
Chapter 7

Metric Spaces December 5, 2011

7.1 Metric spaces

Note: 1.5 lectures

As mentioned in the introduction, the main idea in analysis is to take limits. In chapter 2 we
learned to take limits of sequences of real numbers. And in chapter 3 we learned to take limits of
functions as a real number approached some other real number.

We want to take limits in more complicated contexts. For example, we might want to have
sequences of points in 3-dimensional space. Or perhaps we wish to define continuous functions
of several variables. We might even want to define functions on spaces that are a little harder to
describe, such as the surface of the earth. We still want to talk about limits there.

Finally, we have seen the limit of a sequence of functions in chapter 6. We wish to unify all these
notions so that we do not have to reprove theorems over and over again in each context. The concept
of a metric space is an elementary yet powerful tool in analysis. And while it is not sufficient to
describe every type of limit we can find in modern analysis, it gets us very far indeed.

Definition 7.1.1. Let X be a set and let d : X×X → R be a function such that

(i) d(x,y)≥ 0 for all x,y in X ,

(ii) d(x,y) = 0 if and only if x = y,

(iii) d(x,y) = d(y,x),

(iv) d(x,z) = d(x,y)+d(y,z) (triangle inequality).

Then the pair (X ,d) is called a metric space. The function d is called the metric or sometimes the
distance function. Sometimes we just say X is a metric space if the metric is clear from context.
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2 CHAPTER 7. METRIC SPACES

The geometric idea is that d is the distance between two points. Items (i)–(iii) have obvious
geometric interpretation: distance is always nonnegative, the only point that is distance 0 away from
x is x itself, and finally that the distance from x to y is the same as the distance from y to x. The
triangle inequality (iv) has the interpretation given in Figure 7.1.

x
y

z

d(x,y)

d(y,z)d(x,z)

Figure 7.1: Diagram of the triangle inequality in metric spaces.

For the purposes of drawing, it is convenient to draw figures and diagrams in the plane and have
the metric be the standard distance. However, that is only one particular metric space. Just because
a certain fact seems to be clear from drawing a picture does not mean it is true. You might be getting
sidetracked by intuition from euclidean geometry, whereas the concept of a metric space is a lot
more general.

Let us give some examples of metric spaces.

Example 7.1.2: The set of real numbers R is a metric space with the metric

d(x,y) := |x− y| .

Items (i)–(iii) of the definition are easy to verify. The triangle inequality (iv) follows immediately
from the standard triangle inequality for real numbers:

d(x,z) = |x− z|= |x− y+ y− z| ≤ |x− y|+ |y− z|= d(x,y)+d(y,z).

This metric is the standard metric on R. If we talk about R as a metric space without mentioning a
specific metric, we mean this particular metric.

Example 7.1.3: We can also put a different metric on the set of real numbers. For example take
the set of real numbers R together with the metric

d(x,y) :=
|x− y|
|x− y|+1

.
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Items (i)–(iii) are again easy to verify. The triangle inequality (iv) is a little bit more difficult.
Note that d(x,y) = ϕ(|x− y|) where ϕ(t) = t

t+1 and note that ϕ is an increasing function (positive
derivative) hence

d(x,z) = ϕ(|x− z|) = ϕ(|x− y+ y− z|)≤ ϕ(|x− y|+ |y− z|)

=
|x− y|+ |y− z|
|x− y|+ |y− z|+1

=
|x− y|

|x− y|+ |y− z|+1
+

|y− z|
|x− y|+ |y− z|+1

≤ |x− y|
|x− y|+1

+
|y− z|
|y− z|+1

= d(x,y)+d(y,z).

Here we have an example of a nonstandard metric on R. With this metric we can see for example
that d(x,y)< 1 for all x,y ∈ R. That is, any two points are less than 1 unit apart.

An important metric space is the n-dimensional euclidean space Rn = R×R×·· ·×R. We use
the following notation for points: x = (x1,x2, . . . ,xn) ∈ Rn. We also simply write 0 ∈ Rn to mean
the vector (0,0, . . . ,0). Before making Rn a metric space, let us prove an important inequality, the
so-called Cauchy-Schwarz inequality.

Lemma 7.1.4 (Cauchy-Schwarz inequality). Take x= (x1,x2, . . . ,xn)∈Rn and y= (y1,y2, . . . ,yn)∈
Rn. Then ( n

∑
j=1

x jy j

)2

≤
( n

∑
j=1

x2
j

)( n

∑
j=1

y2
j

)
.

Proof. Any square of a real number is nonnegative. Hence any sum of squares is nonnegative:

0≤
n

∑
j=1

n

∑
k=1

(x jyk− xky j)
2

=
n

∑
j=1

n

∑
k=1

(
x2

jy
2
k + x2

ky2
j −2x jxky jyk

)
=

( n

∑
j=1

x2
j

)( n

∑
k=1

y2
k

)
+

( n

∑
j=1

y2
j

)( n

∑
k=1

x2
k

)
−2
( n

∑
j=1

x jy j

)( n

∑
k=1

xkyk

)
We relabel and divide by 2 to obtain

0≤
( n

∑
j=1

x2
j

)( n

∑
j=1

y2
j

)
−
( n

∑
j=1

x jy j

)2

,

which is precisely what we wanted.

Example 7.1.5: Let us construct standard metric for Rn. Define

d(x,y) :=
√
(x1− y1)

2 +(x2− y2)
2 + · · ·+(xn− yn)

2 =

√
n

∑
j=1

(x j− y j)
2.
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For n = 1, the real line, this metric agrees with what we did above. Again, the only tricky part of the
definition to check is the triangle inequality. It is less messy to work with the square of the metric.
In the following, note the use of the Cauchy-Schwarz inequality.

d(x,z)2 =
n

∑
j=1

(x j− z j)
2

=
n

∑
j=1

(x j− y j + y j− z j)
2

=
n

∑
j=1

(
(x j− y j)

2 +(y j− z j)
2 +2(x j− y j)(y j− z j)

)
=

n

∑
j=1

(x j− y j)
2 +

n

∑
j=1

(y j− z j)
2 +

n

∑
j=1

2(x j− y j)(y j− z j)

≤
n

∑
j=1

(x j− y j)
2 +

n

∑
j=1

(y j− z j)
2 +2

√
n

∑
j=1

(x j− y j)
2

n

∑
j=1

(y j− z j)
2

=

(√
n

∑
j=1

(x j− y j)
2 +

√
n

∑
j=1

(y j− z j)
2

)2

=
(
d(x,y)+d(y,z)

)2
.

Taking the square root of both sides we obtain the correct inequality.

Example 7.1.6: An example to keep in mind is the so-called discrete metric. Let X be any set and
define

d(x,y) :=

{
1 if x 6= y,
0 if x = y.

That is, all points are equally distant from each other. When X is a finite set, we can draw a diagram,
see for example Figure 7.2. Things become subtle when X is an infinite set such as the real numbers.

c

1
e
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1

1

1

11
1

1

Figure 7.2: Sample discrete metric space {a,b,c,d,e}, the distance between any two points is 1.
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While this particular example seldom comes up in practice, it is gives a useful “smell test.” If
you make a statement about metric spaces, try it with the discrete metric. To show that (X ,d) is
indeed a metric space is left as an exercise.

Example 7.1.7: Let C([a,b]) be the set of continuous real-valued functions on the interval [a,b].
Define the metric on C([a,b]) as

d( f ,g) := sup
x∈[a,b]

| f (x)−g(x)| .

Let us check the properties. First, d( f ,g) is finite as | f (x)−g(x)| is a continuous function on a
closed bounded interval [a,b], and so is bounded. It is clear that d( f ,g)≥ 0, it is the supremum of
nonnegative numbers. If f = g then | f (x)−g(x)|= 0 for all x and hence d( f ,g) = 0. Conversely if
d( f ,g) = 0, then for any x we have | f (x)−g(x)| ≤ d( f ,g) = 0 and hence f (x) = g(x) for all x and
f = g. That d( f ,g) = d(g, f ) is equally trivial. To show the triangle inequality we use the standard
triangle inequality.

d( f ,h) = sup
x∈[a,b]

| f (x)−g(x)|= sup
x∈[a,b]

| f (x)−h(x)+h(x)−g(x)|

≤ sup
x∈[a,b]

(| f (x)−h(x)|+ |h(x)−g(x)|)

≤ sup
x∈[a,b]

| f (x)−h(x)|+ sup
x∈[a,b]

|h(x)−g(x)|= d( f ,h)+d(h,g).

