hermitian form representing F. Then write

r̃(z, z̄) = r(z, z̄)±
�

�g(z)
�

�

2 〈Va,bz, z〉

The mapping F̃ corresponding to r̃ takes HQ(a,b) to
HQ(c+ a,d+ b) or HQ(c+ b,d+ a).
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Proof of stability

Suppose there exists a map from HQ(n,1) to HQ(N,1) (lin. ind.
components). For example, N ≥ n2 − 2n+ 2.

We have unbounded maps of HQ(n,1) to HQ(A,B) with lin. ind.
components for all A,B:

(A,B) = (N,1) + a(n,1) + b(1,n),

(A,B) = (1,N) + a(n,1) + b(1,n).

(a,b ≥ 0 and not both zero)

Let M = 2(2n2 − n). Now if A,B ≥ 2 and A+B ≥M, we get an
unbounded map.
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