
Lebesgue integral

We will define a very powerful integral, far better than Riemann in the sense that it will allow us to
integrate pretty much every reasonable function and we will also obtain strong convergence results. That
is if we take a limit of integrable functions we will get an integrable function and the limit of the integrals
will be the integral of the limit under very mild conditions. We will focus only on the real line, although
the theory easily extends to more abstract contexts.

In Riemann integral the basic block was a rectangle. If we wanted to integrate a function that was
identically 1 on an interval [a, b], then the integral was simply the area of that rectangle, so 1×(b−a) = b−a.
For Lebesgue integral what we want to do is to replace the interval with a more general subset of the real
line. That is, if we have a set S ⊂ R and we take the indicator function or characteristic function χS
defined by

χS(x) =

{
1 if x ∈ S,

0 else.

Then the integral of χS should really be equal to the area under the graph, which should be equal to the
“size” of S.

Example: Suppose that S is the set of rational numbers between 0 and 1. Let us argue that its size is
0, and so the integral of χS should be 0. Let {x1, x2, . . .} = S be an enumeration of the points of S. Now
for any ε > 0 take the sets

Ij = (xj − ε2−j−1, xj + ε2−j−1),

then

S ⊂
∞⋃
j=1

Ij.

The “size” of any Ij should be ε2−j, so it seems reasonable to say that the “size” of S is less than the sum
of the sizes of the Ij’s. At worst we are grossly overestimating; every Ij contains infinitely many other
points of S, so there is a lot of overlap. So

“size of S” ≤
∞∑
j=1

“size of Ij” =
∞∑
j=1

ε2−j = ε.

So the “size of S” (whatever that concept should be) seems like it ought to be 0. And hence the integral
of χS should be 0.

So to begin, we want to have a way to “measure” sets. We focus only on the real numbers and so suppose
we wish to measure subsets of the real numbers. We would like (our Christmas wish) to have a function

m : P(R)→ [0,∞]

that is a function that takes subsets of the real numbers and gives nonnegative extended real numbers,
such that

m(∅) = 0

and if {Sj} is a countable collection of pairwise disjoint sets then

∞∑
j=1

m(Sj) = m

(
∞⋃
j=1

Sj

)
It should also replicate what we normally think of size of intervals, that ism((a, b)) = m([a, b)) = m([a, b]) =
m((a, b]) = b− a.

Unfortunately, such a function is impossible. At least there is no such function on all of P(R) (the power
set of the reals). We do have such a function on a subset of the powerset. That is, we will define a smaller
set of subsets called measurable sets and on these sets we will be able to define such a function.

So let’s talk about certain collections of sets. The collections we will want are so called σ-algebras (Rudin
talks about σ-rings, the idea is very similar, I’ll note what the difference is).
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Definition: Let X be a set. A collection of sets M⊂ P(X) is a σ-algebra if

(i) M is nonempty,
(ii) M is closed under complements, that is, if A ∈M then Ac = X \ A ∈M,

(iii) M is closed under countable unions, that is if {Aj} is a countable collection of sets in M then

∞⋃
j=1

Aj ∈M.

If M is closed only under finite unions, then we say that M is an algebra.

Most of the time below we will assume that X = R, so you might as well think of subsets of the real
line.

Definition of σ-ring and ring is similar but only needs closure under relative complements. A σ-algebra
is always a σ-ring, and a σ-ring is a σ-algebra if it contains the whole set X as an element.

The sets inM are usually called measurable sets. We will define a certain function on the powerset and
define a certain σ-algebra on which it has the desired properties. Our σ-algebra will be so large that we
will essentially be able to integrate anything we want. It will be very hard to come up with sets that are
not in our σ-algebra.

We will work with the extended real numbers R = R ∪ {−∞,∞}. We have previously used really only
its order properties such as −∞ < x <∞ for all x ∈ R. Now we will also often use arithmetic on R. We
have to be careful as R will not be a field like R. In fact, some operations are not even defined. Let us
define

x · ∞ =∞ for all x > 0

x · ∞ = −∞ for all x < 0

x+∞ =∞ and x−∞ = −∞ for all x ∈ R
x

±∞
= 0 for all x ∈ R

and so on. Everything that is not an indefinite form ∞−∞, ±∞±∞ , or 0 · ∞ has an obvious definition. It
will be convenient for measure theory to define

0 · ∞ = 0.

We will have to avoid ∞−∞ and ±∞
±∞ .

Definition: Let M be a σ-algebra. Let

µ : M→ R.

We say µ is additive if given A,B ∈M, disjoint (A ∩B = ∅) then

µ(A ∪B) = µ(A) + µ(B).

We say µ is countably additive if given {Aj} a collection of sets inM such that Aj ∩Ak = ∅ for all j 6= k,
then

µ

(
∞⋃
j=1

Aj

)
=
∞∑
j=1

µ(Aj).

Of course the sums have to make sense, so usually we will assume that µ does not achieve both −∞ and
∞.

We will say that µ is nonnegative or monotonic if µ(A) ≥ 0 for all A ∈M.
We also say that µ is countably subadditive if for every collection {Aj} we have

µ

(
∞⋃
j=1

Aj

)
≤

∞∑
j=1

µ(Aj).
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It is not too hard to show that if µ is additive then µ(∅) = 0. We also have additivity for arbitrary finite
unions by induction.

If B ⊂ A and µ(B) is finite, then writing A = B ∪ (A \B) we obtain that

µ(A \B) = µ(A)− µ(B).

Another useful property for additive functions is

µ(A ∪B) + µ(A ∩B) = µ(A) + µ(B).

This follows by looking at the disjoint unions B = (B \A)∪ (A∩B) and noting that A∪B = A∪ (B \A).
So for example a nonnegative additive function is also (finitely) subadditive:

µ(A ∪B) ≤ µ(A) + µ(B).

Countably additive functions are additive of course. Also, countably additive µ play nicely with limits.

Theorem 11.3: Suppose that µ is a countably additive function on a σ-algebraM and A1 ⊂ A2 ⊂ · · ·
are sets in M and A = ∪jAj, then

lim
n→∞

µ(An) = µ(A),

where the limit has the obvious interpretation for ∞ (or −∞).

Proof. Write B1 = A1 and Bj = Aj \ Aj−1. Then the Bj’s are pairwise disjoint and A = ∪jBj, so

µ(A) =
∞∑
j=1

µ(Bj).

As An = B1 ∪B2 ∪ · · · ∪Bn then

µ(An) =
n∑
j=1

µ(Bj),

and the result follows. �

Definition: If we have a σ-algebra M of measurable sets, then we call a function

µ : M→ R
a measure if it is a nonnegative and countably additive. Sometimes µ(∅) = 0 is also given as requirement,
but that follows from additivity. Also some authors require µ to not be identically zero.

It turns out there are many different measures. The simplest measure can be defined as follows. LetM
be all of P(X), and define µ(A) = |A|, the cardinality of A. This µ is called the counting measure. Despite
how trivial this example is, it does happen to be useful; we will see it later on.

Let us construct the Lebesgue measure. What we will actually construct is a subadditive nonnegative
function on all of P(R), which will turn out to be a measure (so countably additive) on some large σ-algebra
in P(R).

Let us define a bounded interval to be a set of the form

{x : a < x < b} or {x : a ≤ x < b} or {x : a < x ≤ b} or {x : a ≤ x ≤ b}
for real numbers a ≤ b. We allow a = b, meaning we allow ∅ and the single point set {x} to also be
intervals. If I is a bounded interval, define

m(I) = b− a.
It is easy to see that given any bounded interval I and any ε > 0, there are a closed interval F and an

open interval G, with F ⊂ A ⊂ G such that

m(G)− ε ≤ m(I) ≤ m(F ) + ε.

Now the point is to show that we can extend m to a countably additive function on a σ-algebra that
contains all the intervals.
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Let E ⊂ R be any set. Let {Ij} be a countable collection of bounded open intervals covering E, that is

E ⊂
∞⋃
j=1

Ij.

Define the outer measure as

m∗(E) = inf
∞∑
j=1

m(Ij),

where the inf is taken over all coverings of E by countably many bounded open intervals.
It is immediate that m∗ is nonnegative (m∗(A) ≥ 0) and monotone (if A ⊂ B then m∗(A) ≤ m∗(B)).