When treat C([a,b]) as a metric space without mentioning a metric, we mean this particular metric.
This example may seem esoteric at first, but it turns out that working with spaces such as

C([a,b]) is really the meat of a large part of modern analysis. Treating sets of functions as metric
spaces allows us to abstract away a lot of the grubby detail and prove powerful results such as
Picard’s theorem with less work.

Oftentimes it is useful to consider a subset of a larger metric space as a metric space. We obtain
the following proposition, which has a trivial proof.

Proposition 7.1.8. Let (X ,d) be a metric space and Y ⊂ X, then the restriction d|Y×Y is a metric
on Y .

Definition 7.1.9. If (X ,d) is a metric space, Y ⊂ X , and d′ := d|Y×Y , then (Y,d′) is said to be a
subspace of (X ,d).

It is common to simply write d for the metric on Y , as it is the restriction of the metric on X .
Sometimes we will say that d′ is the subspace metric and that Y has the subspace topology.

A subset of the real numbers is bounded whenever all its elements are at most some fixed
distance from 0. We can also define bounded sets in a metric space. When dealing with an arbitrary
metric space there may not be some natural fixed point 0. For the purposes of boundedness it does
not matter.
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Definition 7.1.10. Let (X ,d) be a metric space. A subset S⊂ X is said to be bounded if there exists
a p ∈ X and a B ∈ R such that

d(p,x)≤ B for all x ∈ S.

We say that (X ,d) is bounded if X itself is a bounded subset.

For example, the set of real numbers with the standard metric is not a bounded metric space. It
is not hard to see that a subset of the real numbers is bounded in the sense of chapter 1 if and only if
it is bounded as a subset of the metric space of real numbers with the standard metric.

On the other hand, if we take the real numbers with the discrete metric, then we obtain a bounded
metric space. In fact, any set with the discrete metric is bounded.

7.1.1 Exercises
Exercise 7.1.1: Show that for any set X, the discrete metric (d(x,y) = 1 if x 6= y and d(x,x) = 0)
does give a metric space (X ,d).

Exercise 7.1.2: Let X := {0} be a set. Can you make it into a metric space?

Exercise 7.1.3: Let X := {a,b} be a set. Can you make it into two distinct metric spaces? (define
two distinct metrics on it)

Exercise 7.1.4: Let the set X := {A,B,C} represent 3 buildings on campus. Suppose we wish to
our distance to be the time it takes to walk from one building to the other. It takes 5 minutes either
way between buildings A and B. However, building C is on a hill and it takes 10 minutes from A and
15 minutes from B to get to C. On the other hand it takes 5 minutes to go from C to A and 7 minutes
to go from C to B, as we are going downhill. Do these distances define a metric? If so, prove it, if
not say why not.

Exercise 7.1.5: Suppose that (X ,d) is a metric space and ϕ : [0,∞]→ R is an increasing function
such that ϕ(t)≥ 0 for all t and ϕ(t) = 0 if and only if t = 0. Also suppose that ϕ is subadditive,
that is ϕ(s+ t)≤ ϕ(s)+ϕ(t). Show that with d′(x,y) := ϕ

(
d(x,y)

)
, we obtain a new metric space

(X ,d′).

Exercise 7.1.6: Let (X ,dX) and (Y,dY ) be metric spaces.
a) Show that (X×Y,d) with d

(
(x1,y1),(x2,y2)

)
:= dX(x1,x2)+dY (y1,y2) is a metric space.

b) Show that (X×Y,d) with d
(
(x1,y1),(x2,y2)

)
:= max{dX(x1,x2),dY (y1,y2)} is a metric space.

Exercise 7.1.7: Let X be the set of continuous functions on [0,1]. Let ϕ : [0,1] → (0,∞) be
continuous. Define

d( f ,g) :=
∫ 1

0
| f (x)−g(x)|ϕ(x) dx.

Show that (X ,d) is a metric space.



7.1. METRIC SPACES 7

Exercise 7.1.8: Let (X ,d) be a metric space. For nonempty bounded subsets A and B let

d(x,B) := inf{d(x,b) : b ∈ B} and d(A,B) := sup{d(a,B) : a ∈ A}.

Now define the Hausdorff metric as

dH(A,B) := max{d(A,B),d(B,A)}.

Note: dH can be defined for arbitrary nonempty subsets if we allow the extended reals.
a) Let Y ⊂P(X) be the set of bounded nonempty subsets. Show that (Y,dH) is a metric space. b)
Show by example that d itself is not a metric. That is, d is not always symmetric.
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7.2 Open and closed sets
Note: 2 lectures

7.2.1 Topology
It is useful to define a so-called topology. That is we define closed and open sets in a metric space.
Before doing so, let us define two special sets.

Definition 7.2.1. Let (X ,d) be a metric space, x∈ X and δ > 0. Then define the open ball or simply
ball of radius δ around x as

B(x,δ ) := {y ∈ X : d(x,y)< δ}.
Similarly we define the closed ball as

C(x,δ ) := {y ∈ X : d(x,y)≤ δ}.

When we are dealing with different metric spaces, it is sometimes convenient to emphasize
which metric space the ball is in. We do this by writing BX(x,δ ) := B(x,δ ) or CX(x,δ ) :=C(x,δ ).

Example 7.2.2: Take the metric space R with the standard metric. For x ∈ R, and δ > 0 we get

B(x,δ ) = (x−δ ,x+δ ) and C(x,δ ) = [x−δ ,x+δ ].

Example 7.2.3: Be careful when working on a subspace. Suppose we take the metric space [0,1]
as a subspace of R. Then in [0,1] we get

B(0,1/2) = B[0,1](0,1/2) = [0,1/2).

This is of course different from BR(0,1/2) = (−1/2,1/2). The important thing to keep in mind is
which metric space we are working in.

Definition 7.2.4. Let (X ,d) be a metric space. A set V ⊂ X is open if for every x ∈V , there exists
a δ > 0 such that B(x,δ )⊂V . See Figure 7.3. A set E ⊂ X is closed if the complement Ec = X \E
is open. When the ambient space X is not clear from context we say V is open in X and E is closed
in X .

If x ∈ V and V is open, then we say that V is an open neighborhood of x (or sometimes just
neighborhood).

Intuitively, an open set is a set that does not include its “boundary.” Note that not every set is
either open or closed, in fact generally most subsets are neither.

Example 7.2.5: The set [0,1) ⊂ R is neither open nor closed. First, every ball in R around 0,
(−δ ,δ ) contains negative numbers and hence is not contained in [0,1) and so [0,1) is not open.
Second, every ball in R around 1, (1−δ ,1+δ ) contains numbers strictly less than 1 and greater
than 0 (e.g. 1− δ/2 as long as δ < 2). Thus R\ [0,1) is not open, and so [0,1) is not closed.
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x

δ

V

B(x,δ )

Figure 7.3: Open set in a metric space. Note that δ depends on x.

Proposition 7.2.6. Let (X ,d) be a metric space.

(i) /0 and X are open in X.

(ii) If V1,V2, . . . ,Vk are open then
k⋂

j=1

Vj

is also open. That is, finite intersection of open sets is open.

(iii) If {Vλ}λ∈I is an arbitrary collection of open sets, then⋃
λ∈I

Vλ

is also open. That is, union of open sets is open.

Note that the index set in (iii) is arbitrarily large. By
⋃

λ∈I Vλ we simply mean the set of all x
such that x ∈Vλ for at least one λ ∈ I.

