
Power Series

Let us talk about analytic functions. That is functions of a complex z that have a power series,

f(z) =
∞∑
k=0

ckz
k,

or perhaps for some fixed a ∈ C
∞∑
k=0

ck(z − a)k.

We will sometimes let z be complex and sometimes we will talk about real power series, in which case
we will use x. I will always mention which case we are working with.

An analytic function can have a different expansion around different points. Also the convergence does
not automatically happen on the entire domain of the function. For example, we know that if |z| < 1, then

1

1− z
=
∞∑
k=0

zk.

While the left hand side exists on all of z 6= 1, the right hand side happens to converge only if |z| < 1.

Before we delve into power series, let us prove the root test which we haven’t done last semester.

Theorem: (Root test) Let
∑
ak be a series of complex numbers and write

α = lim sup
k→∞

k
√
|ak|

Then if α < 1, the series converges absolutely. If α > 1 then the series diverges.

The test is similar to the ratio test (we have used limit rather than limsup for the ratio test before, but
the proof with limsup is also not difficult). If α = 1 we get no information.

Proof. Obviously α ≥ 0. Suppose that α < 1, then there must be some β with α < β < 1. Since β−α > 0,
then by definition of limsup, there must exist some N such that for all n ≥ N we have

n
√
|an| < β.

In other words |an| < βn and
∑
βn converges as 0 < β < 1. A series converges if and only if its tail

converges and we have by comparison test that
∞∑
k=N

|an|

converges. Therefore
∑
|an| converges and so

∑
an converges absolutely.

Next suppose that α > 1. We note that this means that for infinitely many n we have n
√
|an| > 1 and

hence |an| > 1. As for a convergent series we have to have an → 0, the series
∑
an cannot converge. �

Using the root test we can find the so-called radius of convergence of a power series.

Theorem 3.39 + (part of 8.1): Let ∑
ck(z − a)k

be a power series. Let

α = lim sup
k→∞

k
√
|ck|

If α = 0 let R = ∞, if α = ∞ let R = 0, and otherwise let R = 1/α. Then the power series converges
absolutely if |z − a| < R and diverges when |z − a| > R.

Furthermore, if R > 0 then the series converges uniformly on B(a, r) for any positive r < R.

1



2

Proof. Write

lim sup
k→∞

k

√∣∣∣ck(z − a)k
∣∣∣ = |z − a| lim sup

k→∞

k
√
|ck| = α |z − a|

Note that this calculation makes sense even if α = ∞ when when we decree that ∞x = ∞ if x > 0. We
assume that |z − a| 6= 0. Since the series of course always converges if z = a.

Now the series converges absolutely if α |z − a| < 1 and diverges if α |z − a| > 1. We notice that this is
precisely the conclusion of the theorem.

For the “Furthermore” part of the theorem, suppose that R > 0 and pick a positive r < R. Then if
z ∈ B(a, r) then |z − a| < r then ∣∣∣ck(z − a)k

∣∣∣ ≤ |ck| rk
Notice that since the series converges absolutely at any point in B(a,R) the series

∑
|ck| rk must converge,

it is therefore Cauchy. As for any m < n we have

n∑
k=m+1

∣∣∣ck(z − a)k
∣∣∣ ≤ n∑

k=m+1

|ck| rk

the original series is uniformly Cauchy on B(a, r) and hence uniformly convergent on B(a, r). �

The number R is called the radius of convergence. It gives us a disk around a where the series converges.
We say that the series is convergent if R > 0, in other words, if the series converges for some point not
equal to a.

Note that it is trivial to see that if
∑
ck(z − a)k converges for some z, then∑

ck(w − a)k

must converge absolutely whenever |w − a| < |z − a|. This follows from the computation of the radius of
convergence. Conversely if the series diverges at z, then it must diverge at w whenever |w − a| > |z − a|.

This means that to show that the radius of convergence is at least some number, we simply need to
show convergence at some point by any method we know.

Examples:
∞∑
k=0

zk

has radius of convergence 1.

∞∑
k=0

1

nn
zk

has radius of convergence ∞. Similarly
∞∑
k=0

1

n!
zk

has radius of convergence ∞. Although in this case it is easier to apply the ratio test to the series to note
that the series converges absolutely at all z ∈ C.

On the other hand,
∞∑
k=0

nnzk

has radius of convergence 0, so it converges only if z = 0.
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Do note the difference between 1
1−z and its power series. Let us expand 1

1−z as power series around any

point a 6= 1. Let c = 1
1−a , then we can write

1

1− z
=

c

1− c(z − a)
= c

∞∑
k=0

ck(z − a)k =
∞∑
k=0

(
1

(1− a)k+1

)
(z − a)k

Then we notice that
∑
ck(z − a)k converges if and only if the power series on the right hand side converges

and

lim sup
k→∞

k
√
ck = c =

1

|1− a|
So radius of convergence of the power series is |1− a|, that is the distance of a from 1. In particular the
function has a power series representation around every a not equal to 1. This is what we usually call
analytic. Notice that the domain of the function is bigger than the region of convergence of any power
series representing the function at any point.

It turns out that if a function has a power series representation converging to the function on some ball,
then it has a representation at every point in the ball. We will prove this result later.

Corollary: If

f(z) =
∑

ck(z − a)k

is convergent in B(a,R) for some R > 0, then f : B(a,R)→ C is continuous.

Proof. For any z0 ∈ B(a,R) pick r < R such that z0 ∈ B(a, r). If we show that f restricted to B(a, r) is
continuous then f is continuous at z0. This can be easily seen since for example any sequence converging
to z0 will have some tail that is completely in the open ball B(a, r). On B(a, r) the partial sums converge
uniformly by the theorem and so the limit is continuous. �

Note that we can always apply an affine transformation z 7→ z + a which would convert the series to a
series at the origin. Therefore it is usually sufficient to just prove results about power series at the origin.

Let us look at derivatives. We will prove the following only for power series of real variable x. We
will allow coefficients to be complex valued, but we will only consider the power series on the real axis.
Therefore we will consider x a real variable and we will consider convergence an interval (−R,R).

Theorem (rest of 8.1): Let

f(x) =
∞∑
k=0

akx
k

be a power series converging in (−R,R) for some R > 0. Then f is differentiable on (−R,R) and

f ′(x) =
∞∑
k=1

kakx
k−1 =

∞∑
k=0

(k + 1)ak+1x
k.

Proof. First notice that

lim
k→∞

k
√
k = 1

(exercise LTS). Therefore

lim sup
k→∞

k
√
|kak| = lim sup

k→∞

k
√
k k
√
|ak| = lim sup

k→∞

k
√
|ak|.