Theorem 11.8: If I is a bounded interval, then m(I) = m∗(I). Also m∗ is countably subadditive.

That is m∗ is a countably subadditive extension of m.

Proof. Suppose that I is a bounded interval, and let ε > 0 be given. Then there exists an open bounded
interval G, I ⊂ G, such that m(G) ≤ m(I) + ε. As G is a covering of I by bounded open intervals,

m∗(I) ≤ m(G).

So m∗(I) ≤ m(G) ≤ m(I) + ε. As ε > 0 was arbitrary we have m∗(I) ≤ m(I). By definition of m∗ there
exists a sequence of open bounded intervals {Gj} covering I such that

∞∑
j=1

m(Gj) ≤ m∗(I) + ε.

There also exists a bounded closed interval F , F ⊂ I, such that m(F ) ≥ m(I)− ε. As F is compact, there
is some N such that

F ⊂ G1 ∪G2 ∪ · · · ∪GN .

and so

m(I) ≤ ε+m(F ) ≤ ε+
N∑
j=1

m(Gj) ≤ ε+
∞∑
j=1

m(Gj) ≤ m∗(I) + 2ε.

So m(I) ≤ m∗(I). Thus m(I) = m∗(I).

Let us show countable subadditivity. Suppose that A = ∪∞j=1Aj. If m∗(Aj) =∞ for any j, then we are
done, so suppose that m∗(Aj) is finite for every j.

Each Aj has a covering Gjk of bounded open intervals such that

∞∑
k=1

m(Gjk) ≤ m∗(Aj) + ε2−j.

So as all the Gjk together cover A

m∗(A) ≤
∞∑
j=1

∞∑
k=1

m(Gjk) ≤
∞∑
j=1

(
m∗(Aj) + ε2−j

)
≤

(
∞∑
j=1

m∗(Aj)

)
+ ε.

�

Note that by the same argument as for the example we started the section with, we have:

Corollary: If S ⊂ R is countable, then m∗(S) = 0.

It will be useful to have the following result about open subsets of R:

Proposition: An open subset W ⊂ R is a countable union of pairwise disjoint open intervals.
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Proof. For each point x ∈ W , let Ix be the largest open interval such that Ix ⊂ W and x ∈ Ix (that is,
Ix is the union of all open intervals contained in W that contain x). Every Ix contains rational points.
Furthermore if y ∈ Ix, then Iy = Ix. So

W =
⋃

x∈Q∩W

Ix

We take some enumeration of the rationals and pick one rational point in every Ix, then we have W written
as a countable union of pairwise disjoint open intervals. �

Here we depart a little from Rudin again to have a simpler definition:
Definition: A set E ⊂ R is said to be Lebesgue measurable if for each subset A ⊂ R we get

m∗(A) = m∗(A ∩ E) +m∗(A ∩ Ec).

We will denote the measurable sets by M. And unless otherwise stated (that is, when talking about
Lebesgue measure m or the associated outer measure m∗) M will mean Lebesgue measurable sets.

Note that

m∗(A) ≤ m∗(A ∩ E) +m∗(A ∩ Ec)

is always true by subadditivity of m∗. So to show that E is measurable, what we need to show is that

m∗(A) ≥ m∗(A ∩ E) +m∗(A ∩ Ec).

Furthermore, this inequality is always true when m∗(A) = ∞, so we only really need to worry about A
such that m∗(A) <∞.

If E is measurable then Ec is measurable by symmetry of the condition. It is not hard to see that ∅ and
R are measurable.

Proposition: If m∗(E) = 0, then E is Lebesgue measurable.

Proof. For any set E we have

m∗(A ∩ E) ≤ m∗(E)

so m∗(A ∩ E) = 0. Also

m∗(A ∩ Ec) ≤ m∗(A).

So

m∗(A ∩ E) +m∗(A ∩ Ec) ≤ m∗(A).

�

So for example countable sets and their complements are Lebesgue measurable.

Sets of measure 0 are called null sets. We have seen above that all countable subsets of R are null sets,
but there exist uncountable null sets as well.

Proposition: The set of Lebesgue measurable sets M is an algebra of sets.

Proof. As we said above,M is closed under complements. So we need to show that it is closed under finite
unions.

Let E and F be measurable. Given any A we have

m∗(A ∩ Ec) = m∗(A ∩ Ec ∩ F ) +m∗(A ∩ Ec ∩ F c) = m∗(A ∩ Ec ∩ F ) +m∗
(
A ∩ (E ∪ F )c

)
and

m∗(A ∩ Ec) = m∗(A)−m∗(A ∩ E).

Also A ∩ (E ∪ F ) = (A ∩ E) ∪ (A ∩ Ec ∩ F ) so

m∗
(
A ∩ (E ∪ F )

)
≤ m∗(A ∩ E) +m∗(A ∩ Ec ∩ F ).
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Hence,

m∗
(
A ∩ (E ∪ F )

)
+m∗

(
A ∩ (E ∪ F )c

)
= m∗

(
A ∩ (E ∪ F )

)
+m∗(A ∩ Ec)−m∗(A ∩ Ec ∩ F )

= m∗(A) +m∗
(
A ∩ (E ∪ F )

)
−m∗(A ∩ E)−m∗(A ∩ Ec ∩ F )

≤ m∗(A).

�

Proposition: Let E1, . . . , En be pairwise disjoint and measurable, then for any set A we have

m∗

(
A ∩

(
n⋃
j=1

Ej

))
=

n∑
j=1

m∗(A ∩ Ej).

Proof. The set En is measurable and hence

m∗

(
A ∩

(
n⋃
j=1

Ej

))
= m∗

(
A ∩

(
n⋃
j=1

Ej

)
∩ En

)
+m∗

(
A ∩

(
n⋃
j=1

Ej

)
∩ Ec

n

)

= m∗(A ∩ En) +m∗

(
A ∩

(
n−1⋃
j=1

Ej

))
and the proof follows by induction. �

Theorem: The set of Lebesgue measurable sets is a σ-algebra.

Proof. Suppose that E = ∪∞j=1Ej where all the Ej are measurable. Define F1 = E1 and Fj = Ej \ ∪j−1k=1Ek.
We have that Fj is measurable for every j as M is an algebra. We have that Fj ∩ Fk = ∅ if j 6= k, and
also that E = ∪∞j=1Fj.

Let A be any set. Then,

m∗(A) = m∗

(
A ∩

n⋃
j=1

Fj

)
+m∗

(
A ∩

(
n⋃
j=1

Fj

)c)

≥ m∗

(
A ∩

n⋃
j=1

Fj

)
+m∗(A ∩ Ec)

=
n∑
j=1

m∗(A ∩ Fj) +m∗(A ∩ Ec).

Taking limits we have

m∗(A) ≥
∞∑
j=1

m∗(A ∩ Fj) +m∗(A ∩ Ec) ≥ m∗

(
A ∩

∞⋃
j=1

Fj

)
+m∗(A ∩ Ec) = m∗(A ∩ E) +m∗(A ∩ Ec).

So E is measurable. �

Theorem: All intervals are Lebesgue measurable, and hence all open sets are measurable.

Proof. Let I be an interval of the form (−∞, x), (−∞, x], (x,∞), or [x,∞). Let ε > 0 be given and A be
an arbitrary set such that m∗(A) <∞. Let {In} be a countable collection of open bounded intervals such
that

A ⊂
∞⋃
j=1

Ij,
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and such that
∞∑
j=1

m(Ij) ≤ m∗(A) + ε.

Note that Ij ∩ I and Ij ∩ Ic are bounded intervals (could be empty). We have

m∗(A ∩ I) ≤
∞∑
j=1

m(Ij ∩ I), and

m∗(A ∩ Ic) ≤
∞∑
j=1

m(Ij ∩ Ic).

We have that m(Ij) = m(Ij ∩ I) +m(Ij ∩ Ic). So

m∗(A ∩ I) +m∗(A ∩ Ic) ≤
∞∑
j=1

m(Ij) ≤ m∗(A) + ε.