Proof. The set X and /0 are obviously open in X .
Let us prove (ii). If x ∈

⋂k
j=1Vj, then x ∈Vj for all j. As Vj are all open, there exists a δ j > 0

for every j such that B(x,δ j) ⊂ Vj. Take δ := min{δ1, . . . ,δk} and note that δ > 0. We have
B(x,δ )⊂ B(x,δ j)⊂Vj for every j and thus B(x,δ )⊂

⋂k
j=1Vj. Thus the intersection is open.

Let us prove (iii). If x ∈
⋃

λ∈I Vλ , then x ∈Vλ for some λ ∈ I. As Vλ is open then there exists a
δ > 0 such that B(x,δ )⊂Vλ . But then B(x,δ )⊂

⋃
λ∈I Vλ and so the union is open.

Example 7.2.7: The main thing to notice is the difference between items (ii) and (iii). Item (ii) is
not true for an arbitrary intersection, for example

⋂
∞
n=1(−1/n,1/n) = {0}, which is not open.



10 CHAPTER 7. METRIC SPACES

The proof of the following analogous proposition for closed sets is left as an exercise.

Proposition 7.2.8. Let (X ,d) be a metric space.

(i) /0 and X are closed in X.

(ii) If {Eλ}λ∈I is an arbitrary collection of closed sets, then⋂
λ∈I

Eλ

is also closed. That is, intersection of closed sets is closed.

(iii) If E1,E2, . . . ,Ek are closed then
k⋃

j=1

E j

is also closed. That is, finite union of closed sets is closed.

We have not yet shown that the open ball is open and the closed ball is closed. Let us show this
fact now to justify the terminology.

Proposition 7.2.9. Let (X ,d) be a metric space, x ∈ X, and δ > 0. Then B(x,δ ) is open and C(x,δ )
is closed.

Proof. Let y ∈ B(x,δ ). Let α := δ −d(x,y). Of course α > 0. Now let z ∈ B(y,α). Then

d(x,z)≤ d(x,y)+d(y,z)< d(x,y)+α = d(x,y)+δ −d(x,y) = δ .

Therefore z ∈ B(x,δ ) for every z ∈ B(y,α). So B(y,α)⊂ B(x,δ ) and B(x,δ ) is open.
The proof that C(x,δ ) is closed is left as an exercise.

Again be careful about what is the ambient metric space. As [0,1/2) is an open ball in [0,1], this
means that [0,1/2) is an open set in [0,1]. On the other hand [0,1/2) is neither open nor closed in R.

A useful way to think about an open set is a union of open balls. If U is open, then for each
x ∈U , there is a δx > 0 (depending on x of course) such that B(x,δx)⊂U . Then U =

⋃
x∈U B(x,δx).

The proof of the following proposition is left as an exercise. Note that there are other open and
closed sets in R.

Proposition 7.2.10. Let a < b be two real numbers. Then (a,b), (a,∞), and (−∞,b) are open in R.
Also [a,b], [a,∞), and (−∞,b] are closed in R.
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7.2.2 Connected sets
Definition 7.2.11. A nonempty metric space (X ,d) is connected if the only subsets that are both
open and closed are /0 and X itself.

When we apply the term connected to a nonempty subset A⊂ X , we simply mean that A with
the subspace topology is connected.

In other words, a nonempty X is connected if whenever we write X = X1∪X2 where X1∩X2 = /0
and X1 and X2 are open, then either X1 = /0 or X2 = /0. So to test for disconnectedness, we need to
find nonempty disjoint open sets X1 and X2 whose union is X . For subsets, we state this idea as a
proposition.

Proposition 7.2.12. Let (X ,d) be a metric space. A nonempty set S ⊂ X is not connected if and
only if there exist open sets U1 and U2 in X, such that U1∩U2∩S = /0, U1∩S 6= /0, U2∩S 6= /0, and

S =
(
U1∩S

)
∪
(
U2∩S

)
.

Proof. If U j is open in X , then U j∩S is open in S in the subspace topology (with subspace metric).
To see this, note that if BX(x,δ )⊂U j, then as BS(x,δ ) = S∩BX(x,δ ), we have BS(x,δ )⊂U j∩S.
The proof follows by the above discussion.

The proof of the other direction follows by using Exercise 7.2.12 to find U1 and U2 from two
open disjoint subsets of S.

Example 7.2.13: Let S⊂R be such that x< z< y with x,y∈ S and z /∈ S. Claim: S is not connected.
Proof: Notice (

(−∞,z)∩S
)
∪
(
(z,∞)∩S

)
= S. (7.1)

Proposition 7.2.14. A set S⊂ R is connected if and only if it is an interval or a single point.

Proof. Suppose that S is connected (so also nonempty). If S is a single point then we are done.
So suppose that x < y and x,y ∈ S. If z is such that x < z < y, then (−∞,z)∩ S is nonempty and
(z,∞)∩S is nonempty. The two sets are disjoint. As S is connected, we must have they their union
is not S, so z ∈ S.

Suppose that S is bounded, connected, but not a single point. Let α := infS and β := supS
and note that α < β . Suppose α < z < β . As α is the infimum, then there is an x ∈ S such that
α ≤ x < z. Similarly there is a y ∈ S such that β ≥ y > z. We have shown above that z ∈ S, so
(α,β )⊂ S. If w < α , then w /∈ S as α was the infimum, similarly if w > β then w /∈ S. Therefore
the only possibilities for S are (α,β ), [α,β ), (α,β ], [α,β ].

The proof that an unbounded connected S is an interval is left as an exercise.
On the other hand suppose that S is an interval. Suppose that U1 and U2 are open subsets of R,

U1∩S and U2∩S are nonempty, and S =
(
U1∩S

)
∪
(
U2∩S

)
. We will show that U1∩S and U2∩S

contain a common point, so they are not disjoint, and hence S must be connected. Suppose that
there is x ∈U1∩ S and y ∈U2∩ S. We can assume that x < y. As S is an interval [x,y] ⊂ S. Let
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z := inf(U2∩ [x,y]). If z = x, then z∈U1. If z > x, then for any δ > 0 the ball B(z,δ ) = (z−δ ,z+δ )
contains points that are not in U2, and so z /∈U2 as U2 is open. Therefore, z ∈U1. As U1 is open,
B(z,δ ) ⊂U1 for a small enough δ > 0. As z is the infimum of U2∩ [x,y], there must exist some
w ∈U2∩ [x,y] such that w ∈ [z,z+δ )⊂ B(z,δ )⊂U1. Therefore w ∈U1∩U2∩ [x,y]. So U1∩S and
U2∩S are not disjoint and hence S is connected.

Example 7.2.15: In many cases a ball B(x,δ ) is connected. But this is not necessarily true in every
metric space. For a simplest example, take a two point space {a,b} with the discrete metric. Then
B(a,2) = {a,b}, which is not connected as B(a,1) = {a} and B(b,1) = {b} are open and disjoint.

7.2.3 Closure and boundary
Sometime we wish to take a set and throw in everything that we can approach from the set. This
concept is called the closure.

Definition 7.2.16. Let (X ,d) be a metric space and A⊂ X . Then the closure of A is the set

A :=
⋂
{E ⊂ X : E is closed and A⊂ E}.

That is, A is the intersection of all closed sets that contain A.

Proposition 7.2.17. Let (X ,d) be a metric space and A⊂ X. The closure A is closed. Furthermore
if A is closed then A = A.

Proof. First, the closure is the intersection of closed sets, so it is closed. Second, if A is closed, then
take E = A, hence the intersection of all closed sets E containing A must be equal to A.

Example 7.2.18: The closure of (0,1) in R is [0,1]. Proof: Simply notice that if E is closed and
contains (0,1), then E must contain 0 and 1 (why?). Thus [0,1] ⊂ E. But [0,1] is also closed.
Therefore the closure (0,1) = [0,1].

Example 7.2.19: Be careful to notice what ambient metric space you are working with. If X =
(0,∞), then the closure of (0,1) in (0,∞) is (0,1]. Proof: Similarly as above (0,1] is closed in (0,∞)
(why?). Any closed set E that contains (0,1) must contain 1 (why?). Therefore (0,1] ⊂ E, and
hence (0,1) = (0,1] when working in (0,∞).

Let us justify the statement that the closure is everything that we can “approach” from the set.