So
∑∞

k=1 kakx
k−1 has the same radius of convergence as the series for f .

For any positive r < R, we have that both series converge uniformly in [−r, r] by a theorem above. Now
for any partial sum

d

dx

(
n∑
k=0

akx
k

)
=

n∑
k=1

kakx
k−1
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So by Theorem 7.17 f ′(x) is equal to the limit of the differentiated series as advertised on [−r, r]. As this
was true for any r < R, we have it on (−R,R). �

In fact, if one derivative then by iterating the theorem we obtain that an analytic function is infinitely
differentiable.

Corollary: Let

f(x) =
∞∑
k=0

akx
k

be a power series converging in (−R,R) for some R > 0. Then f is infinitely differentiable on (−R,R) and

f (n)(x) =
∞∑
k=n

k(k − 1) · · · (k − n+ 1)akx
k−n =

∞∑
k=0

(k + n)(k + n− 1) · · · (k + 1)ak+nx
k.

In particular,
f (n)(0) = n!an.

Note that the coefficients are determined by the derivatives of the function. This in particular means
that once we have a function defined in a neighborhood, the coefficients are unique. Also, if we have two
power series convergent in (−R,R) such that for all x ∈ (−R,R) we have

∞∑
k=0

akx
k =

∞∑
k=0

bkx
k

then ak = bk for all k.

On the other hand, just because we have an infinitely differentiable function doesn’t mean that the

numbers ck obtained by cn = f (n)(0)
n!

give a convergent power series. In fact, there is a theorem, which we
will not prove, that given an arbitrary sequence {cn}, there exists an infinitely differentiable function f

such that cn = f (n)(0)
n!

. Finally, even if the obtained series converges it may not converge to the function
we started with. This counterexample will be in the homework.

(We will skip Theorem 8.2)

We will need a theorem on swapping limits of series. This is sometimes called Fubini’s theorem for sums.

Theorem 8.3: Let {aij}∞i=1,j=1 be a double sequence of complex numbers and suppose that for every i
the series

∞∑
j=1

|aij|

converges and furthermore that
∞∑
i=1

(
∞∑
j=1

|aij|

)
converges as well. Then

∞∑
i=1

(
∞∑
j=1

aij

)
=
∞∑
j=1

(
∞∑
i=1

aij

)
,

where all the series involved converge.

Rudin has a very slick proof of this.

Proof. Let E be the set {1/n : n ∈ N} ∪ {0}, and treat it as a metric space with the metric inherited from
R. Define the sequence of functions fi : E → C by

fi(1/n) =
n∑
j=1

aij fi(0) =
∞∑
j=1

aij
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As the series converge we get that each fi is continuous at 0 (since 0 is the only cluster point, they are
continuous everywhere, but we don’t need that). For all x ∈ E we have

|fi(x)| ≤
∞∑
j=1

|aij|

By knowing that
∑

i

∑
j |aij| converges (does not depend on x), we know that for any x ∈ E

n∑
i=1

fi(x)

converges uniformly. So define

g(x) =
∞∑
i=1

fi(x),

which is therefore a continuous function at 0. So
∞∑
i=1

(
∞∑
j=1

aij

)
=
∞∑
i=1

fi(0) = g(0) = lim
n→∞

g(1/n)

= lim
n→∞

∞∑
i=1

fi(1/n) = lim
n→∞

∞∑
i=1

n∑
j=1

aij

= lim
n→∞

n∑
j=1

∞∑
i=1

aij =
∞∑
j=1

(
∞∑
i=1

aij

)
.

�

Now we can prove that once we have a series converging to a function in some interval, we can expand
the function around any point.

Theorem 8.4: (Taylor’s theorem for real-analytic functions) Let

f(x) =
∞∑
k=0

akx
k

be a power series converging in (−R,R) for some R > 0. Given any a ∈ (−R,R), we obtain for x such
that |x− a| < R− |a| that

f(x) =
∞∑
k=0

f (k)(a)

k!
(x− a)k.

The power series at a could of course converge in a larger interval, but the one above is guaranteed. It
is the largest symmetric interval about a that fits in (−R,R).

Proof. Write

f(x) =
∞∑
k=0

ak
(
(x− a) + a

)k
=
∞∑
k=0

ak

k∑
m=0

(
k

m

)
ak−m(x− a)m

We define ck,m = ak
(
k
m

)
ak−m if m ≤ k and 0 if m > k, then we have

f(x) =
∞∑
k=0

∞∑
m=0

ck,m(x− a)m (1)
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If we show that the double sum converges absolutely as in Theorem 8.3 we are done. We can swap the
order of the summations and obtain the desired coefficients.

∞∑
k=0

∞∑
m=0

|ck,m(x− a)m| =
∞∑
k=0

k∑
m=0

∣∣∣∣ak( km
)
ak−m(x− a)m

∣∣∣∣
=
∞∑
k=0

|ak|
k∑

m=0

(
k

m

)
|a|k−m |x− a|m

=
∞∑
k=0

|ak| (|x− a|+ |a|)k

and this converges as long as (|x− a|+ |a|) < R or in other words if |x− a| < R− |a|.
Now we swap the order of summation in (1), and the following converges when |x− a| < R− |a|:

f(x) =
∞∑
k=0

∞∑
m=0

ck,m(x− a)m =
∞∑
m=0

(
∞∑
k=0

ck,m

)
(x− a)m.

And we are done. The formula in terms of derivatives at a follows by the corollary of Theorem 8.1. �

Note that if a series converges for x ∈ (−R,R) it also converges for all complex numbers in B(0, R). We
have the following corollary.

Corollary: If
∑
ck(z − a)k converges to f(z) in B(a,R) and b ∈ B(a,R), then there exists a power

series
∑
dk(z − b)k that converges to f(z) in B(b, R− |b− a|).

Proof. WLOG assume that a = 0. We can also rotate to assume that b is real, but since that is harder to
picture, let us do it explicitly. Let α = b̄

|b| . Notice that

|1/α| = |α| = 1.

Therefore the series converges in B(0, R) if we replace z with z/α. We apply Theorem 8.4 at |b| and get
that a series that converges to f(z/α) on B(|b| , R− |b|). That is, there are some coefficients ak such that

f(z/α) =
∞∑
k=0

ak(z − |b|)k.