As ε > 0 was arbitrary we obtain the required inequality. If m∗(A) =∞ the inequality was trivial.
Any bounded interval is an intersection of two half infinite intervals as above, and so is measurable. Any

open set is a countable union of open intervals, and so it is also measurable. �

We of course also get that all closed sets are measurable. But we get a lot more. We get that countable
unions of closed sets are measurable, and so are countable intersections of open sets, and so on and so
forth.

It is not hard to prove that an intersection of σ-algebras is still a σ-algebra. Therefore, there exists a
smallest σ-algebra that contains the open sets (it’s the intersection of all σ-algebras containing the open
sets). This σ-algebra is denoted by B and the sets in it are called the Borel sets. As B ⊂M, we have that
all Borel sets are measurable. Sometimes it is just convenient to talk about B rather than M.

Let us now define

m : M→ [0,∞]

by defining m(E) = m∗(E). As m∗ agreed with the earlier definition of m on intervals, this new m agrees
with our earlier definition of m (on intervals). We have still not shown that m is a measure onM. We call
m the Lebesgue measure (we will show momentarily that it really is a measure, so the name is justified).

Theorem (like 11.10 in Rudin): m is countably additive, and hence a measure.

Proof. Let {Ej} be a family of pairwise disjoint Lebesgue measurable sets and let E = ∪∞j=1Ej. If m(Ej) =
∞ for any j, then m(E) =∞ and additivity is trivial. So assume that m(Ej) <∞ for all j.

Using A = R with an above proposition we have for any n

m(E) = m

(
∞⋃
j=1

Ej

)
≥ m

(
n⋃
j=1

Ej

)
=

n∑
j=1

m(Ej).

Taking limits we have

m(E) ≥
∞∑
j=1

m(Ej).

The opposite inequality follows by subadditivity. �

Proposition: If E ⊂ R is Lebesgue measurable, then for every ε > 0 there exist an open set G and a
closed set F such that F ⊂ E ⊂ G,

m(E \ F ) < ε, and m(G \ E) < ε.
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Proof. If m(E) < ∞ then G is found directly by definition of m∗. If m(E) = ∞, then we have to work a
little harder. So look at the sets Ej = E ∩ [j, j + 1). We have that m(Ej) ≤ m

(
[j, j + 1)

)
< 1 < ∞, and

E = ∪∞j=−∞Ej. For every j we can find an open set Gj such that, Ej ⊂ Gj and m(Gj \ Ej) < ε2−|j|. Let
G = ∪∞j=−∞Gj. So

m(G \ E) = m

(
∞⋃

j=−∞

(Gj \ E)

)
≤ m

(
∞⋃

j=−∞

(Gj \ Ej)

)
≤

∞∑
j=−∞

m(Gj \ Ej) <
∞∑

j=−∞

ε2−|j| = 3ε.

Then to find F , take the complement Ec and find an open set that covers it and take a complement of
that. Details are left to student. �

We remark that by letting ε go to 0, we can show (left to students) that there exists a Borel set G that
is a countable intersection of open sets, and a Borel set F that is a countable union of closed sets, such
that F ⊂ E ⊂ G

m(E \ F ) = m(G \ E) = 0.

Note that, of course, m(E) = m(F ) = m(G). So every Lebesgue measurable set is almost like a Borel set;
the difference is a null set.

Measurable functions

If we want to integrate functions, we want to know which functions play nicely with the measure, or
actually with the measurable sets. For example if S is a nonmeasurable set, then we don’t expect to be
able to integrate the characteristic function χS, as its integral should be the measure of S.

Let us work in a general measurable space (X,M), that is, a set X and a σ-algebra of sets M. If you
want to, you can think of (R,M), where M are the Lebesgue measurable sets. Note that we will not
worry about the actual measure.

Definition 11.13: Let (X,M) is a measurable space. f : X → R is said to be measurable if

f−1
(
(a,∞]

)
= {x ∈ X : f(x) > a} ∈ M

for all a ∈ R.

If X = R and M is the set of Lebesgue measurable sets, then we say that f is said to be Lebesgue
measurable. If X = R and M = B is the σ-algebra of Borel sets, then f is said to be Borel measurable.
Note that if a function is Borel measurable then it is, of course, Lebesgue measurable.

When people speak of just “measurable” functions on the real line, they will generally mean Lebesgue
measurable.

Proposition: If f : R→ R is continuous, then it is Borel measurable (and hence Lebesgue measurable).

Proof. The interval (a,∞) is open and so f−1
(
(a,∞)

)
is open and so Borel (and so Lebesgue measurable

as well). �

Theorem 11.15: Let (X,M) is a measurable space and f : X → R a function. The following are
equivalent:

(i) f is measurable, that is {x ∈ X : f(x) > a} is measurable for all a ∈ R.
(ii) {x ∈ X : f(x) ≥ a} is measurable for all a ∈ R.
(iii) {x ∈ X : f(x) < a} is measurable for all a ∈ R.
(iv) {x ∈ X : f(x) ≤ a} is measurable for all a ∈ R.
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Proof. The implications (i) implies (ii) implies (iii) implies (iv) implies (i) are shown by the following
equalities:

{x ∈ X : f(x) ≥ a} =
∞⋂
n=1

{x ∈ X : f(x) > a− 1/n},

{x ∈ X : f(x) < a} = X \ {x ∈ X : f(x) ≥ a},

{x ∈ X : f(x) ≤ a} =
∞⋂
n=1

{x ∈ X : f(x) < a+ 1/n},

{x ∈ X : f(x) > a} = X \ {x ∈ X : f(x) ≤ a}.
�

Similarly we also can prove that f−1({∞}) and f−1({−∞}) are measurable. So we could let a vary over
all of R.

Theorem 11.16 (and corollary): Let (X,M) is a measurable space and f : X → R and g : X → R
are measurable then

(i) |f | is measurable.
(ii) max(f, g) and min(f, g) are measurable.
(iii) f+ = max(f, 0) and f− = −min(f, 0) are measurable. (Note that f = f+ − f− and |f | = f+ + f−)

Proof. First item follows by {x : |f(x)| < a} = {x : f(x) < a} ∩ {x : f(x) > −a}
Second item follows by writing {x : max(f, g)(x) < a} = {x : f(x) < a} ∩ {x : g(x) < a} and
{x : min(f, g)(x) < a} = {x : f(x) < a} ∪ {x : g(x) < a}.

Last item follows by the second item. �

In fact essentially any reasonable (see below about composition) operation we do to measurable functions
lands us back in the set of measurable functions.

Theorem 11.17: Let (X,M) is a measurable space and let {fn} be a sequence of measurable functions
defined on X. Define

g1(x) = sup
n∈N

fn(x),

g2(x) = inf
n∈N

fn(x),

g3(x) = lim sup
n→∞

fn(x),

g4(x) = lim inf
n→∞

fn(x).

Then g1, g2, g3, and g4 are all measurable. In particular, if {fn} converges pointwise to f , then f is
measurable.

Proof. If g1(x) > a, then there is some n such that fn(x) > a. Similarly, if fn(x) > a for some n, then
obviously g1(x) > a. So

{x : g1(x) > a} = {x : sup
n∈N

fn(x) > a} =
∞⋃
n=1

{x : fn(x) > a}.

In other words g1 is measurable.
Similarly,

{x : g2(x) < a} = {x : inf
n∈N

fn(x) < a} =
∞⋃
n=1

{x : fn(x) < a}.

So g2 is measurable.
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Next notice that

g3(x) = lim sup
n→∞

fn(x) = inf
m∈N

(
sup
n≥m

fn(x)

)
,

g4(x) = lim inf
n→∞

fn(x) = sup
m∈N

(
inf
n≥m

fn(x)

)
.

So g3 and g4 are also measurable.
If the sequence is convergent, then limit is equal to limsup (or liminf) and hence f is measurable. �

Composition is somewhat tricky. Even if f : R → R and g : R → R are Lebesgue measurable, doesn’t
mean that f ◦ g is measurable. First we notice that what really happens is that a Lebesgue measurable
function is a function that takes Borel sets on R into Lebesgue measurable sets, that is, if A is a Borel
set then g−1(A) is Lebesgue measurable. The inverse image of a Lebesgue measurable set need not be
Lebesgue measurable for a Lebesgue measurable function. We would need something stronger:

Proposition: If f : R→ R and g : R→ R are both Borel measurable, then f ◦ g is Borel measurable.