Proposition 7.2.20. Let (X ,d) be a metric space and A ⊂ X. Then x ∈ A if and only if for every
δ > 0, B(x,δ )∩A 6= /0.

Proof. Let us prove the two contrapositives. Let us show that x /∈ A if and only if there exists a
δ > 0 such that B(x,δ )∩A = /0.
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First suppose that x /∈ A. We know A is closed. Thus there is a δ > 0 such that B(x,δ )⊂ Ac. As
A⊂ A we see that B(x,δ )⊂ Ac and hence B(x,δ )∩A = /0.

On the other hand suppose that there is a δ > 0 such that B(x,δ )∩A = /0. Then B(x,δ )c is a
closed set and we have that A⊂ B(x,δ )c, but x /∈ B(x,δ )c. Thus as A is the intersection of closed
sets containing A, we have x /∈ A.

We can also talk about what is in the interior of a set and what is on the boundary.

Definition 7.2.21. Let (X ,d) be a metric space and A⊂ X , then the interior of A is the set

A◦ := {x ∈ A : there exists a δ > 0 such that B(x,δ )⊂ A}.

The boundary of A is the set
∂A := A\A◦.

Example 7.2.22: Suppose A = (0,1] and X = R. Then it is not hard to see that A = [0,1], A◦ =
(0,1), and ∂A = {0,1}.

Example 7.2.23: Suppose X = {a,b} with the discrete metric. Let A = {a}, then A = A◦ and
∂A = /0.

Proposition 7.2.24. Let (X ,d) be a metric space and A⊂ X. Then A◦ is open and ∂A is closed.

Proof. Given x ∈ A◦ we have δ > 0 such that B(x,δ ) ⊂ A. If z ∈ B(x,δ ), then as open balls are
open, there is an ε > 0 such that B(z,ε)⊂ B(x,δ )⊂ A, so z is in A◦. Therefore B(x,δ )⊂ A◦ and so
A◦ is open.

As A◦ is open, then ∂A = A\A◦ = A∩ (A◦)c is closed.

The boundary is the set of points that are close to both the set and its complement.

Proposition 7.2.25. Let (X ,d) be a metric space and A⊂ X. Then x ∈ ∂A if and only if for every
δ > 0, B(x,δ )∩A and B(x,δ )∩Ac are both nonempty.

Proof. If x /∈ A, then there is some δ > 0 such that B(x,δ )⊂ Ac as A is closed. So B(x,δ ) contains
no points of A.

Now suppose that x ∈ A◦, then there exists a δ > 0 such that B(x,δ )⊂ A, but that means that
B(x,δ ) contains no points of Ac.

Finally suppose that x ∈ A\A◦. Let δ > 0 be arbitrary. By Proposition 7.2.20 B(x,δ ) contains
a point from A. Also, if B(x,δ ) contained no points of Ac, then x would be in A◦. Hence B(x,δ )
contains a points of Ac as well.

We obtain the following immediate corollary about closures of A and Ac. We simply apply
Proposition 7.2.20.

Corollary 7.2.26. Let (X ,d) be a metric space and A⊂ X. Then ∂A = A∩Ac.
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7.2.4 Exercises
Exercise 7.2.1: Prove Proposition 7.2.8. Hint: consider the complements of the sets and apply
Proposition 7.2.6.

Exercise 7.2.2: Finish the proof of Proposition 7.2.9 by proving that C(x,δ ) is closed.

Exercise 7.2.3: Prove Proposition 7.2.10.

Exercise 7.2.4: Suppose that (X ,d) is a nonempty metric space with the discrete topology. Show
that X is connected if and only if it contains exactly one element.

Exercise 7.2.5: Show that if S⊂R is a connected unbounded set, then it is an (unbounded) interval.

Exercise 7.2.6: Show that every open set can be written as a union of closed sets.

Exercise 7.2.7: a) Show that E is closed if and only if ∂E ⊂ E. b) Show that U is open if and only
if ∂U ∩U = /0.

Exercise 7.2.8: a) Show that A is open if and only if A◦ = A. b) Suppose that U is an open set and
U ⊂ A. Show that U ⊂ A◦.

Exercise 7.2.9: Let X be a set and d, d′ be two metrics on X. Suppose that there exists an α > 0
and β > 0 such that αd(x,y)≤ d′(x,y)≤ βd(x,y) for all x,y ∈ X. Show that U is open in (X ,d) if
and only if U is open in (X ,d′). That is, the topologies of (X ,d) and (X ,d′) are the same.

Exercise 7.2.10: Suppose that {Si}, i ∈ N is a collection of connected subsets of a metric space
(X ,d). Suppose that there exists an x ∈ X such that x ∈ Si for all i ∈ N. Show that

⋃
∞
i=1 Si is

connected.

Exercise 7.2.11: Let A be a connected set. a) Is A connected? Prove or find a counterexample.
b) Is A◦ connected? Prove or find a counterexample. Hint: Think of sets in R2.

The definition of open sets in the following exercise is usually called the subspace topology. You are
asked to show that we obtain the same topology by considering the subspace metric.

Exercise 7.2.12: Suppose (X ,d) is a metric space and Y ⊂ X. Show that with the subspace metric
on Y , a set U ⊂ Y is open (in Y ) whenever there exists an open set V ⊂ X such that U =V ∩Y .

Exercise 7.2.13: Let (X ,d) be a metric space. a) For any x ∈ X and δ > 0, show B(x,δ )⊂C(x,δ ).
b) Is it always true that B(x,δ ) =C(x,δ )? Prove or find a counterexample.

Exercise 7.2.14: Let (X ,d) be a metric space and A⊂ X. Show that A◦ =
⋃
{V : V ⊂ A is open}.
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7.3 Sequences and convergence
Note: 1 lecture

7.3.1 Sequences
The notion of a sequence in a metric space is very similar to a sequence of real numbers.

Definition 7.3.1. A sequence in a metric space (X ,d) is a function x : N→ X . As before we write
xn for the nth element in the sequence and use the notation {xn}, or more precisely

{xn}∞
n=1.

A sequence {xn} is bounded if there exists a point p ∈ X and B ∈ R such that

d(p,xn)≤ B for all n ∈ N.

In other words, the sequence {xn} is bounded whenever the set {xn : n ∈ N} is bounded.
If {n j}∞

j=1 is a sequence of natural numbers such that n j+1 > n j for all j then the sequence
{xn j}∞

j=1 is said to be a subsequence of {xn}.
Similarly we also define convergence. Again, we will be cheating a little bit and we will use the

definite article in front of the word limit before we prove that the limit is unique.

Definition 7.3.2. A sequence {xn} in a metric space (X ,d) is said to converge to a point p ∈ X , if
for every ε > 0, there exists an M ∈ N such that d(xn, p)< ε for all n≥M. The point p is said to
be the limit of {xn}. We write

lim
n→∞

xn := p.

A sequence that converges is said to be convergent. Otherwise, the sequence is said to be
divergent.

Let us prove that the limit is unique. Note that the proof is almost identical to the proof of
the same fact for sequences of real numbers. In fact many results we know for sequences of real
numbers can be proved in the more general settings of metric spaces. We must replace |x− y| with
d(x,y) in the proofs and apply the triangle inequality correctly.

Proposition 7.3.3. A convergent sequence in a metric space has a unique limit.

Proof. Suppose that the sequence {xn} has the limit x and the limit y. Take an arbitrary ε > 0. From
the definition we find an M1 such that for all n≥M1, d(xn,x)< ε/2. Similarly we find an M2 such
that for all n≥M2 we have d(xn,y)< ε/2. Now take an n such that n≥M1 and also n≥M2

d(y,x)≤ d(y,xn)+d(xn,x)

<
ε

2
+

ε

2
= ε.

As d(y,x)< ε for all ε > 0, then d(x,y) = 0 and y = x. Hence the limit (if it exists) is unique.
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The proofs of the following propositions are left as exercises.

Proposition 7.3.4. A convergent sequence in a metric space is bounded.

Proposition 7.3.5. A sequence {xn} in a metric space (X ,d) converges to p ∈ X if and only if there
exists a sequence {an} of real numbers such that

d(xn, p)≤ an for all n ∈ N,

and
lim
n→∞

an = 0.