Notice that αb = |b|.

f(z) = f(αz/α) =
∞∑
k=0

ak(αz − |b|)k =
∞∑
k=0

akα
k(z − |b|/α)k =

∞∑
k=0

akα
k(z − b)k,

and this converges for all z such that
∣∣αz − |b|∣∣ < R − |b| or |z − b| < R − |b|, which is the conclusion of

the theorem. �

Let us define rigorously what an analytic function is. Let U ⊂ C be an open set. A function f : U → C
is said to be analytic if near every point a ∈ U , f has a convergent power series expansion. That is, for
every a ∈ U if there exists an R > 0 and numbers ck such that

f(z) =
∞∑
k=0

ck(z − a)k

for all z ∈ B(a,R).
Similarly if we have an interval (a, b), we will say that f : (a, b)→ C is analytic or perhaps real-analytic

if for each point c ∈ (a, b) there is a power series around c that converges in some (c−R, c+R) for some
R > 0.

We have proved above that a convergent power series is an analytic function where it converges. We
have also shown before that 1

1−z is analytic outside of z = 1.
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Note that just because a real analytic function is analytic on the real line it doesn’t necessarily mean
that it has a power series representation that converges everywhere. For example, the function

f(x) =
1

1 + x2

happens to be real analytic. It is pretty easy to show this (exercise). A power series around the origin
converging to f can have a radius of convergence at most 1, actually it does happen to be exactly 1. Can
you see why? (exercise).

Lemma (part of 8.5): Suppose that f(z) =
∑
akz

k is a convergent power series and {zn} is a sequence
of nonzero complex numbers converging to 0, such that f(zn) = 0 for all n. Then ak = 0 for every k.

Proof. By continuity we know f(0) = 0 so a0 = 0. Suppose that there exists some nonzero ak. Let m be
the smallest m such that am 6= 0. Then

f(z) =
∞∑
k=m

akz
k = zm

∞∑
k=m

akz
k−m = zm

∞∑
k=0

ak+mz
k.

Write g(z) =
∑∞

k=0 ak+mz
k (this series converges in on the same set as f). g is continuous and g(0) =

am 6= 0. Thus there exists some δ > 0 such that g(z) 6= 0 for all z ∈ B(0, δ). As f(z) = zmg(z), then the
only point in B(0, δ) where f(z) = 0 is when z = 0, but this contradicts the assumption that f(zn) = 0
for all n. �

In a metric space X, a cluster point (or sometimes limit point) of a set E is a point p ∈ X such that
B(p, ε) \ {p} contains points of E for all ε > 0.

Theorem (better than 8.5): (Identity theorem) Let U ⊂ C be an open connected set. If f : U → C
and g : U → C are analytic functions that are equal on a set E ⊂ U , and E has a cluster point (a limit
point) in U , then f(z) = g(z) for all z ∈ U .

Proof. WLOG suppose that E is the set of all points z ∈ U such that g(z) = f(z). Note that E must be
closed as f and g are continuous.

Suppose that E has a cluster point. WLOG assume that 0 is the cluster point. Near 0, we have the
expansions

f(z) =
∞∑
k=0

akz
k and g(z) =

∞∑
k=0

bkz
k,

which converge in some ball B(0, R). Therefore the series

0 = f(z)− g(z) =
∞∑
k=0

(ak − bk)zk

converges in B(0, R). As 0 is a cluster point of E, then there is a sequence of nonzero points {zn} such
that f(zn) − g(zn) = 0. Therefore by the lemma above we have that ak = bk for all k. And therefore
B(0, R) ⊂ E.

This means that E is open. As E is also closed, and U is connected, we conclude that E = U . �

By restricting our attention to real x we obtain the same theorem for connected open subsets of R,
which are just open intervals. Rudin’s Theorem 8.5 is essentially this real analogue: if we have two power
series around a point that converge on (a, b) and are equal on a set that has a cluster point in (a, b), then
the two power series are the same.

The Exponential

Define

E(z) =
∞∑
k=0

1

k!
zk.
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This will turn out to be the exponential, but let us call it something else for now. We have shown that
this series converges everywhere. We notice that E(0) = 1.

By direct calculation we notice that if we restrict to real x we get

d

dx

(
E(x)

)
= E(x).

This is one of the most important properties of the exponential. In fact, this was the way that we hinted
at a possible definition of the exponential last semester using Picard’s theorem. Of course by uniqueness
part of Picard’s theorem, either starting point leads to the same exponential function.

Fix y ∈ R. Let f(x) = E(x+ y)− E(x)E(y) then compute

f ′(x) =
d

dx

(
E(x+ y)− E(x)E(y)

)
= E(x+ y)− E(x)E(y) = f(x)

Furthermore f(0) = E(y) − E(0)E(y) = 0. To conclude that f ≡ 0 we could at this point apply Picards
theorem on existence and uniqueness, but that would be hitting the nail with a sledgehammer. Far easier
is to notice that f has a power series at the origin that converges everywhere. And furthermore notice by
repeated application of f ′(x) = f(x) that f (n)(x) = f(x), in particular f (n)(0) = f(0) = 0. That means
that f is the series that is identically zero. Therefore we have

E(x+ y) = E(x)E(y)

for all real x and y. Now for any fixed y ∈ R, we get by the identity theorem (since the real numbers have
a cluster point in C) that E(z + y) = E(z)E(y) for all z ∈ C. Now fixing an arbitrary z ∈ C and we get
E(z + y) = E(z)E(y) for all y ∈ R, and hence again by identity theorem we obtain

E(z + w) = E(z)E(w)

for all z, w ∈ C.
In particular if w = −z we obtain 1 = E(0) = E(z − z) = E(z)E(−z). This implies that E(z) 6= 0 for

any z ∈ C.
Let us look at the real numbers. Since E is continuous and never zero, and E(0) = 1 > 0, we get that

E(R) is connected and 1 ∈ E(R) but 0 /∈ E(R). Therefore E(x) > 0 for all x ∈ R. Thus E ′(x) > 0 for all
real x and so E(x) is strictly increasing. This means that E(1) > E(0) = 1. Then for n ∈ N

E(n) =
(
E(1)

)n
by the addition formula. As E(1) > 1 we conclude that E(n) goes to ∞ as n goes to ∞. Since E is
monotone that means that we can even take the continuous limit as x goes to ∞ and get that E(x) goes
to∞. By E(x)E(−x) = 1 we obtain that as x goes to −∞ then E(x) must go to zero. Therefore E, when
restricted to R, is a one to one and onto mapping of R to (0,∞).

Usually we denote
e = E(1).

As for n ∈ N we get that E(n) =
(
E(1)

)n
we get

en = E(n).