The proof is left to student. On the other hand there exist examples of even a continuous g and Lebesgue
measurable f so that f ◦ g is not Lebesgue measurable.

Theorem 11.18: Let (X,M) is a measurable space, f : X → R and g : X → R be measurable functions,
and F : R2 → R be a continuous function, then h(x) = F

(
f(x), g(x)

)
is a measurable function.

In particular f + g and fg are measurable.

Proof. Fix a ∈ R, then look at the open set

G = {(y1, y2) : F (y1, y2) > a}.
An open set contains a whole ball around every point. So for every point y = (y1, y2) in G there is a δ > 0
such that

{(z1, z2) : y1 − δ < z1 < y1 + δ, y2 − δ < z2 < y2 + δ} ⊂ G.

Since R2 contains a dense countable subset (the set of points with rational coordinates), there are countably
many such sets whose union is G. That is, there exist sequences {an}, {bn}, {cn}, and {dn} and

In = {(z1, z2) : an < z1 < bn, cn < z2 < dn},
such that

G =
∞⋃
n=1

In.

Then

{x : h(x) > a} = {x : (f(x), g(x)) ∈ G}

=
∞⋃
n=1

{x : an < f(x) < bn, cn < g(x) < bn}

=
∞⋃
n=1

(
{x : an < f(x)} ∩ {x : f(x) < bn} ∩ {x : cn < g(x)} ∩ {x : g(x) < bn}

)
.

And so {x : h(x) > a} is measurable. �

Let us motivate what we will do next. For Riemann integral (using the Darboux approach) we really
took step functions that were less than the function, integrated those and took their supremum (that was
the lower Darboux integral). A step function is a function that is constant on intervals, that is a function
such that if I1, I2, . . . , In are disjoint intervals and c1, . . . , cn are numbers then a step function is a function
of the form

s(x) =
n∑
j=1

cjχIj(x),
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where χIj is the characteristic function of Ij (the function that is 1 on Ij and 0 elsewhere). The integral
of s was easy to define then ∫

s(x) dx =
n∑
j=1

cjm(Ij),

and m(Ij) is just the length of the jth interval. Then if we take the supremum of those sums, that is the
integrals of those step functions less than f , we get the integral of f .

For the Lebesgue approach we will do something very similar, except that we now know how to measure
a lot more sets, so we we can replace the Ij with arbitrary measurable sets. Let us first see what we replace
the step function with.

Definition: Let (X,M) is a measurable space. A function s : X → R is said to be a simple function if
the range is finite. In other words, s is simple if it attains only finitely many values.

Suppose that s is a simple function and s(X) = {c1, c2, . . . , cn}. Then let

Ej = {x : s(x) = cj},
and we can write

s(x) =
n∑
j=1

cjχEj
(x),

where χEj
is the characteristic function of Ej (the function that is 1 on Ej and 0 elsewhere). We note that

s is measurable if and only if E1, E2, . . . , En are measurable.
Be careful though, just because s has this form and is measurable doesn’t mean that the Ej are measur-

able. For example if E is a nonmeasurable set then 1 = χE + χEc , which is a measurable simple function.
The reason we made the “if and only if” statement is because the cj are all distinct numbers and the Ej
are disjoint.

It turns out that every function can be approximated by simple functions.

Theorem 11.20: Let (X,M) is a measurable space. Let f : X → R be a function. Then there is
a sequence {sn} of simple functions converging pointwise to f . If f ≥ 0, we can choose {sn} to be
monotonically increasing, that is {sn(x)} is a monotonically increasing sequence for every x. Finally, if f
is measurable, then we can choose all the sn to be measurable.

Proof. First suppose that f ≥ 0 and define for each n ∈ N, and all j = 1, 2, . . . , n2n, define

En,j =

{
x :

j − 1

2n
≤ f(x) <

j

2n

}
,

and
Fn = {x : f(x) ≥ n}.

Let

sn =
n2n∑
j=1

j − 1

2n
χEn,j + nχFn .

A moment’s reflection will show that {sn(x)}∞n=1 really does converge to f(x). Furthermore, by construction
all the sets are measurable if f is measurable.

Finally if f is not nonnegative, write f = f+ − f− and apply the above construction to f+ and f−

separately. �

Note that in the proof, if the function f is bounded, then beyond a certain n, the Fn are all empty.
Then we must be at most 2−n from the value. That means that the sequence sn converges uniformly to f
in this case (only if f is bounded).

The integral

Let X be a set and M a σ-algebra, and µ a measure. The triple (X,M, µ) is then called a measure
space. We will from now work in such an abstract measure space. Again, if you wish, you can just think of
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X = R, M the Lebesgue measurable sets and µ = m, the Lebesgue measure, but most of what we prove
will work for an arbitrary measure space.

Definition: Suppose that

s(x) =
n∑
j=1

cjχEj
(x)

is measurable (and all the Ej’s are measurable) and suppose that cj > 0. Then define∫
s dµ =

n∑
j=1

cjµ(Ej).

Given a measurable nonnegative function f , let S be the set of measurable nonnegative simple functions
s such that 0 ≤ s ≤ f ∫

f dµ = sup
s∈S

∫
s dµ.

We leave it to the student to check that this is well defined if f is a simple function. We call
∫
f dµ the

Lebesgue integral with respect to µ. We sometimes write∫
f(x) dµ(x),

in case the variable is important. If the set X needs to be emphasized we write∫
X

f dµ.

And for a measurable subset E we can define∫
E

f dµ =

∫
fχE dµ.

In the special case of Lebesgue measure we may write∫ ∞
−∞

f(x) dx =

∫
R
f dm,

∫ b

a

f(x) dx =

∫
[a,b]

f dm.

We will later prove that the notation is justified as we will obtain the same values as the Riemann integral
for Riemann integrable functions.

Also note that we could take X ⊂ R to be a measurable subset, and then we could let µ be the restriction
of m to the measurable subsets of X. Then∫

X

f |X dµ =

∫
R
fχX dm,

where one integral exists if and only if the other one does.

Definition: For an arbitrary measurable function f write f = f+−f− and if at least one of the integrals∫
f+ dµ and

∫
f− dµ

is finite, we define ∫
f dµ =

∫
f+ dµ−

∫
f− dµ.

If both
∫
f+ dµ and

∫
f− dµ are finite then we say f is integrable (or summable) or perhaps more precisely f

is Lebesgue integrable with respect to µ and we write f ∈ L1(µ) or f ∈ L1(X,µ). If E ⊂ X is measurable,
then L1(E, µ) has the obvious meaning. We may write L1 or L1(X) if the measure is clear from context.

Note that we require both of the integrals to be finite to say integrable.

Proposition:
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(i) If a ≤ f(x) ≤ b for all x ∈ E and µ(E) <∞, then

aµ(E) ≤
∫
E

f dµ ≤ bµ(E).

In particular, if µ(E) <∞ and a real-valued f is bounded on E, then f ∈ L1(E, µ).
(ii) Suppose that f, g are either integrable or f, g are nonnegative and measurable. If f(x) ≤ g(x) for all

x, then ∫
f dµ ≤

∫
g dµ.

(iii) If f ≥ 0 is measurable, and A and B are disjoint and measurable then∫
A∪B

f dµ =

∫
A

f dµ+

∫
B

f dµ.

Proof. For part (i) note that aχE(x) ≤ f(x)χE(x) ≤ bχE(x) and aχE and bχE are simple functions.
Without loss of generality assume that E = X. If a ≥ 0, then f = f+ and f− = 0, and also a ≤ f . So the
first inequality follows. Any simple function less than f is also less than b showing the second inequality.
The cases b ≤ 0 and a < 0 < b follow similarly.

Part (ii) can be proved by noting that f+ ≤ g+ and f− ≥ g−. So we only need to prove the result for
nonnegative measurable functions. If s is simple and s ≤ f , then s ≤ g and the result follows.

Let us prove part (iii). Let s ≤ fχA∪B be a nonnegative measurable simple function s =
∑n

j=1 cjχEj

then ∫
A∪B

s dµ =
n∑
j=1

cjµ(Ej) =
n∑
j=1

cjµ(Ej ∩ A) +
n∑
j=1

cjµ(Ej ∩B) =

∫
A

s dµ+

∫
B

s dµ.