7.3.2 Convergence in euclidean space
It is useful to note what convergence means in the euclidean space Rn.

Proposition 7.3.6. Let {x j}∞
j=1 be a sequence in Rn, where we write x j =

(
x j

1,x
j
2, . . . ,x

j
n
)
∈ Rn.

Then {x j}∞
j=1 converges if and only if {x j

k}
∞
j=1 converges for every k, in which case

lim
j→∞

x j =
(

lim
j→∞

x j
1, lim

j→∞
x j

2, . . . , lim
j→∞

x j
n

)
.

Proof. For R= R1 the result is immediate. So let n > 1.
Let {x j}∞

j=1 be a convergent sequence in Rn, where we write x j =
(
x j

1,x
j
2, . . . ,x

j
n
)
∈ Rn. Let

x = (x1,x2, . . . ,xn) ∈Rn be the limit. Given ε > 0, there exists an M such that for all j≥M we have

d(x,x j)< ε.

Fix some k = 1,2, . . . ,n. For j ≥M we have

∣∣xk− x j
k

∣∣=√(xk− x j
k

)2
≤

√
n

∑
`=1

(
x`− x j

`

)2
= d(x,x j)< ε. (7.2)

Hence the sequence {x j
k}

∞
j=1 converges to xk.

For the other direction suppose that {x j
k}

∞
j=1 converges to xk for every k = 1,2, . . . ,n. Hence,

given ε > 0, pick an M, such that if j ≥M then
∣∣xk− x j

k

∣∣< ε/
√

n for all k = 1,2, . . . ,n. Then

d(x,x j) =

√
n

∑
k=1

(
xk− x j

k

)2
<

√√√√ n

∑
k=1

(
ε√
n

)2

=

√
n

∑
k=1

ε2

n
= ε.

The sequence {x j} converges to x ∈ Rn and we are done.
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7.3.3 Convergence and topology
The topology, that is, the set of open sets of a space encodes which sequences converge.

Proposition 7.3.7. Let (X ,d) be a metric space and {xn} a sequence in X. Then {xn} converges
to x ∈ X if and only if for every open neighborhood U of x, there exists an M ∈ N such that for all
n≥M we have xn ∈U.

Proof. First suppose that {xn} converges. Let U be an open neighborhood of x, then there exists an
ε > 0 such that B(x,ε)⊂U . As the sequence converges, find an M ∈ N such that for all n≥M we
have d(x,xn)< ε or in other words xn ∈ B(x,ε)⊂U .

Let us prove the other direction. Given ε > 0 let U := B(x,ε) be the neighborhood of x. Then
there is an M ∈N such that for n≥M we have xn ∈U = B(x,ε) or in other words, d(x,xn)< ε .

A set is closed when it contains the limits of its convergent sequences.

Proposition 7.3.8. Let (X ,d) be a metric space, E ⊂ X a closed set and {xn} a sequence in E that
converges to some x ∈ X. Then x ∈ E.

Proof. Let us prove the contrapositive. Suppose {xn} is a sequence in X that converges to x ∈ Ec.
As Ec is open, Proposition 7.3.7 says there is an M such that for all n≥M, xn ∈ Ec. So {xn} is not
a sequence in E.

When we take a closure of a set A, we really throw in precisely those points that are limits of
sequences in A.

Proposition 7.3.9. Let (X ,d) be a metric space and A⊂ X. If x ∈ A, then there exists a sequence
{xn} of elements in A such that lim xn = x.

Proof. Let x∈A. We know by Proposition 7.2.20 that given 1/n, there exists a point xn ∈B(x,1/n)∩A.
As d(x,xn)< 1/n, we have that lim xn = x.

7.3.4 Exercises
Exercise 7.3.1: Let (X ,d) be a metric space and let A⊂ X. Let E be the set of all x ∈ X such that
there exists a sequence {xn} in A that converges to x. Show that E = A.

Exercise 7.3.2: a) Show that d(x,y) := min{1, |x− y|} defines a metric on R. b) Show that a
sequence converges in (R,d) if and only if it converges in the standard metric. c) Find a bounded
sequence in (R,d) that contains no convergent subsequence.

Exercise 7.3.3: Prove Proposition 7.3.4

Exercise 7.3.4: Prove Proposition 7.3.5
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Exercise 7.3.5: Suppose that {xn}∞
n=1 converges to x. Suppose that f : N→ N is a one-to-one and

onto function. Show that {x f (n)}∞
n=1 converges to x.

Exercise 7.3.6: If (X ,d) is a metric space where d is the discrete metric. Suppose that {xn} is a
convergent sequence in X. Show that there exists a K ∈ N such that for all n≥ K we have xn = xK .

Exercise 7.3.7: A set S⊂ X is said to be dense in X if for every x ∈ X, there exists a sequence {xn}
in S that converges to x. Prove that Rn contains a countable dense subset.

Exercise 7.3.8 (Tricky): Suppose {Un}∞
n=1 be a decreasing (Un+1 ⊂Un for all n) sequence of open

sets in a metric space (X ,d) such that
⋂

∞
n=1Un = {p} for some p ∈ X. Suppose that {xn} is a

sequence of points in X such that xn ∈Un. Does {xn} necessarily converge to p? Prove or construct
a counterexample.

Exercise 7.3.9: Let E ⊂ X be closed and let {xn} be a sequence in X converging to p ∈ X. Suppose
xn ∈ E for infinitely many n ∈ N. Show p ∈ E.

Exercise 7.3.10: Take R∗ = {−∞}∪R∪{∞} be the extended reals. Define d(x,y) := |x−y|
1+|x−y| if

x,y ∈ R, define d(∞,x) := d(−∞,x) = 1 for all x ∈ R, and let d(∞,−∞) := 2. a) Show that (R∗,d)
is a metric space. b) Suppose that {xn} is a sequence of real numbers such that for xn ≥ n for all n.
Show that limxn = ∞ in (R∗,d).

Exercise 7.3.11: Suppose that {Vn}∞
n=1 is a collection of open sets in (X ,d) such that Vn+1 ⊃Vn.

Let {xn} be a sequence such that xn ∈Vn+1 \Vn and suppose that {xn} converges to p ∈ X. Show
that p ∈ ∂V where V =

⋃
∞
n=1Vn.



7.4. COMPLETENESS AND COMPACTNESS 19

7.4 Completeness and compactness

Note: 2 lectures

7.4.1 Cauchy sequences and completeness

Just like with sequences of real numbers we can define Cauchy sequences.

Definition 7.4.1. Let (X ,d) be a metric space. A sequence {xn} in X is a Cauchy sequence if for
every ε > 0 there exists an M ∈ N such that for all n≥M and all k ≥M we have

d(xn,xk)< ε.

The definition is again simply a translation of the concept from the real numbers to metric
spaces. So a sequence of real numbers is Cauchy in the sense of chapter 2 if and only if it is Cauchy
in the sense above, provided we equip the real numbers with the standard metric d(x,y) = |x− y|.

Definition 7.4.2. Let (X ,d) be a metric space. We say that X is complete or Cauchy-complete if
every Cauchy sequence {xn} in X converges to an x ∈ X .

Proposition 7.4.3. The space Rn with the standard metric is a complete metric space.

Proof. For R= R1 this was proved in chapter 2.
Take n > 1. Let {x j}∞

j=1 be a Cauchy sequence in Rn, where we write x j =
(
x j

1,x
j
2, . . . ,x

j
n
)
∈Rn.

As the sequence is Cauchy, given ε > 0, there exists an M such that for all i, j ≥M we have

d(xi,x j)< ε.

Fix some k = 1,2, . . . ,n, for i, j ≥M we have

∣∣xi
k− x j

k

∣∣=√(xi
k− x j

k

)2
≤

√
n

∑
`=1

(
xi
`− x j

`

)2
= d(xi,x j)< ε. (7.3)

Hence the sequence {x j
k}

∞
j=1 is Cauchy. As R is complete the sequence converges; there exists an

xk ∈ R such that xk = lim j→∞ x j
k.

Write x = (x1,x2, . . . ,xn) ∈Rn. By Proposition 7.3.6 we have that {x j} converges to x ∈Rn and
hence Rn is complete.
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7.4.2 Compactness
Definition 7.4.4. Let (X ,d) be a metric space and K ⊂ X . The set K is set to be compact if for any
collection of open sets {Uλ}λ∈I such that

K ⊂
⋃
λ∈I

Uλ ,

there exists a finite subset {λ1,λ2, . . . ,λk} ⊂ I such that

K ⊂
k⋃

j=1

Uλ j .

A collection of open sets {Uλ}λ∈I as above is said to be a open cover of K. So a way to say that
K is compact is to say that every open cover of K has a finite subcover.

Proposition 7.4.5. Let (X ,d) be a metric space. A compact set K ⊂ X is closed and bounded.

Proof. First, we prove that a compact set is bounded. Fix p ∈ X . We have the open cover

K ⊂
∞⋃

n=1

B(p,n) = X .

If K is compact, then there exists some set of indices n1 < n2 < .. . < nk such that

K ⊂
k⋃

j=1

B(p,n j) = B(p,nk).

As K is contained in a ball, K is bounded.
Next, we show a set that is not closed is not compact. Suppose that K 6= K, that is, there is a

point x ∈ K \K. If y 6= x, then for n with 1/n < d(x,y) we have y /∈C(x,1/n). Furthermore x /∈ K, so

K ⊂
∞⋃

n=1

C(x,1/n)c.

As a closed ball is closed, C(x,1/n)c is open, and so we have an open cover. If we take any finite
collection of indices n1 < n2 < .. . < nk, then

k⋃
j=1

C(x,1/n j)
c =C(x,1/nk)

c

As x is in the closure, we have C(x,1/nk)∩K 6= /0, so there is no finite subcover and K is not
compact.
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We prove below that in finite dimensional euclidean space every closed bounded set is compact.
So closed bounded sets of Rn are examples of compact sets. It is not true that in every metric space,
closed and bounded is equivalent to compact. There are many metric spaces where closed and
bounded is not enough to give compactness, see for example Exercise 7.4.8.

A useful property of compact sets in a metric space is that every sequence has a convergent
subsequence. Such sets are sometimes called sequentially compact. Let us prove that in the context
of metric spaces, a set is compact if and only if it is sequentially compact.

Theorem 7.4.6. Let (X ,d) be a metric space. Then K ⊂ X is a compact set if and only if every
sequence in K has a subsequence converging to a point in K.

Proof. Let K ⊂ X be a set and {xn} a sequence in K. Suppose that for each x ∈ K, there is a ball
B(x,αx) for some αx > 0 such that xn ∈ B(x,αx) for only finitely many n ∈ N. Then

K ⊂
⋃

x∈K

B(x,αx).

Any finite collection of these balls is going to contain only finitely many xn. Thus for any finite
collection of such balls there is an xn ∈ K that is not in the union. Therefore, K is not compact.

So if K is compact, then there exists an x ∈ K such that for any δ > 0, B(x,δ ) contains xk
for infinitely many k ∈ N. B(x,1) contains some xk so let n1 := k. If n j−1 is defined, then there
must exist a k > n j−1 such that xk ∈ B(x,1/j), so define n j := k. Notice that d(x,xn j) < 1/j. By
Proposition 7.3.5, lim xn j = x.

For the other direction, suppose that every sequence in K has a subsequence converging in K.
Take an open cover {Uλ}λ∈I of K. For every x ∈ K, define

δ (x) := sup{δ ∈ (0,1) : B(x,δ )⊂Uλ for some λ ∈ I}.

As {Uλ} is an open cover of K, δ (x)> 0 for each x ∈ K. By construction, for any positive ε < δ (x)
there must exist a λ ∈ I such that B(x,ε)⊂Uλ .

Pick a λ0 ∈ I and look at Uλ0 . If K ⊂ Uλ0 , we stop as we have found a finite subcover.
Otherwise, there must be a point x1 ∈ K \Uλ0 . There must exist some λ1 ∈ I such that x1 ∈Uλ1

and in fact B
(
x1,

1
2δ (x1)

)
⊂ Uλ1 . We work inductively. Suppose that λn−1 is defined. Either

Uλ0 ∪Uλ1 ∪ ·· · ∪Uλn−1 is a finite cover of K, in which case we stop, or there must be a point
xn ∈ K \

(
Uλ1 ∪Uλ2 ∪·· ·∪Uλn−1

)
. In this case, there must be some λn ∈ I such that xn ∈Uλn , and

in fact
B
(
xn,

1
2δ (xn)

)
⊂Uλn.

So either we obtained a finite subcover or we obtained an infinite sequence {xn} as above. For
contradiction suppose that there was no finite subcover and we have the sequence {xn}. Then
there is a subsequence {xnk} that converges, that is, x = lim xnk ∈ K. We take λ ∈ I such that
B
(
x, 1

2δ (x)
)
⊂Uλ . As the subsequence converges, there is a k such that d(xnk ,x)<

1
8δ (x). By the

triangle inequality, B
(
xnk ,

3
8δ (x)

)
⊂ B

(
x, 1

2δ (x)
)
⊂Uλ . So 3

8δ (x)< δ (xnk), which implies

B
(
xnk ,

3
16δ (x)

)
⊂ B

(
xnk ,

1
2δ (xnk)

)
⊂Uλnk

.
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As 1/8 < 3/16, we have x ∈ B
(
xnk ,

3
16δ (x)

)
, or x ∈Uλnk

. As limxn j = x, for all j large enough we
have xn j ∈Uλnk

by Proposition 7.3.7. Let us fix one of those j such that j > k. But by construction
xn j /∈Uλnk

if j > k, which is a contradiction.

Example 7.4.7: By the Bolzano-Weierstrass theorem for sequences (Theorem ??) we have that
any bounded sequence has a convergent subsequence. Therefore any sequence in a closed interval
[a,b]⊂R has a convergent subsequence. The limit must also be in [a,b] as limits preserve non-strict
inequalities. Hence a closed bounded interval [a,b]⊂ R is compact.

Proposition 7.4.8. Let (X ,d) be a metric space and let K ⊂ X be compact. Suppose that E ⊂ K is
a closed set, then E is compact.

Proof. Let {xn} be a sequence in E. It is also a sequence in K. Therefore it has a convergent
subsequence {xn j} that converges to x ∈ K. As E is closed the limit of a sequence in E is also in E
and so x ∈ E. Thus E must be compact.

Theorem 7.4.9 (Heine-Borel∗). A closed bounded subset K ⊂ Rn is compact.

Proof. For R= R1 if K ⊂ R is closed and bounded, then any sequence {xn} in K is bounded, so it
has a convergent subsequence by Bolzano-Weierstrass theorem for sequences (Theorem ??). As K
is closed, the limit of the subsequence must be an element of K. So K is compact.

Let us carry out the proof for n = 2 and leave arbitrary n as an exercise.
As K is bounded, there exists a set B = [a,b]× [c,d]⊂ R2 such that K ⊂ B. If we can show that

B is compact, then K, being a closed subset of a compact B, is also compact.
Let {(xk,yk)}∞

k=1 be a sequence in B. That is, a≤ xk ≤ b and c≤ yk ≤ d for all k. A bounded
sequence has a convergent subsequence so there is a subsequence {xk j}∞

j=1 that is convergent. The
subsequence {yk j}∞

j=1 is also a bounded sequence so there exists a subsequence {yk ji
}∞

i=1 that is
convergent. A subsequence of a convergent sequence is still convergent, so {xk ji

}∞
i=1 is convergent.

Let
x := lim

i→∞
xk ji

and y := lim
i→∞

yk ji
.

By Proposition 7.3.6,
{
(xk ji

,yk ji
)
}∞

i=1 converges to (x,y) as i goes to ∞. Furthermore, as a≤ xk ≤ b
and c≤ yk ≤ d for all k, we know that (x,y) ∈ B.