By noting that E(n)E(−n) = 1 we obtain en = E(n) for all n ∈ Z. In fact if r = p/q is rational, then

E(r)q = E(qr) = E(p) = ep.

And hence E(r) = er given the usual meaning of er (the qth positive root of ep).
Generally for irrational x ∈ R we define

ex = E(x),

and we notice that this is the same thing as taking limits of er for rational r going to x as E(x) is continuous.
Similarly we simply define that for all z ∈ C

ez = E(z)

and we usually denote E(z) by exp(z) if we don’t use ez.

We have proved most of the following theorem.
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Theorem 8.6: Let us consider ex a function on the real line only.

(i) ex is continuous and differentiable everywhere.
(ii) (ex)′ = ex.

(iii) ex is strictly increasing function of x and ex > 0 for all x.
(iv) ex+y = exey.
(v) ex →∞ as x→∞ and ex → 0 as x→ −∞. In particular, ex is a one to one and onto function from

R to (0,∞).

(vi) lim
x→∞

xne−x = lim
x→∞

xn

ex
= 0 for every n ∈ N.

Proof. We have proved all these properties except the last one. So let us prove that. From definition it is
clear that if x > 0 then ex is bigger than any one of the terms in the series so for example

ex >
xn+1

(n+ 1)!
.

In other words since 1
ex

= e−x we have

xne−x <
(n+ 1)!

x
,

which proves the claim. �

We can now define the logarithm at least for positive real x. We could define it as the inverse of the
exponential, but then we would need to prove some of its properties. It is easier to define log : (0,∞)→ R
as

log(x) =

∫ x

1

1

t
dt.

Obviously log is continuous and differentiable with derivative 1
x

and log(1) = 0. Let us show that it is the
inverse. Let f(x) = log(ex). Next

f ′(x) =
d

dx

(
log(ex)

)
=

1

ex
ex = 1.

Furthermore f(0) = log(e0) = log(1) = 0. By the fundamental theorem of calculus we obtain that
f(x) =

∫ x
0
dt = x and hence log(ex) = x. In other words log and the exponential are inverses of each other.

It follows that exp
(
log(x)

)
= x.

Let us deduce some properties of the logarithm from the properties of the exponential by using the fact
that log is the inverse of the exponential.

From Theorem 8.6 it is clear that log(x)→ −∞ as x→ 0 and log(x)→∞ as x→∞.
Next, suppose that a = ex and b = ey, then we obtain the addition formula

log(ab) = log(exey) = log(ex+y) = x+ y = log(a) + log(b).

In particular, if b = 1/a then
0 = log(1) = log(a) + log(1/a)

Putting these two together we obtain that for all n ∈ Z and x > 0 we get

log(xn) = n log(x)

Next notice that
xn = exp

(
log(xn)

)
= exp

(
n log(x)

)
.

Then (
exp

(
1

m
log(x)

))m
= exp

(m
m

log(x)
)

= x

or in other words x1/m = exp
(

1
m

log(x)
)
. So if p is rational and x > 0 we obtain that

xp = exp
(
p log(x)

)
.
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We now define the expression
xy = exp

(
y log(x)

)
.

for x > 0 and any y ∈ R. We then also obtain the useful formula

log(xy) = y log(x).

The usual rules of exponentials follow from the rules for exp. Let us differentiate xy

d

dx

(
xy
)

=
d

dx

(
exp
(
y log(x)

))
= exp

(
y log(x)

)y
x

= yxy−1.

As exp is a strictly increasing function than as long as x > 1 so that log(x) > 0, then xy is a strictly
increasing function y.

Let us also notice that log grows very slowly as x→∞. In fact it grows slower than any positive power
of x. Let ε > 0, y > ε, and x > 1.

x−y log(x) = x−y
∫ x

1

t−1dt ≤ x−y
∫ x

1

tε−1dt = x−y
xε − 1

ε
<
xε−y

ε

As ε− y < 0, we conclude that xε−y goes to 0 as x→∞. The claim follows, that is precisely that

lim
x→∞

x−y log(x) = lim
x→∞

log(x)

xy
= 0

this is true for any y > 0.

Exercise: Show that log is real-analytic on (0,∞). Hint: Use the definition.

Trigonometric functions

We can now define the trigonometric functions.

cos(z) =
eiz + e−iz

2
and sin(z) =

eiz − e−iz

2i
.

Immediately we obtain
eiz = cos(z) + i sin(z).

From the definition of ez we notice that ez = ez̄ and so if x is real then

eix = e−ix.

Therefore when x is real then we note that from the definition

cos(x) = Re eix and sin(x) = Im eix.

In other words, sine and cosine are real-valued when we plug in real x.
Also direct from the definition is that cos(−z) = cos(z) and sin(z) = − sin(−z) for all z ∈ C.
We will prove that this definition has the geometric properties we usually associate with sin and cos.

Let x be real and compute

1 = eixe−ix =
∣∣eix∣∣2 =

(
cos(x)

)2
+
(
sin(x)

)2
.

We see that eix is unimodular, the values lie on the unit circle. By noting that a square is always positive
we notice that (

sin(x)
)2

= 1−
(
cos(x)

)2 ≤ 1

so |sin(x)| ≤ 1 and similarly we show |cos(x)| ≤ 1. A fact we have often used in examples.
From the definition we get that cos(0) = 1 and sin(0) = 0. By direct computation (LTS) from the

definition we also obtain:

cos(z) =
∞∑
k=0

(−1)k

(2k)!
z2k

sin(z) =
∞∑
k=0

(−1)k

(2k + 1)!
z2k+1
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Again by direct calculation (LTS) we obtain

d

dx

(
cos(x)

)
= − sin(x) and

d

dx

(
sin(x)

)
= cos(x).

Another fact that we have often used in examples was that sin(x) ≤ x for x ≥ 0. Let us look at
f(x) = x− sin(x) and differentiate:

f ′(x) =
d

dx

(
x− sin(x)

)
= 1− cos(x) ≥ 0,

for all x as |cos(x)| ≤ 1. So f is nondecreasing and furthermore f(0) = 0. So f must be nonnegative when
x ≥ 0, which is precisely what we wanted to prove.

We claim that there exists a positive x such that cos(x) = 0. As cos(0) = 1 > 0, then cosine is definitely
positive at least for some x near 0. Suppose that on [0, y) we have cos(x) > 0, then sin(x) is strictly
increasing on [0, y) and as sin(0) = 0, then sin(x) > 0 for x ∈ (0, y). Take a ∈ (0, y). Then for some
c ∈ (a, y)

2 ≥ cos(a)− cos(y) = sin(c)(y − a) ≥ sin(a)(y − a)

As a > 0, then sin(a) > 0 and so

y ≤ 2

sin(a)
+ a

Hence there is some largest y such that cos(x) > 0 in [0, y). By continuity, for that y, cos(y) = 0. In fact,
y is the smallest positive y such that cos(y) = 0. We can now define

π = 2y.