Note that if 0 ≤ s ≤ fχA∪B then sχA ≤ fχA and sχA ≤ fχA. Therefore taking suprema over all such s
we get ∫

A∪B
f dµ ≤

∫
A

f dµ+

∫
B

f dµ.

If
∫
A
f dµ = ∞ or

∫
B
f dµ = ∞, then

∫
A∪B f dµ = ∞ and equality follows. So let’s assume that all 3 are

finite. Given ε > 0 find a measurable simple s ≤ fχA∪B such that∫
A

s dµ ≥
∫
A

f dµ− ε and

∫
B

s dµ ≥
∫
B

f dµ− ε.

This is not hard to do as A and B are disjoint, so just find s1 that works on A (and is zero outside of A)
and s2 that works for B (and is zero outside of B) and let s = s1 + s2. Then∫

A∪B
f dµ ≥

∫
A∪B

s dµ =

∫
A

s dµ+

∫
B

s dµ ≥
∫
A

f dµ+

∫
B

f dµ− 2ε.

�

Let us integrate complex valued functions.

Definition: Suppose that f : X → C is a function. If f = u + iv where u and v are real-valued, then
we say that f is measurable if u and v are.

If u and v are integrable, then we say that f is integrable and we write∫
f dµ =

∫
u dµ+ i

∫
v dµ.

Note that if f is measurable then |f | =
√
u2 + v2 is also measurable.

In general when we write L1(X,µ) from now on we will mean complex valued functions. It turns out
there is no loss in generality by not allowing the values ±∞ for integrable functions. The set where an L1

function could be ∞ must be a null set.

Proposition:
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(i) If µ(E) <∞ and f : X → C is measurable and bounded on E, then f ∈ L1(E, µ).
(ii) If f ∈ L1(µ) and A and B are disjoint and measurable, then∫

A∪B
f dµ =

∫
A

f dµ+

∫
B

f dµ.

(iii) If f ∈ L1(µ) and c ∈ C, then cf ∈ L1(µ) and∫
cf dµ = c

∫
f dµ.

(iv) If µ(E) = 0 and f : X → C is measurable then f ∈ L1(E, µ) and∫
E

f dµ = 0.

(v) If f ∈ L1(µ) and A and B are measurable with B ⊂ A and µ(A \B) = 0 then∫
A

f dµ =

∫
B

f dµ.

(vi) If f ∈ L1(X,µ) and E ⊂ X is measurable, then f ∈ L1(E, µ).

Proof. We leave the proof to the reader. Note that for example parts (i) and (ii) follow almost trivially
from parts (i) and (iii) of the proposition for real functions. �

We note that the above proposition, among other things shows that measure zero sets are not relevant
to integration, that is the integral doesn’t see something that happens on a measure zero set. This leads
us to the following definition.

Definition: Let (X,M, µ) be a measure space as above and let f and g be functions defined on X. We
write

f = g almost everywhere

if the set
E = {x : f(x) 6= g(x)}

is a null set, that is µ(E) = 0. We will say that f = g almost everywhere on A, where A ⊂ X, if f |A = g|A
almost everywhere, or in other words if

µ({x : f(x) 6= g(x)} ∩ A) = 0.

If something happens outside of a measure zero set we say it happens almost everywhere. For example,
we write

f ≤ g almost everywhere,

if the set where f(x) 6≤ g(x) is of measure zero. Sometimes we just write

f = g a.e. or f(x) = g(x) a.e.

Proposition:

(i) The relation f = g almost everywhere is an equivalence relation.
(ii) If f = g almost everywhere, then ∫

f dµ =

∫
g dµ.

The proof is easy. For equivalence relation you must prove that First, we have that f = f a.e. Further,
if f = g a.e., then g = f a.e. Finally, if f = g a.e. and g = h a.e., then f = h a.e. The second item follows
by integrating only on the set where f and g are equal.

When talking about L1(X,µ), we usually talk about the equivalence class of functions under equality
almost everywhere. That is, if f = g a.e., then we just consider f and g the same element of L1(X,µ).
It is a common abuse of notation to consider L1(X,µ) to be either the set of integrable functions or the
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set of equivalence classes. So we write f ∈ L1 even though we really mean that f is a member of an
equivalence class that itself is a member of L1. Notice also that when talking about L1(X,µ), we only
need to consider complex-valued (or real-valued) functions, and ignore where the set where the function is
infinite; if a function is integrable and has values in the extended reals, then it is equal almost everywhere
to a function that is just real-valued.

Many results involving the integral only require a hypothesis that holds almost everywhere. It is generally
very easy to see when this is possible, for example suppose that f ≤ g almost everywhere and f and g are
either nonnegative or in L1 (so that the integral is defined). Then using the proposition above we obtain∫

f dµ ≤
∫
g dµ.

Theorem 11.24: Suppose that (X,M, µ) is a measure space, f is measurable and f ≥ 0. The function
ϕ : M→ R defined by

ϕ(A) =

∫
A

f dµ

is countably additive. Furthermore, if f ∈ L1(X,µ) then ϕ : M → C defined in the same way is also
countably additive.

Proof. If the theorem is true for f ≥ 0, then it follows for f ∈ L1 by writing f = u+ iv, u = u+− u−, and
v = v+ − v−. So let us just assume that f ≥ 0. Notice that this makes ϕ nonnegative as well.

Let {En} be a countable collection of pairwise disjoint measurable sets and let E = ∪∞n=1En. If ϕ(En) =
∞ for any n, then as

ϕ(En) =

∫
χEnf dµ ≤

∫
χEf dµ = ϕ(E)

we also get that ϕ(E) = ∞. So countable additivity follows trivially. So from now on assume that
ϕ(En) <∞ for all n.

If f =
∑m

j=1 cjχAj
is a measurable nonnegative simple function (all the cj ≥ 0 and all the Aj are

measurable) then

ϕ(E) =

∫
E

m∑
j=1

cjχAj
dµ =

∫ m∑
j=1

cjχAj
χE dµ =

∫ m∑
j=1

cjχAj∩E dµ

=
m∑
j=1

cjµ
(
Aj ∩ (∪∞n=1En)

)
=

m∑
j=1

cjµ
(
∪∞n=1(Aj ∩ En)

)
=

m∑
j=1

cj

∞∑
n=1

µ(A ∩ En)

=
∞∑
n=1

m∑
j=1

cjµ(A ∩ En) =
∞∑
n=1

∫ m∑
j=1

cjχAj∩En dµ =
∞∑
n=1

∫
En

m∑
j=1

cjχAj
dµ =

∞∑
n=1

ϕ(En).

So suppose that f ≥ 0 is any measurable function. If 0 ≤ s ≤ f and s is simple then∫
E

s dµ =
∞∑
n=1

∫
En

s dµ ≤
∞∑
n=1

∫
En

f dµ =
∞∑
n=1

ϕ(En).

By definition of the integral when we take the supremum of the simple functions less than f we get

ϕ(E) =

∫
E

f dµ ≤
∞∑
n=1

ϕ(En).

Remember that ϕ(En) <∞ for all n. Let ε > 0 be given. Find a measurable simple s ≥ 0 such that for
all j = 1, . . . , n we have ∫

Ej

s dµ ≥
∫
Ej

f dµ− ε = ϕ(Ej)− ε.
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Again this is easy directly from the definition as all the Ej are pairwise disjoint.

ϕ(∪nj=1Ej) ≥
∫
∪nj=1Ej

s dµ =
n∑
j=1

∫
Ej

s dµ ≥
n∑
j=1

(
ϕ(Ej)− ε

)
=

(
n∑
j=1

ϕ(Ej)

)
− nε.

As ε > 0 we obtain

ϕ

(
n⋃
j=1

Ej

)
≥

n∑
j=1

ϕ(Ej).

Next,

ϕ(E) ≥ ϕ

(
n⋃
j=1

Ej

)
≥

n∑
j=1

ϕ(Ej).

Taking limits we get

ϕ(E) ≥
∞∑
j=1

ϕ(Ej).