7.4.3 Exercises
Exercise 7.4.1: Let (X ,d) be a metric space and A a finite subset of X. Show that A is compact.

Exercise 7.4.2: Let A = {1/n : n ∈ N} ⊂ R. a) Show that A is not compact directly using the
definition. b) Show that A∪{0} is compact directly using the definition.

∗Named after the German mathematician Heinrich Eduard Heine (1821–1881), and the French mathematician Félix
Édouard Justin Émile Borel (1871–1956).
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Exercise 7.4.3: Let (X ,d) be a metric space with the discrete metric. a) Prove that X is complete.
b) Prove that X is compact if and only if X is a finite set.

Exercise 7.4.4: a) Show that the union of finitely many compact sets is a compact set. b) Find an
example where the union of infinitely many compact sets is not compact.

Exercise 7.4.5: Prove Theorem 7.4.9 for arbitrary dimension. Hint: The trick is to use the correct
notation.

Exercise 7.4.6: Show that a compact set K is a complete metric space.

Exercise 7.4.7: Let C([a,b]) be the metric space as in Example 7.1.7. Show that C([a,b]) is a
complete metric space.

Exercise 7.4.8 (Challenging): Let C([0,1]) be the metric space of Example 7.1.7. Let 0 denote the
zero function. Then show that the closed ball C(0,1) is not compact (even though it is closed and
bounded). Hints: Construct a sequence of distinct continuous functions { fn} such that d( fn,0) = 1
and d( fn, fk) = 1 for all n 6= k. Show that the set { fn : n ∈ N} ⊂C(0,1) is closed but not compact.
See chapter 6 for inspiration.

Exercise 7.4.9 (Challenging): Show that there exists a metric on R that makes R into a compact
set.

Exercise 7.4.10: Suppose that (X ,d) is complete and suppose we have a countably infinite collec-
tion of nonempty compact sets E1 ⊃ E2 ⊃ E3 ⊃ ·· · then prove

⋂
∞
j=1 E j 6= /0.

Exercise 7.4.11 (Challenging): Let C([0,1]) be the metric space of Example 7.1.7. Let K be the set
of f ∈C([0,1]) such that f is equal to a quadratic polynomial, i.e. f (x) = a+bx+ cx2, and such
that | f (x)| ≤ 1 for all x ∈ [0,1], that is f ∈C(0,1). Show that K is compact.
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7.5 Continuous functions
Note: 1 lecture

7.5.1 Continuity
Definition 7.5.1. Let (X ,dX) and (Y,dY ) be metric spaces and c ∈ X . Then f : X → Y is contin-
uous at c if for every ε > 0 there is a δ > 0 such that whenever x ∈ X and dX(x,c) < δ , then
dY
(

f (x), f (c)
)
< ε .

When f : X → Y is continuous at all c ∈ X , then we simply say that f is a continuous function.

The definition agrees with the definition from chapter 3 when f is a real-valued function on the
real line, when we take the standard metric on R.

Proposition 7.5.2. Let (X ,dX) and (Y,dY ) be metric spaces and c ∈ X. Then f : X → Y is continu-
ous at c if and only if for every sequence {xn} in X converging to c, the sequence { f (xn)} converges
to f (c).

Proof. Suppose that f is continuous at c. Let {xn} be a sequence in X converging to c. Given ε > 0,
there is a δ > 0 such that d(x,c)< δ implies d

(
f (x), f (c)

)
< ε . So take M such that for all n≥M,

we have d(xn,c)< δ , then d
(

f (xn), f (c)
)
< ε . Hence { f (xn)} converges to f (c).

On the other hand suppose that f is not continuous at c. Then there exists an ε > 0, such that
for every 1/n there exists an xn ∈ X , d(xn,c)< 1/n such that d

(
f (xn), f (c)

)
≥ ε . Therefore { f (xn)}

does not converge to f (c).

7.5.2 Compactness and continuity
Continuous maps do not map closed sets to closed sets. For example, f : (0,1)→ R defined by
f (x) := x takes the set (0,1), which is closed in (0,1), to the set (0,1), which is not closed in R.
On the other hand continuous maps do preserve compact sets.

Lemma 7.5.3. Let (X ,dX) and (Y,dY ) be metric spaces, and f : X → Y is a continuous function. If
K ⊂ X is a compact set, then f (K) is a compact set.

Proof. Let { f (xn)}∞
n=1 be a sequence in f (K), then {xn}∞

n=1 is a sequence in K. The set K is
compact and therefore has a subsequence {xni}∞

i=1 that converges to some x ∈ K. By continuity,

lim
i→∞

f (xni) = f (x) ∈ f (K).

Therefore every sequence in f (K) has a subsequence convergent to a point in f (K), so f (K) is
compact by Theorem 7.4.6.
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As before, f : X → R achieves an absolute minimum at c ∈ X if

f (x)≥ f (c) for all x ∈ X .

On the other hand, f achieves an absolute maximum at c ∈ X if

f (x)≤ f (c) for all x ∈ X .

Theorem 7.5.4. Let (X ,d) and be a compact metric space, and f : X → R is a continuous function.
Then f (X) is compact and in fact f achieves an absolute minimum and an absolute maximum on X.

Proof. As X is compact and f is continuous, we have that f (X)⊂ R is compact. Hence f (X) is
closed and bounded. In particular, sup f (X) ∈ f (X) and inf f (X) ∈ f (X). That is because both the
sup and inf can be achieved by sequences in f (X) and f (X) is closed. Therefore there is some
x ∈ X such that f (x) = sup f (X) and some y ∈ X such that f (y) = inf f (X).

7.5.3 Continuity and topology
Let us see how to define continuity just in the terms of topology, that is, the open sets. We have
already seen that topology determines which sequences converge, and so it is no wonder that the
topology also determines continuity of functions.

Lemma 7.5.5. Let (X ,dX) and (Y,dY ) be metric spaces. A function f : X → Y is continuous at
c ∈ X if and only if for every open neighbourhood U of f (c) in Y , the set f−1(U) contains an open
neighbourhood of c in X.

Proof. Suppose that f is continuous at c. Let U be an open neighbourhood of f (c) in Y , then
BY
(

f (c),ε
)
⊂U for some ε > 0. As f is continuous, then there exists a δ > 0 such that whenever

x is such that dX(x,c)< δ , then dY
(

f (x), f (c)
)
< ε . In other words,

BX(c,δ )⊂ f−1(BY
(

f (c),ε
))
.

and BX(c,δ ) is an open neighbourhood of c.
For the other direction, let ε > 0 be given. If f−1(BY

(
f (c),ε

))
contains an open neighbourhood,

it contains a ball, that is there is some δ > 0 such that

BX(c,δ )⊂ f−1(BY
(

f (c),ε
))
.

That means precisely that if dX(x,c)< δ then dY
(

f (x), f (c)
)
< ε and so f is continuous at c.

Theorem 7.5.6. Let (X ,dX) and (Y,dY ) be metric spaces. A function f : X → Y is continuous if
and only if for every open U ⊂ Y , f−1(U) is open in X.

The proof follows from Lemma 7.5.5 and is left as an exercise.
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7.5.4 Exercises
Exercise 7.5.1: Consider N ⊂ R with the standard metric. Let (X ,d) be a metric space and
f : X → N a continuous function. a) Prove that if X is connected, then f is constant (the range of f
is a single value). b) Find an example where X is disconnected and f is not constant.

Exercise 7.5.2: Let f : R2→R be defined by f (0,0) := 0, and f (x,y) := xy
x2+y2 if (x,y) 6= (0,0). a)

Show that for any fixed x, the function that takes y to f (x,y) is continuous. Similarly for any fixed y,
the function that takes x to f (x,y) is continuous. b) Show that f is not continuous.

Exercise 7.5.3: Suppose that f : X → Y is continuous for metric spaces (X ,dX) and (Y,dY ). Let
A⊂ X. a) Show that f (A)⊂ f (A). b) Show that the subset can be proper.

Exercise 7.5.4: Prove Theorem 7.5.6. Hint: Use Lemma 7.5.5.

Exercise 7.5.5: Suppose that f : X → Y is continuous for metric spaces (X ,dX) and (Y,dY ). Show
that if X is connected, then f (X) is connected.

Exercise 7.5.6: Prove the following version of the intermediate value theorem. Let (X ,d) be a
connected metric space and f : X → R a continuous function. Suppose that there exist x0,x1 ∈ X
and y ∈ R such that f (x0) < y < f (x1). Then prove that there exists a z ∈ X such that f (z) = y.
Hint: see Exercise 7.5.5.

Exercise 7.5.7: A continuous function f : X → Y for metric spaces (X ,dX) and (Y,dY ) is said to
be proper if for every compact set K ⊂ Y , the set f−1(K) is compact. Suppose that a continuous
f : (0,1)→ (0,1) is proper and {xn} is a sequence in (0,1) that converges to 0. Show that { f (xn)}
has no subsequence that converges in (0,1).

Exercise 7.5.8: Let (X ,dX) and (Y,dY ) be metric space and f : X → Y be a one to one and onto
continuous function. Suppose that X is compact. Prove that the inverse f−1 : Y → X is continuous.

Exercise 7.5.9: Take the metric space of continuous functions C([0,1]). Let k : [0,1]× [0,1]→ R
be a continuous function. Given f ∈C([0,1]) define

ϕ f (x) :=
∫ 1

0
k(x,y) f (y) dy.

a) Show that T ( f ) := ϕ f defines a function T : C([0,1])→C([0,1]). b) Show that T is continuous.
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7.6 Fixed point theorem and Picard’s theorem again
Note: 1–1.5 lecture (optional)

In this section we prove a fixed point theorem for contraction mappings. As an application we
prove Picard’s theorem. We have proved Picard’s theorem without metric spaces in §??. The proof
we present here is similar, but the proof goes a lot smoother by using metric space concepts and the
fixed point theorem. For more examples on using Picard’s theorem see §??.

Definition 7.6.1. Let (X ,d) and (X ′,d′) be metric spaces. F : X → X ′ is said to be a contraction
(or a contractive map) if it is a k-Lipschitz map for some k < 1, i.e. if there exists a k < 1 such that

d′
(
F(x),F(y)

)
≤ kd(x,y) for all x,y ∈ X .

If T : X → X is a map, x ∈ X is called a fixed point if T (x) = x.

Theorem 7.6.2 (Contraction mapping principle or Fixed point theorem). Let (X ,d) be a nonempty
complete metric space and T : X → X is a contraction. Then T has a fixed point.

Note that the words complete and contraction are necessary. See Exercise 7.6.6.

Proof. Pick any x0 ∈ X . Define a sequence {xn} by xn+1 := T (xn).

d(xn+1,xn) = d
(
T (xn),T (xn−1)

)
≤ kd(xn,xn−1)≤ ·· · ≤ knd(x1,x0).

So let m≥ n

d(xm,xn)≤
m−1

∑
i=n

d(xi+1,xi)

≤
m−1

∑
i=n

kid(x1,x0)

= knd(x1,x0)
m−n−1

∑
i=0

ki

≤ knd(x1,x0)
∞

∑
i=0

ki = knd(x1,x0)
1

1− k
.

In particular the sequence is Cauchy. Since X is complete we let x := limn→∞ xn and claim that x is
our unique fixed point.

Fixed point? Note that T is continuous because it is a contraction. Hence

T (x) = limT (xn) = limxn+1 = x.

Unique? Let y be a fixed point.

d(x,y) = d
(
T (x),T (y)

)
= kd(x,y).

As k < 1 this means that d(x,y) = 0 and hence x = y. The theorem is proved.
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Note that the proof is constructive. Not only do we know that a unique fixed point exists. We
also know how to find it. Let us use the theorem to prove the classical Picard theorem on the
existence and uniqueness of ordinary differential equations.

Consider the equation
dx
dt

= F(t,x).

Given some t0,x0 we are looking for a function f (t) such that f ′(t0) = x0 and such that

f ′(t) = F
(
t, f (t)

)
.

There are some subtle issues. Look at the equation x′ = x2, x(0) = 1. Then x(t) = 1
1−t is a solution.

While F is a reasonably “nice” function and in particular exists for all x and t, the solution “blows
up” at t = 1.

Theorem 7.6.3 (Picard’s theorem on existence and uniqueness). Let I,J ⊂ R be compact intervals
and let I0 and J0 be their interiors. Suppose F : I×J→R is continuous and Lipschitz in the second
variable, that is, there exists L ∈ R such that

|F(t,x)−F(t,y)| ≤ L |x− y| for all x,y ∈ J, t ∈ I.

Let (t0,x0) ∈ I0× J0. Then there exists h > 0 and a unique differentiable f : [t0− h, t0 + h]→ R,
such that f ′(t) = F

(
t, f (t)

)
and f (t0) = x0.

Proof. Without loss of generality assume t0 = 0. Let M := sup{|F(t,x)| : (t,x) ∈ I× J}. As I× J
is compact, M < ∞. Pick α > 0 such that [−α,α]⊂ I and [x0−α,x0 +α]⊂ J. Let

h := min
{

α,
α

M+Lα

}
.

Note [−h,h]⊂ I. Define the set

Y := { f ∈C([−h,h]) : f ([−h,h])⊂ [x0−α,x0 +α]}.

Here C([−h,h]) is equipped with the standard metric d( f ,g) := sup{| f (x)−g(x)| : x ∈ [−h,h]}.
With this metric we have shown in an exercise that C([−h,h]) is a complete metric space.

Exercise 7.6.1: Show that Y ⊂ C([−h,h]) is closed.

Define a mapping T : Y →C([−h,h]) by

T ( f )(t) := x0 +
∫ t

0
F
(
s, f (s)

)
ds.

Exercise 7.6.2: Show that T really maps into C([−h,h]).
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Let f ∈ Y and |t| ≤ h. As F is bounded by M we have

|T ( f )(t)− x0|=
∣∣∣∣∫ t

0
F
(
s, f (s)

)
ds
∣∣∣∣

≤ |t|M ≤ hM ≤ α.

Therefore, T (Y )⊂ Y . We can thus consider T as a mapping of Y to Y .
We claim T is a contraction. First, for t ∈ [−h,h] and f ,g ∈ Y we have∣∣F(t, f (t)

)
−F

(
t,g(t)

)∣∣≤ L | f (t)−g(t)| ≤ Ld( f ,g).

Therefore,

|T ( f )(t)−T (g)(t)|=
∣∣∣∣∫ t

0
F
(
s, f (s)

)
−F

(
s,g(s)

)
ds
∣∣∣∣

≤ |t|Ld( f ,g)
≤ hLd( f ,g)

≤ Lα

M+Lα
d( f ,g).

We can assume M > 0 (why?). Then Lα

M+Lα
< 1 and the claim is proved.

Now apply the fixed point theorem (Theorem 7.6.2) to find a unique f ∈ Y such that T ( f ) = f ,
that is,

f (t) = x0 +
∫ t

0
F
(
s, f (s)

)
ds.

By the fundamental theorem of calculus, f is differentiable and f ′(t) = F
(
t, f (t)

)
.

Exercise 7.6.3: We have shown that f is the unique function in Y . Why is it the unique continuous
function f : [−h,h]→ J that solves T ( f ) = f ? Hint: Look at the last estimate in the proof.

7.6.1 Exercises
Exercise 7.6.4: Suppose X = X ′ = R with the standard metric. Let 0 < k < 1, b ∈ R. a) Show that
the map F(x) = kx+b is a contraction. b) Find the fixed point and show directly that it is unique.

Exercise 7.6.5: Suppose X = X ′= [0,1/4] with the standard metric. a) Show that the map F(x) = x2

is a contraction, and find the best (largest) k that works. b) Find the fixed point and show directly
that it is unique.

Exercise 7.6.6: a) Find an example of a contraction of non-complete metric space with no fixed
point. b) Find a 1-Lipschitz map of a complete metric space with no fixed point.

Exercise 7.6.7: Consider x′ = x2, x(0) = 1. Start with f0(t) = 1. Find a few iterates (at least up to
f2). Prove that the limit of fn is 1

1−t .
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