And we obtain that cos(π/2) = 0 and so
(
sin(π/2)

)2
= 1. As sin was positive on (0, y) we have sin(π/2) = 1.

Hence
exp(iπ/2) = i

and by the addition formula we get

exp(iπ) = −1 exp(i2π) = 1

So exp(i2π) = 1 = exp(0). The addition formula now says that

exp(z + i2π) = exp(z)

for all z ∈ C. Therefore, we also obtain that

cos(z + 2π) = cos(z) and sin(z + 2π) = sin(z).

So sin and cos are 2π-periodic. We claim that sin and cos are not periodic with a smaller period. It would
be enough to show that if exp(ix) = 1 for the smallest positive x, then x = 2π. Well let x be the smallest
positive x such that exp(ix) = 1. Of course, x ≤ 2π. Then by the addition formula(

exp(ix/4)
)4

= 1

If exp(ix/4) = a+ ib then or

(a+ ib)4 = a4 − 6a2b2 + b4 + i(4ab(a2 − b2)) = 1

As x/4 ≤ π/2, then a = cos(x/4) ≥ 0 and 0 < b = sin(x/4). Then either a = 0, in which case x/4 = π/2
or a2 = b2. But if a2 = b2, then a4 − 6a2b2 + b4 = −4a4 < 0 and in particular not equal to 1. Therefore
a = 0 in which case x/4 = π/2.

Therefore 2π is the smallest period we could choose for exp(ix) and hence cos and sin.
Finally we also wish to show that exp(ix) is 1-to-1 and onto from the set [0, 2π) to the set of z ∈ C such

that |z| = 1. First suppose that exp(ix) = exp(iy) and assume that x > y then exp(i(x − y)) = 1, which
means that x − y is a multiple of 2π and hence only one of them can live in [0, 2π). To show onto, pick
(a, b) ∈ R2 such that a2 + b2 = 1. If a, b ≥ 0, then there must exist an x ∈ [0, π/2] such that cos(x) = a,

and hence b2 =
(
sin(x)

)2
and since b and sin(x) are positive we have b = sin(x). Note that since − sin(x)

is the derivative of cos(x) and cos(−x) = cos(x) then sin(x) < 0 for x ∈ [−π/2, 0). Then using the same
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reasoning we obtain that if if a > 0 and b ≤ 0, we can find an x ∈ [−π/2, 0), or in other words in [3π/2, 2π)
As multiplying by −1 is the same as multiplying by exp(iπ) or exp(−iπ) we can always assume that a ≥ 0
(details left to student).

While we haven’t looked at arclength, let us just state without further discussion that the arclength of
a curve parametrized by γ : [a, b]→ C is given by∫ b

a

|γ′(t)| dt.

We have that exp(it) parametrizes the circle for t in [0, 2π). As d
dt

(exp(it)) = i exp(it) and so the circum-
ference of the circle is ∫ 2π

0

|i exp(it)| dt =

∫ 2π

0

1 dt = 2π.

More generally we notice that exp(it) parametrizes the circle by arclength. That is, t measures the
arclength, and hence a circle of radius 1 by the angle in radians. Hence the definitions of sin and cos we
have used above agree with the standard geometric definitions.

Fundamental theorem of algebra

Let us prove the fundamental theorem of algebra, that is the algebraic completeness of the complex field,
any polynomial has a root. We will first prove a bunch of lemmas about polynomials.

Lemma: Let p(z) be complex polynomial. If p(z0) 6= 0, then there exist w ∈ C such that |p(w)| < |p(z0)|.
In fact, we can pick w to be arbitrarily close to z0.

Proof. Without loss of generality assume that z0 = 0 and p(0) = 1. Then write

p(z) = 1 + akz
k + ak+1z

k+1 + · · ·+ adz
d

where ak 6= 0. Pick t such that ake
ikt = − |ak| which we can do by the discussion on trigonometric

functions. Then for any r > 0 small enough such that 1− rk |ak| > 0 we have

p(reit) = 1− rk |ak|+ rk+1ak+1e
i(k+1)t + · · ·+ rdade

idt

so ∣∣p(reit)∣∣− ∣∣rk+1ak+1e
i(k+1)t + · · ·+ rdade

idt
∣∣ ≤ ∣∣p(reit)− rk+1ak+1e

i(k+1)t − · · · − rdadeidt
∣∣

=
∣∣1− rk |ak|∣∣ = 1− rk |ak|

In other words ∣∣p(reit)∣∣ ≤ 1− rk
(
|ak| − r

∣∣ak+1e
i(k+1)t + · · ·+ rd−k−1ade

idt
∣∣)

For a small enough r the expression the parentheses is positive as |ak| > 0. And then |p(reit)| < 1 =
p(0). �

Remark: The above lemma holds essentially with an unchanged proof for (complex) analytic functions.
A proof of this generalization is left as an exercise to the reader. What the lemma says is that the only
minima the modulus of analytic functions (polynomials) has minima precisely at the zeros.

Note also that the lemma does not hold if we restrict to real numbers. For example, x2+1 has a minimum
at x = 0, but no zero there. The thing is that there is a w arbitrarily close to 0 such that |w2 + 1| < 1,
but this w will necessarily not be real. Letting w = iε for small ε > 0 will work.

Moral of the story is that if p(0) = 1, then very close to 0, the polynomial looks like 1 + azk and this
has no minimum at the origin. All the higher powers of z are too small to make a difference.

Lemma: Let p(z) be complex polynomial. Then for any M there exists an R such that if |z| ≥ R then
|p(z)| ≥M .
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Proof. Write p(z) = a0 + a1z + · · · + adz
d and suppose that ad 6= 0. Suppose that |z| ≥ R (so also

|z|−1 ≤ R−1). We estimate:

|p(z)| ≥
∣∣adzd∣∣− |a0| − |a1z| − · · · −

∣∣ad−1z
d−1
∣∣

= |z|d
(
|ad| − |a0| |z|−d − |a1| |z|−d+1 − · · · − |ad−1| |z|−1)

≥ Rd
(
|ad| − |a0|R−d − |a1|R1−d − · · · − |ad−1|R−1

)
Then the expression in parentheses is eventually positive for large enough R. In particular, for large enough
R we get that it is greater than |ad| /2 and so

|p(z)| ≥ Rd |ad|
2
.