And we obtain countable additivity. �

Theorem (Triangle inequality for the integral): (extended 11.26 from Rudin) For a measurable
function f on a measure space (X,M, µ) we have f ∈ L1(X,µ) if and only if |f | ∈ L1(X,µ), and in this
case, ∣∣∣∣∫ f dµ

∣∣∣∣ ≤ ∫ |f | dµ.
Often we write

‖f‖L1 = ‖f‖L1(X,µ) =

∫
|f | dµ.

This norm provides the “distance from the origin” for the space L1, and will actually make L1 into a
complete metric space (this will be an exercise) if we consider elements of L1 to be the equivalence classes
of functions under equality almost everywhere as we mentioned above. The proposition gives a way of
testing that f is in L1 by testing that ‖f‖L1 <∞. The left hand side of the inequality in the theorem does
not always make sense, but the right hand side makes sense for any measurable function if we allow it to
be infinite.

Proof. First suppose that f is real-valued and write f = f+ − f−. Let A = {x : f(x) ≥ 0} and B = {x :
f(x) < 0}. Then A and B are measurable and disjoint and X = A ∪B. So∫

|f | dµ =

∫
A

|f | dµ+

∫
B

|f | dµ =

∫
A

f+ dµ+

∫
B

f− dµ =

∫
f+ dµ+

∫
f− dµ.

If f ∈ L1, then the right hand side is finite and so |f | (which is a nonnegative function) must be in L1.
Similarly if the left hand side is finite then the right hand side must be finite, because a sum of two
nonnegative extended real numbers is finite if and only if they are both finite.

Now assume that f complex valued. First suppose that |f | ∈ L1. Then
(
Re(f)

)+ ≤ |f | and
(
Re(f)

)− ≤
|f |. As ∫ (

Re(f)
)+
dµ ≤

∫
|f | dµ <∞ and

∫ (
Re(f)

)−
dµ ≤

∫
|f | dµ <∞,

we have that Re(f) is integrable. Similarly, Im(f) is integrable and therefore f itself is integrable.
Next suppose that f ∈ L1. That means that if f = u+ iv, then u and v are in L1 and so |u| and |v| are

in L1 as we saw above. By triangle inequality we have |f | ≤ |u| + |v|. Let A = {x : |u(x)| ≥ |v(x)|} and
B = {x : |u(x)| < |v(x)|}. Then A and B are measurable and disjoint and X = A ∪ B. On A we have
|f | ≤ 2 |u| and on B we have |f | ≤ 2 |v| and∫

|f | dµ =

∫
A

|f | dµ+

∫
B

|f | dµ ≤ 2

∫
A

|u| dµ+ 2

∫
B

|v| dµ.
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And that’s finite. Note that the argument could be somewhat simpler if we already knew linearity of the
integral; we will prove linearity little later.

To show the inequality in case f ∈ L1, we find a c ∈ C such that |c| = 1 and∣∣∣∣∫ f dµ

∣∣∣∣ = c

∫
f dµ =

∫
cf dµ.

And cf is also L1. Next, the integral of cf is real so∫
cf dµ =

∫
Re(cf) dµ+ i

∫
Im(cf) dµ =

∫
Re(cf) dµ.

And finally we have that for every x

Re
(
cf(x)

)
≤ |cf(x)| = |f(x)| .

So ∣∣∣∣∫ f dµ

∣∣∣∣ =

∫
Re(cf) dµ ≤

∫
|f | dµ.

�

One way the theorem sometimes arises is that if we find a g ∈ L1(X,µ) such that |f | ≤ g almost
everywhere (or perhaps even everywhere), then f ∈ L1(X,µ) (see Theorem 11.27 in Rudin). This just
follows trivially.

We now get to one of the main theorems in the theory of the Lebesgue integral, one of those that make
the Lebesgue theory so useful. The three theorems I am talking about is Lebesgue’s monotone convergence
theorem, Fatou’s lemma (Rudin calls it a theorem), and Lebesgue’s dominated convergence theorem. (This
is a hint: these theorems will almost surely (look up “almost surely” on wikipedia) be on the exam).

Theorem 11.28 (Lebesgue’s monotone convergence theorem): Let (X,M, µ) be a measure space
and let {fn} be a sequence of nonnegative measurable functions such that

0 ≤ f1(x) ≤ f2(x) ≤ · · ·
for all x. Let

f(x) = lim
n→∞

fn(x)

(
= sup

n∈N
fn(x)

)
.

Then

lim
n→∞

∫
fn dµ =

∫
f dµ.

That is, for a monotone sequence of functions we can always swap the limit and the integral.

Proof. The sequence
∫
fn dµ is monotone, so there is some L (possibly infinity) with

L = lim
n→∞

∫
fn dµ.

We also have by monotonicity that
∫
fn dµ ≤

∫
f dµ, so

L ≤
∫
f dµ.

Let c ∈ (0, 1) be a number and let s be a measurable simple function such that 0 ≤ s ≤ f . Further, let

En = {x : fn(x) ≥ cs(x)}.
It is clear that E1 ⊂ E2 ⊂ · · · by monotonicity of the sequence {fn}. As s(x) ≤ f(x) we have cs(x) < f(x)
and so eventually for any x, there is an n such that fn(x) ≥ cs(x). Hence, X = ∪∞n=1En.

L ≥
∫
fn dµ ≥

∫
En

fn dµ ≥ c

∫
En

s dµ.
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The integral of s over a set is a countably additive function by Theorem 11.24, and so by Theorem 11.3.
So the right hand side converges to c

∫
s dµ, and hence

L ≥ c

∫
s dµ.

As this is true for arbitrary c ∈ (0, 1) we get L ≥
∫
s dµ. This was an arbitrary simple measurable function

s less than f , so

L ≥
∫
f dµ.

And we are done. �

Let us use the monotone convergence theorem to prove linearity of the integral.

Theorem 11.29: Let (X,M, µ) be a measure space. Suppose f, g are nonnegative and measurable
then ∫

(f + g) dµ =

∫
f dµ+

∫
g dµ.

Furthermore, if f, g ∈ L1(X,µ), then h = f + g is also in L1 and we also get∫
(f + g) dµ =

∫
f dµ+

∫
g dµ.

Proof. First suppose that f, g are nonnegative. It is not hard to see linearity for simple functions, so the
result holds for simple functions. Now choose a monotone sequences of simple functions {sn} and {rn}
converging to f and g from below (Theorem 11.20). We have∫

(sn + rn) dµ =

∫
sn dµ+

∫
rn dµ.

Note that {sn + rn} is a monotone sequence approaching f + g from below. So by monotone convergence
theorem we can take the limit to get ∫

h dµ =

∫
f dµ+

∫
g dµ.

Now suppose that f ≥ 0 and g ≤ 0. Let A = {x : h(x) ≥ 0} and B = {x : h(x) < 0. Then on A, h, −g,
and f are nonnegative and so∫

A

f dµ =

∫
A

(
h+ (−g)

)
dµ =

∫
A

h dµ+

∫
A

(−g) dµ =

∫
A

h dµ−
∫
A

g dµ.

On B, −h, −g, and f are nonnegative.

−
∫
B

g dµ =

∫
B

(−g) dµ =

∫
B

(
f + (−h)

)
dµ =

∫
B

f dµ−
∫
B

h dµ.

We now can write∫
h dµ =

∫
A

h dµ+

∫
B

h dµ =

∫
A

f dµ+

∫
A

g dµ+

∫
B

f dµ+

∫
B

g dµ =

∫
f dµ+

∫
g dµ.

We divide the space into 4 pairwise disjoints sets where f and g have constant sign. We apply the two
above cases to get the result in each of the four sets and we put them together just like above. We leave
the details to the reader.

Similarly, if f and g are complex valued, then we just apply the result to the real and imaginary parts. �
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In other words for any finite sum of nonnegative or integrable functions we have∫ n∑
j=1

fj(x) dµ =
n∑
j=1

∫
fj(x) dµ.

Therefore we have a corollary of the monotone convergence theorem.

Corollary 11.30: Let (X,M, µ) be a measure space. Suppose {fn} are nonnegative and measurable
functions. Then ∫ ∞∑

n=1

fn(x) dµ =
∞∑
n=1

∫
fn(x) dµ.

What can we say if we don’t have monotonicity? The following is classically called the Fatou Lemma,
though Rudin calls it the Fatou Theorem.

Theorem 11.31 (Fatou’s lemma): Let (X,M, µ) be a measure space. If {fn} is a sequence of
nonnegative measurable functions then∫

lim inf
n→∞

fn(x) dµ(x) ≤ lim inf
n→∞

∫
fn(x) dµ(x).

Example: The way to remember which way the inequality goes (and to see why we really need an
inequality) is to think of the following example: Let fn = χ[n,n+1]. Then lim infn→∞ fn(x) = 0 for all x,
but

∫
fndm = 1 for all n.

Proof. For any n let
gn(x) = inf

k≥n
fk(x)

The gn are measurable and now they are also monotone increasing

0 ≤ g1(x) ≤ g2(x) ≤ · · · .
Furthermore limn→∞ gn(x) = lim infn→∞ fn(x) by definition of lim inf. So using the monotone convergence
theorem, ∫

lim inf
n→∞

fn dµ =

∫
lim
n→∞

gn dµ = lim
n→∞

∫
gn dµ = lim inf

n→∞

∫
gn dµ ≤ lim inf

n→∞

∫
fn dµ.

The last inequality because gn ≤ fn for all n. �

Theorem 11.32 (Lebesgue’s dominated convergence theorem): Let (X,M, µ) be a measure
space. Let {fn} be a sequence of measurable functions converging pointwise almost everywhere to a
function f : X → C, and suppose that there exists a function g ∈ L1(X,µ) such that

|fn(x)| ≤ g(x)

for almost every x and all n. Then

lim
n→∞

∫
fn dµ =

∫
f dµ.

It is instructive to think about why the dominated convergence theorem does not apply to the sequence
in the example after Fatou’s lemma, that is fn = χ[n,n+1]. We see that a g would have to be at least
identically 1 from some point onwards, and such a g would never be integrable.

Another sequence that is useful to think about is fn = nχ(0,1/n]. {fn} goes pointwise to 0, but∫ 1

0
fn(x) dx = 1 for all n. Note that there is no g again. This time because the sequence “blows up”

too quickly near the origin.
These two behaviours are the two things that can in general “go wrong.” Either the set where all the

action happens is “escaping to infinity,” or the sequence “blows up” somewhere. Having a dominating
g ∈ L1 avoids both of these types of behaviours.
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Proof. First we note that by changing fn’s and g on a set of measure zero doesn’t change their integrals.
Therefore, if we redefine fn(x) = f(x) = g(x) = 0 for all the x where convergence did not happen, we can
just assume without loss of generality that fn goes to f pointwise everywhere, and furthermore we can for
the same reason assume that |fn(x)| ≤ g(x) for all x.

We have that fn ∈ L1 and by taking a limit we have that |f(x)| ≤ g(x) and so f ∈ L1.
Also note that

∣∣Re
(
fn(x)

)∣∣ ≤ |fn(x)| ≤ g(x) for all x, and same for the imaginary part. Therefore the
hypotheses apply to the real and imaginary part of fn and f . If we prove the theorem for real functions,
it is easy to see that the theorem applies for complex valued functions. So assume from now on that {fn}
and f are all real-valued.

Now fn + g ≥ 0, so apply Fatou’s lemma to get∫
(f + g) dµ ≤ lim inf

n→∞

∫
(fn + g) dµ.

By linearity we get ∫
f dµ ≤ lim inf

n→∞

∫
fn dµ.

Similarily g − fn ≥ 0 and so by Fatou,∫
(g − f) dµ ≤ lim inf

n→∞

∫
(g − fn) dµ.

Again by linearity we get

−
∫
f dµ ≤ lim inf

n→∞

(
−
∫
fn dµ

)
,

or ∫
f dµ ≥ lim sup

n→∞

∫
fn dµ.

In other words ∫
f dµ ≥ lim sup

n→∞

∫
fn dµ ≥ lim inf

n→∞

∫
fn dµ ≥

∫
f dµ.

This implies the theorem. �

Exercise: Prove reverse Fatou: Let (X,M, µ) be a measure space. If {fn} is a sequence of measurable
functions and g ∈ L1(µ) such that fn ≤ g for all n, then

lim sup
n→∞

∫
fn(x) dµ(x) ≤

∫
lim sup
n→∞

fn(x) dµ(x).

Define
fn = 1/nχ[n,2n].

Then fn’s go to 0 uniformly on R, yet
∫
fn = 1 for all n. But we do have the following. If the space is of

finite measure though, we can in fact swap limits.

Exercise: Let (X,M, µ) be a measure space with µ(X) < ∞. Let {fn} be a sequence of measurable
functions that converges uniformly to f : X → C. Then show that

lim
n→∞

∫
fn dµ =

∫
f dµ.

In fact a far stronger result is true.

Exercise: Let (X,M, µ) be a measure space with µ(X) <∞. Let {fn} be a uniformly bounded (there
exists an M such that |fn(x)| ≤ M for all x and all n) sequence of measurable functions that converges
pointwise to f : X → C. Then show that

lim
n→∞

∫
fn dµ =

∫
f dµ.
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Exercise: Let L1(X,µ) denote the equivalence classes of functions equal almost everywhere. Prove that
L1(µ) is a complete metric space with the metric

d(f, g) = ‖f − g‖L1 =

∫
|f − g| dµ,

where we take any representative f and g of the equivalence class.

Let us prove a strong version of the “differentiate under the integral sign” theorem.

Corollary: Let I ⊂ R be an open interval and let (Y,M, µ) be a measure space. Suppose f : I×Y → C
satisfies all of the following:

(i) For every fixed x ∈ I, the function y 7→ f(x, y) is in L1(Y, µ).
(ii) For almost every y ∈ Y , the derivative ∂f

∂x
(x, y) exists for all x ∈ I.

(iii) There is a g ∈ L1(Y, µ) such that
∣∣∂f
∂x

(x, y)
∣∣ ≤ g(y) for all x ∈ I and almost every y ∈ Y (in particular

only when the derivative is defined).

Then
∂

∂x

[∫
Y

f(x, y) dµ(y)

]
=

∫
Y

∂f

∂x
(x, y) dµ(y)

for all x ∈ I.

Here we may be committing a slight abuse of notation ∂f
∂x

(x, y) is defined almost everywhere only. But
since we are integrating it, this doesn’t matter, we can just set it to whatever we wish on the set where it
is not defined.

Proof. Fix x ∈ I. Pick {xn} in I such that lim xn = x. Now for any y ∈ Y take

ϕn(y) =
f(xn, y)− f(x, y)

xn − x
.

We have that ϕn goes to ∂f
∂x

(x, y) pointwise almost everywhere. So suppose that y is such that the derivative
exists. Then by mean value theorem there is a t between xn and x such that

ϕn(y) =
∂f

∂x
(t, y).

So

|ϕn(y)| =
∣∣∣∣∂f∂x (t, y)

∣∣∣∣ ≤ g(y)

almost everywhere. We can now apply dominated convergence theorem to∫
f(xn, y) dµ(y)−

∫
f(x, y) dµ(y)

xn − x
=

∫
f(xn, y)− f(x, y)

xn − x
dµ(y) =

∫
ϕn dµ.

�

To avoid the “almost everywhere”s in the argument, we could have also only taken the subset of Y for
which the derivative exists to begin with, and just work there. The result would be the same.

Exercise: Prove the following generalization: Let I ⊂ R be an open interval and let (Y,M, µ) be a
measure space. Suppose f : I × Y → C satisfies all of the following:

(i) For every fixed x ∈ I, the function y 7→ f(x, y) is in L1(Y, µ).
(ii) There is an x0 ∈ I such that for almost every y ∈ Y , there exists an εy > 0, such that the derivative

∂f
∂x

(x, y) exists for all x ∈ (x0 − εy, x0 + εy) ⊂ I.

(iii) There is a g ∈ L1(Y, µ) such that for almost every y ∈ Y , the inequality
∣∣∂f
∂x

(x, y)
∣∣ ≤ g(y) holds for

all x ∈ (x0 − εy, x0 + εy).
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Then
∂

∂x

∣∣∣
x=x0

[∫
Y

f(x, y) dµ(y)

]
=

∫
Y

∂f

∂x
(x0, y) dµ(y).

Note: By ∂
∂x

∣∣
x=x0

we mean the derivative at x0.

Exercise: Prove the following classical version: If f : [a, b]× [c, d]→ C is continuous, and ∂f
∂x

(x, y) exists
and is continuous on [a, b]× [c, d], then

∂

∂x

[∫ d

c

f(x, y) dy

]
=

∫ d

c

∂f

∂x
(x, y) dy.

The Riemann integral via the Lebesgue integral

We still have not shown that the Lebesgue integral is an integral in the sense that we are used to. That
is, that the Lebesgue integral and the Riemann integral agree on Riemann integrable functions.

To distinguish the Riemann and the Lebesgue integral, let us write

R
∫ b

a

f(x) dx

for the Riemann integral. In the following we use the Lebesgue measure m on R and we write∫ b

a

f(x) dx =

∫
[a,b]

f dm.

Theorem 11.33:

(i) If f : [a, b]→ C is Riemann integrable, then it is Lebesgue integrable on [a, b] and∫ b

a

f(x) dx = R
∫ b

a

f(x) dx.

(ii) The function f : [a, b]→ C is Riemann integrable if and only if f is bounded and continuous almost
everywhere on [a, b].

Proof. If we prove the result for real-valued functions it is easy to extend it to complex valued functions.
Let f : [a, b] → R be a bounded function. Let P = {x0, . . . , xn} be a partition of [a, b], that is a finite set
of points such that a = x0 < x1 < · · · < xn = b. Define

mj = inf{f(x) : x ∈ [xj−1, xj]} and Mj = sup{f(x) : x ∈ [xj−1, xj]}.
Define the step functions

s = m1χ[x0,x1] +
n∑
j=2

mjχ(xj−1,xj ] and r = M1χ[x0,x1] +
n∑
j=2

Mjχ(xj−1,xj ].

Note that for all x ∈ [a, b] we have s(x) ≤ f(x) ≤ r(x).
It is not hard to see that we can pick a sequence {Pk} of partitions with Pk ⊂ Pk+1 (a sequence of

refinements) and such that∫ b

a

f(x) dx = lim
k→∞

L(Pk, f) and

∫ b

a

f(x) dx = lim
k→∞

U(Pk, f),

where L(Pk, f) and U(Pk, f) are the lower and upper Darboux sums, and
∫ b
a

and
∫ b
a

are the lower and the

upper Darboux integrals.
Let sk and rk be the step functions corresponding to Pk. It is easy to see that∫ b

a

sk(x) dx = L(Pk, f) and

∫ b

a

rk(x) dx = U(Pk, f).
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Because the Pk are successive refinements, we have that sk(x) ≤ sk+1(x) ≤ f(x) ≤ rk+1(x) ≤ rk(x) for
all x. We have that {sk} and {rk} are monotone and pointwise bounded and so they have a pointwise
limit. Let

g(x) = lim
k→∞

sk(x) and h(x) = lim
k→∞

rk(x).

By monotone convergence theorem we have that∫ b

a

f(x) dx =

∫ b

a

g(x) dx and

∫ b

a

f(x) dx =

∫ b

a

h(x) dx.

Recall f is Riemann integrable if and only if
∫ b
a
f(x) dx =

∫ b
a
f(x) dx. Or in other words if and only if∫ b

a

h(x)− g(x) dx = 0.

As h(x) ≥ g(x) for all x, we have (by an exercise) that h(x) = g(x) a.e. Now suppose that h(x) = g(x) a.e.
Then as g(x) ≤ f(x) ≤ g(x) a.e., we have g(x) = f(x) a.e. So f(x) ∈ L1 (in particular it is measurable),
and ∫ b

a

f(x) dx =

∫ b

a

g(x) dx =

∫ b

a

f(x) dx = R
∫ b

a

f(x) dx.

This proves the first part of the theorem.
Now suppose that h(x) = g(x) a.e. Fix x such that x /∈ Pk for all k, and such that h(x) = g(x). It is

not hard to see that f must be continuous at x: Given an ε > 0, simply choose k large enough such that
for the sk and rk the interval that contains x satisfies Mj −mj < ε. Then we must have that f is stuck
between mj and Mj for a whole interval around x (because x is not an endpoint of one of the subintervals
of the partition Pk).

For the opposite direction let us make a further assumption that Pk has width at most 1/k, that is, the size
of the largest interval in Pk is at most 1/k. Suppose that f is bounded and continuous almost everywhere.
Let x be a point where f is continuous and x /∈ Pk for all k. Then given ε > 0 find a K > 0 such that
|f(x)− f(y)| < ε for all y such that |x− y| < 1/k for all k ≥ K. If k ≥ K, and x ∈ [xj−1, xj] in the partition
Pk, then from continuity we conclude that f(x)−sk(x) = f(x)−mj ≤ ε and rk(x)−f(x) = Mj−f(x) ≤ ε.
Hence g(x) = h(x).

Now note that f is Riemann integrable if and only if f is bounded and h(x) = g(x) a.e. The union of
all the Pk is still only a countable (and hence measure zero) set. So f is Riemann integrable if and only if
it is bounded and continuous almost everywhere. �

Notice a funky thing: we have proved a result about Riemann integral (classification of Riemann inte-
grable functions) using the Lebesgue integral machinery. For example, we have seen last semester that the
popcorn function defined on (0, 1)

f(x) =

{
0 if x is irrational
1/n if x = m/n in lowest terms

is continuous at all the irrational points, and hence is continuous almost everywhere. So as an immediate
consequence we obtain that f is Riemann integrable, and furthermore since it equals 0 almost everywhere,
then ∫ 1

0

f(x) dx = 0.

Anything we know about the Riemann integral carries over to Lebesgue integral. Although some theo-
rems do require a bit more work if we want to state them in full generality. For example, we leave it to
the reader to prove that if f ∈ L1(R) then the function

F (x) =

∫ x

−∞
f(x) dx
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is continuous. The proofs are often similar to those for the Riemann integral.

Be careful about using this theorem and improper Riemann integrals. For example,∫ ∞
0

sin(x)

x
dx = lim

b→∞

∫ b

0

sin(x)

x
dx =

π

2

when thought of as an improper Riemann integral. Let’s not worry now about how to prove that, a proof
requires complex analysis. It is not too difficult to show that the limit exists by explicit estimation. But
sin(x)
x

is not in L1 as ∫ ∞
0

∣∣∣∣sin(x)

x

∣∣∣∣ dx =∞.

Which is also not too hard to show. We leave it as an exercise to show the two facts we mentioned. The
hint is to use the harmonic series.

Examples of Lebesgue integration over other measures.

Example: Suppose that (N,P(N), µ) is a measure space where µ is the counting measure (that is
µ(A) = |A|). Then for f : N → C is integrable if and only if

∑
f(n) is absolutely summable, and in this

case we have, ∫
N
f(n) dµ =

∞∑
n=1

f(n).

Example: The δ-function that we have mentioned before is also a measure. Take the set R with the
σ-algebra P(R) of all subsets of R. The δ-function is really the measure defined by

δ(A) =

{
1 if 0 ∈ A,

0 if 0 /∈ A.

We leave it to the reader that this really is a measure. Note that all functions are measurable, and all
functions where |f(0)| <∞ are integrable, and we get that∫

f dδ = f(0).

This is usually written as ∫ ∞
−∞

f(x)δ(x) dx = f(0),

although that is somewhat of an abuse of notation as δ(x) is not a function. There is no need to only use
0. We could define δy to be the measure that tests if y ∈ A, and then

∫
f dδy = f(y).

Example: You could also combine measures. The measure µ = m+ δ is a measure such that∫
f dµ =

∫
f dm+ f(0).

Example: Another example is the measure defined by dµ(x) = f(x) dm(x) (that is, µ(A) =
∫
A
f dm)

for some measurable f ≥ 0. Then
∫
g dµ =

∫
g(x)f(x) dm(x).

Exercise: Let {fn} be a sequence of measurable functions converging uniformly to 0, show that

lim
n→∞

∫ ∞
−∞

fn(x)

1 + x2
dx = 0.