Therefore, we can pick R large enough to be bigger than a given M . �

The above lemma does not generalize to analytic functions, even those defined in all of C. The function
cos(z) is an obvious counterexample. Note that we had to look at the term with the largest degree, and
we only have such a term for a polynomial. In fact, something that we will not prove is that an analytic
function defined on all of C satisfying the conclusion of the lemma must be a polynomial.

The moral of the story here is that for very large |z| (far away from the origin) a polynomial of degree
d really looks like a constant multiple of zd.

Theorem 8.8: (Fundamental theorem of algebra) Let p(z) be complex polynomial, then there exists a
z0 ∈ C such that p(z0) = 0.

Proof. Let µ = inf |p(z)|. Find an R such that for all z with |z| ≥ R we have |p(z)| ≥ µ + 1. Therefore,
any z with |p(z)| close to µ must be in the closed ball C(0, R) = {z : |z| ≤ R}. As |p(z)| is a continuous
real-valued function, it achieves its minimum on the compact set C(0, R) (closed and bounded) and this
minimum must be µ. So there is a z0 ∈ C(0, R) such that |p(z0)| = µ. As that is a minimum of |p(z)| on
C, then by a lemma above we have that |p(z0)| = 0. �

The theorem doesn’t generalize to analytic functions either. For example exp(z) is an analytic function
on C with no zeros.

Fourier Series

Now that we have trigonometric functions, let us cover Fourier series in more detail. We have seen
Fourier series in examples, but let us start at the beginning.

A trigonometric polynomial is an expression of the form

a0 +
N∑
n=1

(
an cos(nx) + bn sin(nx)

)
,

or equivalently, thanks to Euler’s formula:
N∑

n=−N

cne
inx.

The second form is usually more convenient. Note that if |z| = 1 we can write z = eix, and so

N∑
n=−N

cne
inx =

N∑
n=−N

cnz
n,

so a trigonometric polynomial is really a rational function (do note that we are allowing negative powers)
evaluated on the unit circle. There is a wonderful connection between power series (actually Laurent series)
and Fourier series because of this observation, but we will not investigate this further.
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Notice that all the functions are 2π-periodic and hence the trig polynomials are also 2π-periodic. We
could rescale x to make the period different, but the theory is the same, so we will stick with the above

scale. We compute that the antiderivative of exp(inx) is exp(inx)
in

and so∫ π

−π
einx dx =

{
2π if n = 0,

0 otherwise.

Let us take

f(x) =
N∑

n=−N

cne
inx,

and for m = −N, . . . , N compute

1

2π

∫ π

−π
f(x)e−imx dx =

1

2π

∫ π

−π

(
N∑

n=−N

cne
i(n−m)x

)
dx =

N∑
n=−N

cn
1

2π

∫ π

−π
ei(n−m)x dx = cm.

We therefore have a way of computing the coefficients cm by an integral of f . Of course if |m| > N the
integral is just 0. We might as well have included enough zero coefficients to make |m| ≤ N .

Proposition: Trigonometric polynomial f(x) is real-valued for real x if and only if c−m = cm for all
m = −N, . . . , N .

Proof. If f(x) is real-valued, that is f(x) = f(x), then

cm =
1

2π

∫ π

−π
f(x)e−imx dx =

1

2π

∫ π

−π
f(x)e−imx dx =

1

2π

∫ π

−π
f(x)eimx dx = c−m.

The complex conjugate goes inside the integral because the integral is done on real and imaginary parts
separately. On the other hand if c−m = cm, then we notice that

c−me−imx + cmeimx = c−me
imx + cme

−imx = cme
imx + c−me

−imx.

We also have that c0 = c0. So by pairing up the terms we obtain that f has to be real-valued. �

In fact, the above could also follow from the linear independence of the functions einx, which we can
now prove.

Proposition: If
N∑

n=−N

cne
inx = 0

for all x, then cn = 0 for all n.

Proof. Proof follows immediately from the integral formula for cn. �

We now take limits. We call the series
∞∑

n=−∞

cne
inx

the Fourier series. The numbers cn we call Fourier coefficients. We could also develop everything with
sines and cosines, but it is equivalent and slightly more messy.

Several questions arise. What functions are expressible as Fourier series? Obviously, they have to be
2π-periodic, but not every periodic function is expressible with the series. Furthermore, if we do have a
Fourier series, where does it converge (if at all)? Does it converge absolutely? Uniformly (and where)?
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Also note that the series has two limits. When talking about Fourier series convergence, we often talk
about the following limit:

lim
N→∞

N∑
n=−N

cne
inx.

There are other ways we can sum the series that can get convergence in more situations, but we will refrain
from discussion those.

For any function integrable on [−π, π] we call the numbers

cn =
1

2π

∫ π

−π
f(x)e−inx dx

its Fourier coefficients. Often these numbers are written as f̂(n) (For those that have seen the Fourier
transform, the similarity is not just coincidental, we are really taking a type of Fourier transform here).
We can then formally write down a Fourier series. As you might imagine such a series might not even
converge. We will write

f(x) ∼
∞∑

n=−∞

cne
inx

although the ∼ doesn’t imply anything about the two sides being equal in any way. It is simply that we
created a formal series using the formula for the coefficients.

We have seen in examples that if

|cn| ≤
C

|n|α

for some C and some α > 1, then the Fourier series converges absolutely and uniformly to a continuous
function. If α > 2, then we had that the series converged to a differentiable function. Let us now investigate
convergence of Fourier series from the other side. Given properties of f , what can we say about the series.

Let us first prove some general results about so called orthonormal systems. Let us fix an interval [a, b].
We will define an inner product for the space of functions. We will restrict our attention to Riemann
integrable functions since we do not yet have the Lebesgue integral, which would be the natural choice.
Let f and g be complex-valued Riemann integrable functions on [a, b] and define

〈f, g〉 =

∫ b

a

f(x)g(x) dx

For those that have seen Hermitian inner products in linear algebra, this is precisely such a product. We
have to put in the conjugate as we are working with complex numbers. We then have the “size”, that is
the L2 norm ‖f‖2 by (defining the square)

‖f‖2
2 = 〈f, f〉 =

∫ b

a

|f(x)|2 dx.

Remark: Notice the similarity to finite dimensions. For z = (z1, z2, . . . , zn) ∈ Cn we define

〈z, w〉 =
n∑
k=1

zkwk

and then the norm is (usually this is just denoted by ‖z‖ rather than ‖z‖2)

‖z‖2 = 〈z, z〉 =
n∑
k=1

|zk|2

This is just the euclidean distance to the origin in Cn.

Let us get back to function spaces. We will assume all functions are Riemann integrable in the following.
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Definition: Let {ϕn} be a sequence of complex-valued functions on [a, b]. We will say that this is an
orthonormal system if

〈ϕn, ϕm〉 =

∫ b

a

ϕn(x)ϕm(x) dx =

{
1 if n = m,

0 otherwise.

Notice that the above says that ‖ϕn‖2 = 1 for all n. If we only require that 〈ϕn, ϕm〉 = 0 for m 6= n then
the system would be just an orthogonal system.

We have noticed above that for example {
1√
2π

einx
}

is an orthonormal system. The factor out in front is to make the norm be 1.

Having an orthonormal system {ϕn} on [a, b] and an integrable function f on [a, b], we can write a
Fourier series relative to {ϕn}. We let

cn = 〈f, ϕn〉 =

∫ b

a

f(x)ϕn(x) dx,

and write

f(x) ∼
∞∑
n=1

cnϕn.

In other words, the series is
∞∑
n=1

〈f, ϕn〉ϕn(x).

Notice the similarity to the expression for the orthogonal projection of a vector onto a subspace from linear
algebra. We are in fact doing just that, but in a space of functions.

Theorem 8.11: Let {ϕn} be an orthonormal system on [a, b] and suppose

f(x) ∼
∞∑
n=1

cnϕn(x).

If

sn(x) =
n∑
k=1

ckϕk(x) and tn(x) =
n∑
k=1

dkϕk(x).

for some other sequence {dk}, then∫ b

a

|f(x)− sn(x)|2 dx = ‖f − sn‖2
2 ≤ ‖f − tn‖

2
2 =

∫ b

a

|f(x)− tn(x)|2 dx.

with equality only if dk = ck for all k = 1, . . . , n.

In other words the partial sums of the Fourier series are the best approximation with respect to the L2

norm.

Proof. Let us write ∫ b

a

|f − tn|2 =

∫ b

a

|f |2 −
∫ b

a

ftn −
∫ b

a

ftn +

∫ b

a

|tn|2 .

Now ∫ b

a

ftn =

∫ b

a

f

n∑
k=1

dkϕk =
n∑
k=1

dk

∫ b

a

fϕk =
n∑
k=1

dkck,

and ∫ b

a

|tn|2 =

∫ b

a

n∑
k=1

dkϕk

n∑
j=1

djϕj =
n∑
k=1

n∑
j=1

dkdj

∫ b

a

ϕkϕj =
n∑
k=1

|dk|2 .
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So ∫ b

a

|f − tn|2 =

∫ b

a

|f |2 −
n∑
k=1

dkck −
n∑
k=1

dkck +
n∑
k=1

|dk|2 =

∫ b

a

|f |2 −
n∑
k=1

|ck|2 +
n∑
k=1

|dk − ck|2 .

This is minimized precisely when dk = ck. �

When we do plug in dk = ck, then∫ b

a

|f − sn|2 =

∫ b

a

|f |2 −
n∑
k=1

|ck|2

and so
n∑
k=1

|ck|2 ≤
∫ b

a

|f |2

for all n. Note that
n∑
k=1

|ck|2 = ‖sn‖2
2

by the above calculation. We can take a limit to obtain

Theorem 8.12: (Bessel’s inequality)
∞∑
k=1

|ck|2 ≤
∫ b

a

|f |2 = ‖f‖2
2

In particular (as for a Riemann integrable function
∫ b
a
|f |2 <∞), we get that lim ck = 0.

Let us return to the trigonometric Fourier series. Here we note that the system {einx} is orthogonal, but
not orthonormal if we simply integrate over [−π, π]. We can also rescale the integral and hence the inner
product to make {einx} orthonormal. That is, if we replace∫ b

a

with
1

2π

∫ π

−π

(we are just rescaling the dx really, this is a common trick in analysis) then everything works and we obtain
that the system {einx} is orthonormal with respect to the inner product

〈f, g〉 =
1

2π

∫ π

−π
f(x)g(x) dx.

So suppose we have an integrable function f on [−π, π]. In fact suppose that f is a function defined on
all of R and is 2π periodic. Let

cn =
1

2π

∫ π

−π
f(x)e−inx dx.

Write

f(x) ∼
∞∑

n=−∞

cne
inx.

We will look at the symmetric partial sums

sN(x) = sN(f ;x) =
N∑

n=−N

cne
inx.

The inequality leading up to Bessel now reads:

1

2π

∫ π

−π
|sN(x)|2 dx =

N∑
n=−N

|cn|2 ≤
1

2π

∫ π

−π
|f(x)|2 dx.
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Let us now define the Dirichlet kernel

DN(x) =
N∑

n=−N

einx.

We claim that

DN(x) =
N∑

n=−N

einx =
sin
(
(N + 1/2)x

)
sin(x/2)

.

at least for x such that sin(x/2) 6= 0. We know that the left hand side is continuous and hence the right
hand side extends continuously as well. To show the claim we use a familiar trick:

(eix − 1)DN(x) = ei(N+1)x − e−iNx.

And multiply by e−ix/2

(eix/2 − e−ix/2)DN(x) = ei(N+1/2)x − e−i(N+1/2)x.

The claim follows.
We expand the definition of sN

sN(x) =
N∑

n=−N

1

2π

∫ π

−π
f(t)e−int dt einx =

1

2π

∫ π

−π
f(t)

N∑
n=−N

ein(x−t) dt =
1

2π

∫ π

−π
f(t)DN(x− t) dt.

Convolution strikes again! As DN and f are 2π-periodic we can also change variables and write

sN(x) =
1

2π

∫ x+π

x−π
f(x− t)DN(t) dt =

1

2π

∫ π

−π
f(x− t)DN(t) dt

Look at an example plot of DN(x) for N = 5 and N = 20:
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(sin(5.5*x))/(sin(x/2))
(sin(20.5*x))/(sin(x/2))

Note that the central peak will get taller and taller with N being larger, and the side peaks will stay small
(but oscillate wildly). Again, we are looking at in some sense an approximate delta function, although it
has all these oscillations away from zero which do not go away. So we expect that sN goes to f . Things
are not so simple, but under some conditions on f , such a conclusion holds.

People write

δ(x) ∼
∞∑

n=∞

einx

although we can’t say that as we have not really defined the delta function, no a Fourier series of whatever
kind object it is.
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Theorem 8.14: Let x be fixed and let f be Riemann integrable on [−π, π]. Suppose that there exist
δ > 0 and M such that

|f(x+ t)− f(x)| ≤M |t|
for all t ∈ (−δ, δ), then

lim
N→∞

sN(f ;x) = f(x).

In other words, if for example f is differentiable at x then we obtain convergence. Generally what the
result implies is that if the function is continuous piecewise smooth, then the Fourier series converges
(pointwise). By continuous piecewise smooth we mean that f is continuous and periodic so f(−π) = f(π)
and furthermore that there are points x0 = −π < x1 < · · · < xk = π such that f restricted to [xj, xj+1] is
continuously differentiable (up to the endpoints) for all j.

Proof. We notice that for all N we get
1

2π

∫ π

−π
DN = 1.

Write

sN(f ;x)− f(x) =
1

2π

∫ π

−π
f(x− t)DN(t) dt− f(x)

1

2π

∫ π

−π
DN(t) dt

=
1

2π

∫ π

−π

(
f(x− t)− f(x)

)
DN(t) dt

=
1

2π

∫ π

−π

f(x− t)− f(x)

sin(t/2)
sin
(
(N + 1/2)t

)
dt

Now by the hypotheses we obtain that for small nonzero t we get∣∣∣∣f(x− t)− f(x)

sin(t/2)

∣∣∣∣ ≤ M |t|
|sin(t/2)|

As sin(t) = t+ h(t) where h(t)
t
→ 0 as t→ 0, we notice that M |t|

|sin(t/2)| is continuous at the origin and hence
f(x−t)−f(x)

sin(t/2)
must be bounded near the origin. As t = 0 is the only place on [−π, π] where the denominator

vanishes, it is the only place where there could be a problem. The function is also Riemann integrable.
Now we use a trigonometric identity that follows from the definition (and you’ve seen it on the homework
actually) that

sin
(
(N + 1/2)t

)
= cos(t/2) sin(Nt) + sin(t/2) cos(Nt)

so

1

2π

∫ π

−π

f(x− t)− f(x)

sin(t/2)
sin
(
(N + 1/2)t

)
dt =

1

2π

∫ π

−π

(
f(x− t)− f(x)

sin(t/2)
cos(t/2)

)
sin(Nt) dt

+
1

2π

∫ π

−π

(
f(x− t)− f(x)

)
cos(Nt) dt

Now f(x−t)−f(x)
sin(t/2)

cos(t/2) and
(
f(x − t) − f(x)

)
are bounded Riemann integrable functions and so their

Fourier coefficients go to zero by Theorem 8.12. So the two integrals on the right hand side, which
compute the Fourier coefficients for the real version of the Fourier series go to 0 as N goes to infinity. This
is because sin(Nt) and cos(Nt) are also orthonormal systems. with respect to the same inner product.
Hence sN(f ;x)− f(x) goes to 0 and so sN(f ;x) goes to f(x). �

In particular this has the following corollary:

Corollary: If f(x) = 0 on an entire open interval J , then lim sN(f ;x) = 0 for all x ∈ J .

In other words, if two functions f and g are equal on an open interval J , then the points on J where
{sN(f ;x)} and {sN(g;x)} converge are the same. That is, convergence at x is only dependent on the
values of the function near x.
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We have seen Theorem 8.15 as an example for Stone-Weierstrass theorem. That is, any continuous
function on [−π, π] can be uniformly approximated by trigonometric polynomials. However, these trigono-
metric polynomials need not be the partial sums sN . On the other hand, (exercise 15) they can be explicitly
constructed from sN .

We have that the convergence always happens in the L2 sense and furthermore that formal operations on
the (infinite) vectors of Fourier coefficients is the same as the operations using the integral inner product.

We will mostly sketch out the proof and leave some details to the reader as exercises. Some of these are
exercises in Rudin.

Theorem 8.16: (Parseval) Let f and g be Riemann integrable 2π-periodic functions with

f(x) ∼
∞∑

n=−∞

cne
inx and g(x) ∼

∞∑
n=−∞

dne
inx.

Then

lim
N→∞

‖f − sN(f)‖2
2 = lim

N→∞

1

2π

∫ π

−π
|f(x)− sN(f ;x)|2 dx = 0.

Also

〈f, g〉 =
1

2π

∫ π

−π
f(x)g(x) dx =

∞∑
n=−∞

cndn,

and

‖f‖2
2 =

1

2π

∫ π

−π
|f(x)|2 dx =

∞∑
n=−∞

|cn|2 .

We will skip the proof in lecture.

Proof. It is not hard too prove (Exercise 12 in chapter 6) that there is a continuous 2π-periodic function
h such that

‖f − h‖2 < ε.

Now we know that we can approximate h with a trigonometric polynomial uniformly, that is there is a
trigonometric polynomial P (x) such that |h(x)− P (x)| < ε for all x. Hence

‖h− P‖2 ≤ ε.

If P is of degree N0 then for all N ≥ N0 we have

‖h− sN(h)‖2 ≤ ‖h− P‖2 ≤ ε

as sN(h) is the best approximation for h in L2 (Theorem 8.11). Next by the inequality leading up to Bessel
we have

‖sN(h)− sN(f)‖2 = ‖sN(h− f)‖2 ≤ ‖h− f‖2 ≤ ε

It is not difficult (exercise 11 in chapter 6) to show the triangle inequality for the L2 norm, that is

‖f − sN(f)‖2 ≤ ‖f − h‖2 + ‖h− sN(h)‖2 + ‖sN(h)− sN(f)‖2 ≤ 3ε.

For all N ≥ N0.
Next

〈sN(f), g〉 =
1

2π

∫ π

−π
sN(f ;x)g(x) dx =

N∑
k=−N

ck
1

2π

∫ π

−π
eikxg(x) dx =

N∑
k=−N

ckdk

Next we need the Schwarz (or Cauchy-Schwarz) inequality (left as exercise), that is∣∣∣∣∫ b

a

fḡ

∣∣∣∣2 ≤ (∫ b

a

|f |2
)(∫ b

a

|g|2
)
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This is left as an exercise. It actually follows by purely formal linear algebra using simple the idea that
the integral gives an inner product. So∣∣∣∣∫ π

−π
fḡ −

∫ π

−π
sN(f)g

∣∣∣∣ =

∣∣∣∣∫ π

−π
(f − sN(f))g

∣∣∣∣ ≤ ∫ π

−π
|f − sN(f)| |g| ≤

(∫ π

−π
|f − sN(f)|2

)1/2(∫ π

−π
|g|2
)1/2

.

Now the right hand side goes to 0 as N goes to infinity. �


