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Abstract: We study the Betti numbers of graded ideals containing the squares of the
variables, in a polynomial ring. We prove the lex-plus-powers conjecture for such ideals.

1. Introduction

Throughout the paper S = k[x1, . . . , xn] is a polynomial ring over a field k graded by
deg(xi) = 1 for all i, and P = (x2

1, . . . , x
2
n) is the ideal generated by the squares of the

variables.
It is well known how the Hilbert function changes when we add P to a squarefree

monomial ideal I; this is given by the relation between the f -vector and the h-vector,
cf. [BH]. It has been an open question how the Betti numbers change. We answer this
question in Theorem 2.1, which provides a relation between the Betti numbers of I
and those of I +P . In Theorem 3.3, we describe a basis of the minimal free resolution
of I + P in the case when I is Borel.

By Kruskal-Katona’s Theorem [Kr,Ka], there exists a squarefree lex ideal L such
that L+P has the same Hilbert function as I +P . The ideal L+P is called lex-plus-
squares. It was conjectured by Herzog and Hibi that the graded Betti numbers of L+P
are greater than or equal to those of I+P . Later, Graham Evans conjectured the more
general lex-plus-powers conjecture that, among all graded ideals with a fixed Hilbert
function and containing a homogeneous regular sequence in fixed degrees, the lex-plus-
powers ideal has greatest graded Betti numbers in characteristic 0. This conjecture is
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very difficult and wide open. Some special cases are proved by G. Evans, C. Francisco,
B. Richert, and S. Sabourin [ER,Fr1,Fr2,Ri,RS]. An expository paper describing the
current status of the conjecture is [FR]. In 5.1 we prove the following:

Theorem 1.1. Suppose that char (k) = 0. Let F be a graded ideal containing P =
(x2

1, . . . , x
2
n). Let L be the squarefree lex ideal such that F and the lex-plus-squares

ideal L+P have the same Hilbert function. The graded Betti numbers of the lex-plus-

squares ideal L+ P are greater than or equal to those of F .

The methods used in [Bi,Hu,Pa,CGP] to show that the lex ideal has greatest
Betti numbers are not applicable; see Examples 3.10 and 3.11. We use the technique
of compression. Compression was introduced by Macaulay [Ma], and used by [Ma,
CL,MP1,MP2,Me1,Me2] to study Hilbert functions. It is not known how Betti numbers
behave under compression, but it is reasonable to expect that they increase. We address
this in Section 4.

The proof of Theorem 1.1 consists of the following steps:
◦ In Section 5 (the proof of Theorem 5.1.), we reduce to the case of a squarefree Borel

ideal (plus squares); this is not immediate because a generic change of variables
does not preserve P .

◦ In Section 3, we reduce to the case of a squarefree {x1, . . . , xn−1}-compressed
Borel ideal (plus squares).
◦ In Section 4, we deal with squarefree {x1, . . . , xn−1}-compressed Borel ideals.

Given the intricacy of the proof in the Borel case (Section 3 and 4), we think that the
following particular case of the lex-plus-powers conjecture is of interest:

Conjecture 1.2. The lex-plus-powers ideal has greatest graded Betti numbers among
all Borel-plus-powers monomial ideals with the same Hilbert function.

A refinement of the lex-plus-powers conjecture is to study consecutive cancellations
in Betti numbers. In view of the result in [Pe], it is natural to ask:

Problem 1.3. Under the assumptions of Theorem 1.1, is it true that the Betti numbers
of L+ P and those of F differ by consecutive cancellations?

Acknowledgements. The authors are partially supported by NSF.
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2. Squarefree monomial ideals plus squares

A monomial ideal is called squarefree if it is generated by squarefree monomials. If I
is squarefree, then I + P is called squarefree-plus-squares.

For a monomial m, let max(m) be the index of the lex-last variable dividing m,
that is, max(m) = max{i |xi divides m}.

The ring S is standardly graded by deg(xi) = 1 for each i. In addition, S is Nn-
graded by setting the multidegree of xi to be the i’th standard vector in Nn. Usually
we say that S is multigraded instead of Nn-graded, and we say multidegree instead of
Nn-degree. For every vector a = (a1, . . . , an) ∈ Nn there exists a unique monomial of
degree a, namely xa = xa1

1 · · ·xann . If an element g (say in a module) has Nn-degree a,
then we say that is has multidegree xa and denote deg(g) = xa. Denote by S(−xa) the
free S-module generated by one element in multidegree xa. Every monomial ideal is
multihomogeneous, so it has a multigraded minimal free resolution. Thus, the minimal
free resolutions of S/I and S/(I + P ) are graded and multigraded. We will use both
gradings.

For a subset σ ⊆ {1, . . . , n}, let |σ| denote the number of elements in σ. We will
abuse notation to sometimes identify a subset with the squarefree monomial supported

on it, so σ may stand for
∏
j∈σ

xj . It will always be clear from context what is meant.

By S(−2σ) we denote the free S-module generated in multidegree
∏
i∈σ

x2
i .

Theorem 2.1. Let I be a squarefree monomial ideal.

(1) Set Fi =
⊕
|σ|=i

S/(I : σ)
(
−2σ

)
, where σ ⊆ {1, . . . , n}. We have the long exact

sequence

(2.2) 0 → Fn
ϕn−−→· · · ϕ2−−→F1

ϕ1−−→F0 = S/I → S/(I + P )→ 0

with maps ϕi the Koszul maps for the sequence x2
1, . . . , x

2
n.

(2) Each of the ideals (I : σ) in (1) is a squarefree monomial ideal.

(3) S/(I + P ) is minimally resolved by the iterated mapping cones from (2.2).

(4) For the graded Betti numbers of S/(I + P ) we have

bp,s(S/(I + P )) =
n∑
i=0

(∑
|σ|=i

bp+i,s+2i(S/(I : σ))
)
.
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Proof: Since the ideal I is squarefree, it follows that (I : σ2) = (I : σ) is squarefree.
We have the exact Koszul complex K for the sequence x2

1, . . . , x
2
n:

0 →
⊕
|σ|=n

S
ϕn−−→ . . . →

⊕
|σ|=i

S
ϕi−−→

⊕
|σ|=i−1

S → . . .

. . . →
⊕
|σ|=1

S =
n⊕
j=1

S
ϕ1−−→

⊕
|σ|=0

S = S → S/P → 0 .

We can write K = K′ ⊕K′′, where K′ consists of the components of K in all multi-
degrees m /∈ I, and K′′ consists of the components of K in all multidegrees m ∈ I.
Both K′ and K′′ are exact. We will show that (2.2) coincides with K′. Consider K
as an exterior algebra on basis e1, . . . en. The multidegree of the variable ej is x2

j . Let
f = mej1 ∧ . . . ∧ eji be an element in Ki and m be a monomial. The multidegree of
f is mx2

j1
. . . x2

ji
. We have that f ∈ K′ if and only if mx2

j1
. . . x2

ji
/∈ I, if and only if

mxj1 . . . xjt /∈ I, if and only if m /∈ (I : xj1 . . . xji). Therefore, we have the vector space
isomorphism

K′i →
⊕
|σ|=i

S/(I : σ)

mej1 ∧ . . . ∧ eji 7→ m ∈ S/(I : xj1 . . . xji) .

This proves (1).
We will prove (3) by induction on n− i. Denote by Ki the kernel of ϕi. We have

the short exact sequence

0→ Ki →
⊕
|σ|=i

S/(I : σ)→ Ki−1 → 0 .

Each of the ideals (I : σ) is squarefree. By Taylor’s resolution, it follows that the Betti

numbers of
⊕
|σ|=i

S/(I : σ) are concentrated in squarefree multidegrees. On the other

hand, the entries in the matrix of the map ϕi are squares of the variables. Therefore,
there can be no cancellations in the mapping cone. Hence, the mapping cone yields a
minimal free resolution of Ki−1.

4



(4) follows from (3).

The Hilbert function of a graded finitely generated module T is

HilbT (i) = dimk (Ti).

For squarefree ideals, we consider also the squarefree Hilbert function, sHilb, that
counts only squarefree monomials. It is well-known that if I and J are squarefree
ideals, then S/I and S/J have the same Hilbert function if and only if S/(I + P )
and S/(J + P ) have the same Hilbert function; thus, I and J have the same Hilbert
function if and only if they have the same squarefree Hilbert function.

Proposition 2.3. Let I and J be squarefree monomial ideals with the same Hilbert

function. Fix an integer 1 ≤ p ≤ n. The graded modules
⊕
|σ|=p

(I : σ) and
⊕
|σ|=p

(J : σ)

have the same Hilbert function and the same squarefree Hilbert function.

Proof: We consider squarefree Hilbert functions. Set I(p) =
⊕
|σ|=p

(I : σ). Let τ be a

squarefree monomial of degree d in (I : ν). Then ντ ∈ Id+p. If |ν ∩ τ | = s, choose µ so
that µ = lcm(ν, τ) is a squarefree monomial in Id+p−s.

Let µ be a squarefree monomial in Id+p−s. We can choose ν in
(
d+p−s
p

)
ways so

that |ν| = p and ν divides µ. For each so chosen ν, we can choose τ in
(
p
s

)
ways so

that |ν ∩ τ | = s and τ divides µ. Therefore, the monomial µ contributes
(
d+p−s
p

)(
p
s

)
monomials in

(
I(p)

)
d
. For such a monomial, we say that it is coming from Id+p−s, or

that its source is Id+p−s.
Suppose that one element in

(
I(p)

)
d

can be obtained in two different ways by

this procedure. Since we have the same element in
(
I(p)

)
d
, it follows that ν and τ

are fixed. But then, µ and s are uniquely determined. Hence, both the source and µ

are uniquely determined. Therefore, one and the same element in
(
I(p)

)
d

cannot be
obtained in two different ways by the above procedure.

For a vector space Q spanned by monomials, we denote by sdim(Q) the number
of squarefree monomials in Q. We have shown that

(2.4) sdim
(⊕
|σ|=p

(I : σ
)
d

=
n∑
x=0

(
d+ p− s

p

)(
p

s

)
sdim(Id+p−s) .
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The same formula holds for J as well. Now, the proposition follows from the well-
known fact that for each j ≥ 0 we have that sdim(Ij) = sdim(Jj) since I and J are
squarefree ideals with the same Hilbert function.

Let I be a squarefree monomial ideal, and ∆ be its Stanley-Reisner simplicial
complex. Let σ ⊆ {1, . . . , n}. We remark that it is well-known that the Stanley-
Reisner simplicial complex of (I : σ) is star∆(σ) = {τ ∈ ∆ | τ ∪ σ ∈ ∆} .

3. Squarefree Borel ideals plus squares

A squarefree monomial ideal N is squarefree Borel if, whenever mxj ∈ N is a squarefree
monomial, and i < j and mxi is squarefree, we have mxi ∈ N as well. A squarefree
monomial ideal L is squarefree lex if, whenever m ∈ L is a squarefree monomial and
m′ is a squarefree monomial lexicographically greater than m, we have m′ ∈ L as well.

If N is squarefree Borel, then by Kruskal-Katona’s Theorem [Kr,Ka], there exists
a squarefree lex ideal L with the same Hilbert function.

Lemma 3.1.
(1) Let N be a squarefree Borel ideal. For any σ ⊆ {1, . . . , n}, the ideal (N : σ) is

squarefree Borel in the ring S/({xi|i ∈ σ}).
(2) Let L be a squarefree lex ideal. For any σ ⊆ {1, . . . , n}, the ideal (L : σ) is

squarefree lex in the ring S/({xi|i ∈ σ}).

The ideals (N : σ) and (L : σ) are generated by monomials in the smaller ring
S/({xi|i ∈ σ}), so we may view them as ideals of S/({xi|i ∈ σ}).

For a monomial ideal M , we denote by gens(M) the set of monomials that generate
M minimally.

Construction 3.2. If N is squarefree Borel, then the minimal free resolution of S/N
is the squarefree Eliahou-Kervaire resolution [AHH] with basis denoted

{1} ∪
{

(h, α) |h ∈ gens(N), α ⊂ {1, . . . , n}, hα is squarefree, max(α) < max(h)
}
.

The basis element (h, α) has homological degree deg(α) + 1 , degree deg(h) + deg(α),
and multidegree hα; the basis element 1 has homological degree 0 and degree 0. In
order to describe a basis of the minimal free resolution of S/(N + P ) we introduce
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EK-triples. For σ ⊆ {1, . . . , n}, we say that (σ, h, α) is an EK-triple if (h, α) is a basis
element in the minimal free resolution of S/(N : σ). By Lemma 3.1, it follows that
(σ, h, α) is an EK-triple (σ, h, α) if and only if:
◦ h ∈ gens(N : σ)
◦ α = {j1, . . . , jt} is an increasing sequence of numbers in the set {i | i /∈ σ}, such

that 1 ≤ j1 < . . . < jt < max(h)
◦ σhα is squarefree.

By Theorem 2.1, Lemma 3.1, and Construction 3.2, it follows that:

Theorem 3.3. Let N be a squarefree Borel ideal. The minimal free resolution of

S/(N + P ) has basis consisting of {1} and the EK-triples. An EK-triple (σ, h, α) has

homological degree |σ| + |α| and degree 2|σ| + |α| + |h|; it has multidegree σ2hα. In

particular, for all p, s ≥ 0, the graded Betti number bp,s(S/(N + P )) is equal to the

number of EK-triples such that p = |σ|+ |α| and s = 2|σ|+ |α|+ |h|.

We will prove:

Theorem 3.4. Let N be a squarefree Borel and L be the squarefree lex with the same

Hilbert function, (equivalently, let N + P and L+ P have the same Hilbert function).

For all p, s, the graded Betti numbers satisfy

bp,s(S/(L+ P )) ≥ bp,s(S/(N + P )) .

For the proof, we need the notion of compression. Compression of ideals was intro-
duced by Macaulay [Ma], and was used by Clements-Lindström [CL], Macaulay [Ma],
Mermin [Me1,Me2], Mermin-Peeva [MP1,MP2] to study Hilbert functions.

Definition 3.5. Let I be a squarefree monomial ideal. We denote by Ī the monomial
ideal in S/P generated by the squarefree monomials generating I.

Let A be a subset of the variables {x1, . . . , xn}; its complement is Ac = {x1, . . . ,

xn}\A. Denote by ⊕f the direct sum over all squarefree monomials f in the variables
in Ac. The vector space Ī may be written uniquely in the form

Ī =
⊕
f

f V̄f ,

where Vf is an ideal in the ring k[A] = k[xi |xi ∈ A].

7



We say that Ī, or I, is A-compressed if each Vf is squarefree lex in k[A].
Furthermore, we say that I is j-compressed if it is A-compressed for all subsets A

of size j. In this case, I is i-compressed for every i ≤ j.
We remark, that in this paper we consider squarefree-compression, that is, we

think of the squarefree monomial ideals as ideals in the quotient ring S/P and consider
compression there, but, for simplicity, we say “compression” instead of “squarefree-
compression”.

Denote by Wf the squarefree lex ideal of k[A] with the same Hilbert function as
Vf . Set C̄ =

⊕
f f W̄f .

We will prove that C̄ is an ideal: If xi ∈ A, then xiC̄ ⊆ C̄ since each Wf is an
ideal in k[A]. Choose an xi /∈ A, and fix f . Then either xif = 0 or V̄xif ⊇ V̄f . Hence,
either xif = 0 or W̄xif ⊇ W̄f . Therefore, xiC̄ ⊆ C̄.

We say that the ideal C is the A-compression of I.

We need the following lemmas:

Lemma 3.6. Let I be a squarefree ideal. If I is (2i− 2)-compressed for some i ≥ 1,

then I is (2i− 1)-compressed.

Proof: Let v ∈ I be a squarefree monomial. Suppose that u is a squarefree monomial
of the same degree such that u > v. Set w = gcd(u, v), so that we can write u = u′w,
v = v′w with gcd(u′, v′) = 1. Suppose |u′v′| ≤ 2i− 1. Denote by B the set of variables
that appear in exactly one of the monomials u and v. Since u and v have the same
degree, it follows that the number of variables in B is even. Since |B| ≤ 2i−1, we have
|B| ≤ 2i− 2. Hence, I is B-compressed. Therefore, v ∈ I implies that u ∈ I.

Lemma 3.7. Let N be a squarefree Borel ideal. Its {x1, . . . , xn−1}-compression J is

a squarefree Borel ideal.

Proof: We have to show that J̄ is a squarefree Borel ideal. Consider the disjoint unions

N̄ = xnV̄xn ∪ V̄1 and J̄ = xnW̄xn ∪ W̄1 .

Set n = (x1, . . . , xn−1). Since N̄ is squarefree Borel, it follows that nV̄xn ⊆ V̄1.
By Kruskal-Katona’s Theorem [Kr, Ka] it follows that nW̄xn ⊆ W̄1. If xnm is a
monomial in xnW̄xn , then for each 1 ≤ i < n we have that xim ∈ W̄1. If xj divides a
monomial m ∈ W̄1 (respectively, W̄xn), then for each 1 ≤ i ≤ j we have that xim

xj
∈ W̄1
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(respectively, W̄xn) since W̄1 (respectively, W̄xn) is squarefree lex. Thus, J̄ is squarefree
Borel.

Lemma 3.8. Let N be a squarefree Borel ideal and J be its {x1, . . . , xn−1}-compres-

sion. For all p, s, the graded Betti numbers satisfy

bp,s(S/(J + P )) ≥ bp,s(S/(N + P )) .

Proof: Set A = S/xn. We assume, by induction on the number of variables, that
Theorem 3.4 holds over the polynomial ring A.

Consider the EK-triples (σ, h, α) for N in degree (p, s). Let cp,s(N) be the number
of triples such that xn divides σ; let dp,s(N) be the number of triples such that xn
divides h; let ep,s(N) be the number of triples such that xn does not divide σhα. Since
xn cannot divide α by Construction 3.2, it follows by Theorem 3.3 that

bp,s(S/(N + P )) = cp,s(N) + dp,s(N) + ep,s(N) .

Similarly, we introduce the numbers cp,s(J), dp,s(J), ep,s(J) and get

bp,s(S/(J + P )) = cp,s(J) + dp,s(J) + ep,s(J) .

We will show that the above introduced numbers for J are greater than or equal to
the corresponding numbers for N .

As in the proof of Lemma 3.7, we write N̄ = V̄1 ⊕ xnV̄xn and J̄ = W̄1 ⊕ xnW̄xn .
First, we consider the number cp,s(N). Note that V̄xn ⊃ V̄1. Therefore, (N̄ :

xnτ) = (V̄xn : τ) for xn /∈ τ . Hence, the EK-triples counted by cp,s(N) correspond
bijectively to the EK-triples for Vxn of degree (p − 1, s − 2) by the correspondence
(xnτ, h, α) ⇐⇒ (τ, h, α). Thus,

cp,s(N) = bp−1,s−2(A/(Vxn + (x2
1, . . . , x

2
n−1))) .

By Lemma 3.7, J is squarefree Borel, so we get the same formula for J . By the
construction of compression, the ideal Wxn is the squarefree lex ideal in the polynomial
ring A with the same Hilbert function as Vxn . Since Theorem 3.4 holds over the ring
A by the induction hypothesis, we conclude that cp,s(J) ≥ cp,s(N).

Now we consider the number ep,s(N). The EK-triples counted by ep,s(N) are
exactly the EK-triples for V1. Hence, ep,s(N) = bp,s(A/(V1 + (x2

1, . . . , x
2
n−1))). The

9



same equality holds for ep,s(J). By the construction of compression, the ideal W1 is
the squarefree lex ideal in the polynomial ring A with the same Hilbert function as
V1. Since Theorem 3.4 holds over the ring A by the induction hypothesis, we conclude
that ep,s(J) ≥ ep,s(N).

It remains to consider dp,s(N). Since N is squarefree Borel, it follows that V̄1 ⊇
nV̄xn . Therefore, for each degree j

{gens(N : σ)j that are divisible by xn} = {(x̄n(Vxn : σ))j} \ {(xn(V̄1 : σ))j} .

Hence, for each degree j, the number of minimal monomial generators of degree j
of (N : σ) that are divisible by xn is

dimk(V̄xn : σ)j−1 − dimk(V̄1 : σ)j−1 .

For each such minimal monomial generator h, we have that max(h) = n. Since α is

prime to σ and supp(h), by Construction 3.2 we see that there are
(
n− |h| − |σ|

|α|

)
=(

n− j − |σ|
p− |σ|

)
possibilities for α in the EK-triples. By Theorem 3.3, we conclude that

dp,s(N) =
∑
n/∈σ

(
n− j − |σ|
p− |σ|

)(
dimk(V̄xn : σ)s−p−|σ|−1 − dimk(V̄1 : σ)s−p−|σ|−1

)
.

As the ideal J is squarefree Borel by Lemma 3.6, the same formula holds for J . By
the construction of compression, V̄1 and W̄1 have the same Hilbert function, as do V̄xn
and W̄xn . By the displayed formula for dp,s above and Proposition 2.3, the number
dp,s depends only on these Hilbert functions. Therefore, dp,s(J) = dp,s(N).

Main Lemma 3.9. Let N be a squarefree Borel {x1, . . . , xn−1}-compressed ideal.

Suppose that N is not squarefree lex. There exists a squarefree Borel ideal T such

that:

◦ T has the same Hilbert function as N

◦ T is lexicographically greater than N (here “lexicographically greater” means that

for each d ≥ 0 we order the monomials in Nd and Td lexicographically, and then

compare the two ordered sets lexicographically)
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◦ for all p, s, the graded Betti numbers satisfy

bp,s(S/(T + P )) ≥ bp,s(S/(N + P )) .

The proof of Lemma 3.9 is long and very technical. We present it in the next
section.

Proof of Theorem 3.4: Let N be a squarefree Borel ideal. By Lemma 3.7, we can
assume that N is {x1, . . . , xn−1}-compressed. Lemma 3.9 implies that we can replace
N by a squarefree Borel ideal which is lexicographically greater.

We proceed in this way until we reach the squarefree lex ideal L. This process is
finite since there exist only finitely many squarefree Borel ideals with a fixed Hilbert
function.

Example 3.10. It is natural to ask if Green’s Theorem can be used, as in [CGP],
in order to obtain a short proof of Theorem 3.4. Unfortunately, in the example N =
(ab, ac, bc), L = (ab, ac, ad, bcd) in k[a, b, c, d], one of the inequalities needed for the
proof does not hold. Thus, the short proof in [CGP] cannot be generalized to cover
Theorem 3.4.

Furthermore, the inequality

∑
|σ|=i

br,s(S/(N : σ)) ≤
∑
|σ|=i

br,s(S/(L : σ))

may not hold. For example, it fails for S = k[a, b, c, d, e] and

N = (abc, abd, acd, bcd)

and i = 2. In this case we have L = (abc, abd, abe, acd, bcde). Computer computation
gives ∑

|σ|=2

b1,2(S/(N : σ)) = 12 while
∑
|σ|=2

b1,2(S/(L : σ)) = 11 ,

and ∑
|σ|=2

b2,2(S/(N : σ)) = 6 while
∑
|σ|=2

b2,2(S/(L : σ)) = 5 .
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Example 3.11. Let N be squarefree Borel and L be squarefree lex with the same
Hilbert function (equivalently, let N + P and L+ P have the same Hilbert function).
It is natural to ask:

Question: Are the graded Betti numbers of S/
(
L + (x2

1, . . . , x
2
i )
)

greater or equal to

those of S/
(
N + (x2

1, . . . , x
2
i )
)
, for each i?

This question is closely related to a result proved by Charalambous and Evans
[CE]. Let M be a squarefree Borel ideal. Set P (i) = (x2

1, . . . , x
2
i ) and P (0) = 0. By

[CE], for each 0 ≤ i < n, the mapping cone of the short exact sequence

0→ S/
(
(M + P (i)) : xi+1

)
→ S/

(
M + P (i)

)
→ S/

(
M + P (i+ 1)

)
→ 0

yields a minimal free resolution of S/
(
M + P (i+ 1)

)
.

The following example gives a negative answer to the above question. Let A =
k[a, b, c, d, e, f ] and T be the ideal generated by the squarefree cubic monomials. The
ideal N = (ab, ac, ad, bc, bd)+T is squarefree Borel. The ideal L = (ab, ac, ad, ae, af)+
T is squarefree lex. The ideals N and L have the same Hilbert function. The graded
Betti numbers of S/

(
L+ (x2

1)
)

are not greater or equal to those of S/
(
N + (x2

1)
)
. For

example,

b5,7

(
S/
(
L+ (x2

1)
))

) = 0 and b5,7

(
S/
(
N + (x2

1)
))

= 1 .

4. Proof of the Main Lemma 3.9

Throughout this section, we make the following assumptions:

Assumptions 4.1. N is a squarefree Borel {x1, · · · , xn−1}-compressed ideal in S =
k[x1, · · · , xn]/P , and is not squarefree lex.

Construction 4.2. Since every squarefree Borel ideal in two variables is squarefree lex,
it follows that the ideal N is B-compressed for every set B of two variables. Let r ≥ 2 be
maximal such that N is (2r−2)-compressed. By Lemma 3.6, we have that N is (2r−1)-
compressed. There exists a set A of 2r variables such that N is not A-compressed.
Choose w lex-first such that there exist variables w > y1 > . . . > yr > z2 > . . . > zr

for which N is not {w, y1, . . . , yr, z2, . . . , zr}-compressed. Then choose {y1 > . . . > yr}
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lex-last such that there exist z2, . . . , zr with yr > z2 > . . . > zr such that N is not
{w, y1, . . . , yr, z2, . . . , zr}-compressed. Finally, choose z2 > · · · > zr lex-first such that
N is not {w, y1, . . . , yr, z2, · · · , zr}-compressed. Set A = {w, y1, . . . , yr, z2, . . . , zr}. We
make this choice so that we can show in Lemma 4.6 that the A-compression of N is
still Borel.

If zr 6= xn, then N is A-compressed because A ⊆ {x1, . . . , xn−1}. Therefore,
zr = xn.

Following the notation of Definition 3.5, write

N̄ =
⊕
f

f N̄f .

Each N̄f is an ideal in k[A]. For simplicity we will write N,Nf instead of N̄ , N̄f , that
is, we will abuse notation and regard N (resp. Nf ) as both a squarefree ideal of S
(resp. k[A]) and an ideal of S/P (resp. k[A]/(P ∩ k[A])).

Our assumptions imply the existence of a squarefree monomial f such that Nf is
not squarefree lex.

Notation 4.3. In this section, f stands for a squarefree monomial in k[Ac].
Set y = y1 . . . yr and z = z2 . . . zr.
We denote by a, c variables in k[Ac] (usually, these are variables dividing f).
We denote by m,u, v squarefree monomials.

The following lemma gives some properties of Nf :

Lemma 4.4. Suppose that f is a squarefree monomial such that the ideal Nf is not

squarefree lex.

(1) The vector space (Nf )j is lex for every degree j 6= r.

(2) The vector space (Nf )r contains precisely the monomials {m |m ≥ y, m 6= wz},
that is, (Nf )r is spanned by the initial squarefree lex segment ending at y with

one gap at wz.

Remark. The proof of Lemma 4.4 uses only that N is squarefree Borel and (2r− 2)-
compressed, and that Nf is not lex. Thus, lemma 4.4 holds for every ideal Y satisfying
these properties.

Proof: (1) Let u > v be two squarefree monomials of degree j in the variables in A.
Let m = gcd(u, v), and u = mu′, v = mv′. It follows that deg(u′) = deg(v′) ≤ r.
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Suppose that deg(u′) < r. Denote by B the set of variables that appear in exactly
one of the two monomials. The number of variables in B is an even number < 2r.
Therefore, N is B-compressed. If fv = fmv′ ∈ N , then fu = fmu′ ∈ N . Hence, if
(Nf )j is not squarefree lex, then deg(u′) = deg(v′) = r, so m = 1 and j = r.

(2) Let u > v be two squarefree monomials of degree r in the variables in A such
that v ∈ Nf but u /∈ Nf . The above argument shows that deg(u) = deg(v) = r, and
uv = wyz. Since u > v, we conclude that w divides u.

Suppose that u is divisible by some yi. Hence v is divisible by some zj . As N

is squarefree Borel, fv ∈ N implies that f
vyi
zj
∈ N . The ideal N is (A \ {yi, zj})-

compressed. Therefore, fyim ∈ N for every squarefree monomial m ∈ k[A] such that

m >
v

zj
. We obtain the contradiction that fu ∈ N . Hence, u is not divisible by any

of the variables yi.
It follows that u = wz and v = y.

Construction 4.5. Denote by T the A-compression of N .

The following lemma gives some properties of T :

Lemma 4.6.
(1) (Tf )j = (Nf )j for j 6= r and every f .

(2) The sets of monomials in (Tf )r and in (Nf )r differ only in that (Tf )r contains wz
instead of y, in the case when (Nf )r is not squarefree lex. Note that wz > y are

consecutive monomials in the lexicographic order in k[A].
(3) Denote by F the set of minimal, with respect to divisibility, monomials f in the

variables Ac such that Nf is not squarefree lex. We have that

gens(N) \ gens(T ) = {fy | f ∈ F} ,

gens(T ) ⊇
{

gens(N) \ {fy|f ∈ F}
}
∪ {fwz |f ∈ F}

∪ {fyzj |f ∈ F , 2 ≤ j ≤ r, max(f) < max(zj)} .

(4) The ideal T has the same Hilbert function as N .

(5) The ideal T is lexicographically greater than N .
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(6) The ideal T is squarefree Borel.

Remark. It is possible to show that F is the set of all f such that Nf is not lex.

Proof: (1) and (2) hold by Lemma 4.4, and (4) and (5) hold by the construction of
compression.

(3) Denote by {T} and {N} the sets of monomials in T and in N , respectively.
By (1) and (2), we have that

{N} \ {T} = {fy |Nf is not squarefree lex }.

It follows that gens(N) \ gens(T ) ⊇ {fy | f ∈ F}.
We will show that equality holds. Suppose that m is a generator of N but not of

T , and does not have the form fy. Then, by (2), m = fwzxi where fy ∈ N, fwz /∈ N .
N is ({xi} ∪ A \ {zr})-compressed, because this set does not contain zr = xn. Thus

fy ∈ N implies that fw
z
zr
xi ∈ N , and so fwzxi /∈ gens(N). Hence, any multiple of

fwz is not a minimal monomial generator of N . The equality follows.
Now, we will prove that

gens(T ) ⊇
{

gens(N) \ {fy|f ∈ F}
}
∪ {fwz |f ∈ F}

∪ {fyzj |f ∈ F , 2 ≤ j ≤ r,max(f) < zj} .

The inclusion gens(T ) ⊇
{

gens(N) \ {fy|f ∈ F}
}

follows from gens(N) \ gens(T ) =

{fy | f ∈ F}. By (1) and (2), we also have that

{T} \ {N} = {fwz |Nf is not squarefree lex}.

Therefore, gens(T ) ⊇ {fwz | f ∈ F}. The inclusion

gens(T ) ⊇ {fyzj |f ∈ F , 2 ≤ j ≤ r, max(f) < zj}

holds because if
fyzj
a
∈ T for some variable a then, since T is squarefree Borel, we get

the contradiction fy ∈ T .
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It remains to prove (6). Fix an f such that Nf is not squarefree lex. In view of
(1), we need to consider only (Tf )r. By (2), we conclude that we have to check two
properties: We have to show that, if a squarefree monomial m is obtained from fwz
by replacing a variable with a lex-greater variable, then m is in T . We also have to
show that, if a squarefree monomial u is obtained from fy by replacing a variable with
a lex-smaller variable, then u is not in T .

There are several possibilities for m and u. First, we consider four cases for m.

Suppose m =
fc

a
wz, where a divides f and c ∈ k[Ac]. Since fy ∈ N and N is

squarefree Borel, we have that
fc

a
y ∈ N . Hence, y ∈ N fc

a
. Therefore wz ∈ T fc

a
, and

so m ∈ T .

Suppose m =
fe

a
wz, where a divides f and e ∈ k[A]. It follows that e = yj

for some j. So, m =
f

a
(wyjz). By Lemma 4.4, we have that (N f

a
)r+1 = (T f

a
)r+1,

so we have to prove that m ∈ N . The ideal N is ({a} ∪ A \ {yj})-compressed by

Construction 4.2 since a < yj . Hence, fy =
fyj
a

ay
yj
∈ N implies that

fyj
a
wz = m ∈ N .

Suppose m = f
wzyj
e

, where e divides wz. Since Tf is squarefree lex in k[A], we

conclude that m ∈ T .
Suppose m = f

wzc
e

= (fc)
wz
e

, where e divides wz and c ∈ k[Ac]. By Lemma 4.4,

we have that (Nfc)r−1 = (Tfc)r−1, so we have to prove that m ∈ N . First, we consider
the subcase when either e = w or c < yr. The ideal N is ({c} ∪ A \ {e})-compressed

by Construction 4.2 since c > e. Hence, fy ∈ N implies that m = f(
wzc
e

) ∈ N . Now,

let e = zi for some i and c > yr. Since N is squarefree Borel, fy ∈ N implies that

fc
y
yr
∈ N . As (Nfc)r−1 is squarefree lex, we get that m ∈ N .

Recall that we also have to show that every squarefree monomial u, obtained
from fy by replacing a variable with a lex-smaller variable, is not in T . Similarly, we
consider four cases for u. We assume the opposite, that is u ∈ T , and we will arrive at
the contradiction that fwz ∈ N .

Suppose u =
fc

a
y, where a divides f and c ∈ k[Ac]. Since y ∈ T fc

a
, by Lemma 4.4
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we conclude that (T fc
a

)r = (N fc
a

)r is squarefree lex, and so wz ∈ N fc
a

. As N is

squarefree Borel, it follows that
(
fc

a

)
a

c
wz = fwz ∈ N .

Suppose u =
f

a
ey, where a divides f and e ∈ k[A]. By Lemma 4.4 we conclude

that
(
T f
a

)
r+1

=
(
N f
a

)
r+1

is squarefree lex. Hence, u ∈ N implies that
f

a
ewz ∈ N .

As N is squarefree Borel, we conclude that
(
fe

a

)(
a

e

)
wz = fwz ∈ N .

Suppose u = f
ye
yj

, where e ∈ k[A]. Then e = zi. Since
ye
yj
∈ Tf , by Lemma 4.4

we conclude that (Tf )r = (Nf )r is squarefree lex, and so wz ∈ Nf .

Suppose u = f
yc
yj

, where c ∈ k[Ac]. By Lemma 4.4 we conclude that
(
Tfc
)
r−1

=(
Nfc

)
r−1

, so u ∈ N . By Construction 4.2, the ideal N is ({c} ∪ A \ yj)-compressed

since c < yj . Hence, u ∈ N implies that fwz ∈ N as wz >
yc
yj

.

Construction 4.7. Each of the colon ideals (N : σ) can be decomposed in the notation
of Definition 3.5 as follows:

(N : σ) =
⊕
f

f (N : σ)f .

Each (N : σ)f is an ideal in k[xi ∈ A | i /∈ σ]/(x2
i | i /∈ σ). Similarly, we have

(T : σ) =
⊕
f

f (T : σ)f .

Lemma 4.8. Let f be a squarefree monomial in k[Ac].
(1) For every σ ⊆ A we have (N : σ)f = (Nf : σ).
(2) If σ, γ ⊆ A and σ ∩ γ = ∅, then (N : σγ)f =

(
(Nf : σ) : γ

)
.

(3) If τ ⊆ Ac, then (N : τ)f = Nfτ .

Proof: First, we prove (1). Let m ∈ k[A \ σ] be a monomial. We have that

m ∈ (N : σ)f ⇔ fm ∈ (N : σ)⇔ fmσ ∈ N ⇔ mσ ∈ Nf ⇔ m ∈ (Nf : σ) .
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Applying (1), we prove (2) as follows:

(
(Nf : σ) : γ

)
=
(
(N : σ)f : γ

)
=
(
(N : σ) : γ

)
f

= (N : σγ)f .

(3) For a monomial ideal U , we denote by {U} the set of (squarefree) monomials
in U . We have that

{(N : τ)f} = {monomials m ∈ k[A] |mf ∈ (N : τ)}
= {monomials m ∈ k[A] |mfτ ∈ N}
= {Nfτ} .

Lemma 4.9. Let N = (w
y
yr
, · · · , wyr

z
z2
,y) be an ideal in k[A], (where “ · · ·” means

that we take all the squarefree monomials that are lex-between w y
yr

and wyr
z
z2

). Then

(1) T = (w
y
yr
, · · · , wz,yz2, · · · ,yzr) is the squarefree lex ideal with the same Hilbert

function, and Nr+1 = Tr+1.

(2) If µ ⊂ A is not a subset of supp(y) or of supp(wz), then (N : µ) = (T : µ). All

other possibilities for µ, and the corresponding ideals (N : µ) and (T : µ), are

listed in the two tables below. The first table lists the cases when gens(N : µ) ⊂
gens(T : µ):

µ (N : µ) (T : µ)

∅ ⊂ ζ ⊂ supp(z) (((w(y1, · · · , yr))r−|ζ|),y) (((w(y1, · · · , yr))r−|ζ|), w z
ζ ,y)

supp(w) ((y1, · · · , yr)r−1) (((y1, · · · , yr)r−1), z)
supp(w)ζ with ((y1 · · · , yr)r−1−|ζ|) (((y1 · · · , yr)r−1−|ζ|), z

ζ )

∅ ⊂ ζ ⊂ supp(z)
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The second table lists the remaining cases:

µ (N : µ) (T : µ)

∅ (((w(y1, · · · , yr))r),y) (((w(y1, · · · , yr))r), wz,yz2, · · · ,yzr)
∅ ⊂ ρ ⊂ supp(y) (((w)r−|ρ|),

y
ρ ) (((w)r−|ρ|),

y
ρ z2, · · · , y

ρ zr)
supp(y) (1) (w, z2, · · · , zr)
supp(z) (wy1, · · · , wyr,y) (w,y)
supp(wz) (y1, · · · , yr) (1)

(3) Let Y be a (2r− 2)-compressed ideal in the polynomial ring k[A]/(P ∩ k[A]) such

that Yr = Nr, and let Z be the lex ideal of k[A]/(P ∩ k[A]) with the same Hilbert

function as Y . For every subset µ of A, we have:

gens(N : µ) \ gens(T : µ) = gens(Y : µ) \ gens(Z : µ)

gens(T : µ) \ gens(N : µ) = gens(Z : µ) \ gens(Y : µ) .

Proof: (1) The ideal T is clearly squarefree lex. We need to show that T has the same

Hilbert function asN . Obviously, dimk((N )r) = dimk((T )r). Let T ′ = (w
y
yr
, · · · , wz).

It is straightforward to verify that Nr+1 ⊃ T ′r+1 and {Nr+1}\{T ′r+1} = {yz2, · · · ,yzr}.
Therefore, Nr+1 = Tr+1.

(2) Recall that µ ⊆ A. A simple computation shows that (N : wyi) = (T : wyi)
and (N : yizj) = (T : yizj) for all i, j. If µ is not divisible by y or wz, it follows that
µ contains either supp(wyi) or supp(yizj), for some i, j, so (N : µ) = (T : µ). For all
other µ, straightforward computation yields the ideals (N : µ) and (T : µ) listed in
the tables.

(3) For a monomial m in k[A], we will use the notation m : µ for
m

gcd(m,µ)
.

Observe first that Yj = Zj for all j 6= r by Lemma 4.4(3). Hence, {Z} \ {Y } = wz
and {Y } \ {Z} = y.

Suppose that m : µ is a minimal monomial generator for (Y : µ) but not (Z : µ).
We assume that m : µ /∈ (N : µ) and will derive a contradiction. Note that m /∈ N .
Then deg(m) 6= r, because m ∈ Y and Yr = Nr. Since m ∈ Y and Ydeg(m) = Zdeg(m)

we conclude that m ∈ Z, and so m : µ ∈ (Z : µ). Since m : µ is not a minimal
monomial generator for (Z : µ), there must be a monomial u ∈ Z \ Y such that u : µ
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properly divides m : µ. The only monomial of Z \ Y is wz, so u = wz. Then µ(m : µ)
is a proper multiple of wz, and so must be in N by (1). On the other hand, since
m : µ /∈ (N : µ), it follows that µ(m : µ) /∈ N , a contradiction. Thus we must have
m : µ ∈ (N : µ). Note that Y ⊃ N . We conclude that m : µ is a minimal monomial
generator of (N : µ). We have proved that

gens(Y : µ) \ gens(Z : µ) ⊆ gens(N : µ) .

Now, suppose further that m : µ is a minimal monomial generator of (T : µ). We
will derive a contradiction. Note that m may be chosen to be a minimal monomial
generator of N , because m : µ is a minimal monomial generator of (N : µ).

Since m : µ is not a minimal monomial generator of (Z : µ), there must be a
monomial u ∈ Z \ T such that u : µ properly divides m : µ. As Yj = Zj and Nj = Tj
for j 6= r, and Yr = Nr, and Zr = Tr, we get {Z} \ {T } = {Y } \ {N}. Hence u ∈ Y ,
so that m : µ is not a minimal monomial generator for (Y : µ), a contradiction. This
shows that

gens(Y : µ) \ gens(Z : µ) ⊆ gens(N : µ) \ gens(T : µ).

In order to prove the equality in the first formula in (3), we need to show that
the opposite inclusion holds. To this end, suppose that m : µ is a minimal monomial
generator of (N : µ) but not (T : µ). Then, by (2), either m = y and µ divides y, or
µ = z or µ = wz.

Suppose first that m = y. As Y ⊇ N , we have that y : µ ∈ (Y : µ). If y : µ
were not a minimal monomial generator of (Y : µ), we would have a monomial u ∈
Y \ N = Z \ T , such that u : µ properly divides y : µ. But then u must be a proper
divisor of y, and u ∈ Z implies the contradiction y ∈ Z. Hence m : µ ∈ gens(Y ). If
m : µ ∈ gens(Z), we would have y ∈ Z, a contradiction. Thus in this case we have
m : µ ∈ gens(Y : µ) \ gens(Z : µ).

Suppose now that µ = z or µ = wz. Straightforward computation using (2) shows
that one of the following two cases holds:

µ m : µ wz : µ

z wyj w
wz yj 1
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where 1 ≤ j ≤ n. In particular, wz : µ is a proper divisor of m : µ in either case. As
Zr = Tr, we get wz : µ ∈ (Z : µ), so m : µ is not a minimal monomial generator for
(Z : µ). If m : µ were not a minimal monomial generator for Y : µ, there would be
a monomial u ∈ Y \ N such that u : µ is a proper divisor of m : µ. The table above
implies that one of the following two cases holds:

µ u : µ µ(u : µ) ∈ Y

z w, or yj , or 1 wz, or yjz, or z
wz 1 wz

where 1 ≤ j ≤ n. As Yr = Nr, none of the monomials in the third column are in
Y . This is a contradiction. Thus m : µ is a minimal monomial generator for (Y : µ).
Therefore, m : µ ∈ gens(Y : µ) \ gens(Z : µ) in this case.

We have shown that the first formula in (3) holds:

gens(N : µ) \ gens(T : µ) = gens(Y : µ) \ gens(Z : µ) .

A very similar argument yields the second formula:

gens(T : µ) \ gens(N : µ) = gens(Z : µ) \ gens(Y : µ).

Notation 4.10. We write an EK-triple in the form (τµ, gq, α) so that τ ∈ k[Ac],
µ ∈ k[A], g ∈ k[Ac], q ∈ k[A]. By τµ we mean the union of τ and µ.

For µ ⊂ A, we set n to be the homogeneous maximal ideal of the ring k[A\µ]/P .

The next lemma provides a list of the possible EK-triples for N :

Lemma 4.11.
(1) There are three types of EK-triples (τµ, gq, α) for N :

Type 1: (τµ, gq, α) is an EK-triple for T .

Type 2: (τµ, gq, α) is not an EK-triple for T and q is a minimal monomial generator

of both (N : τµ)g and (T : τµ)g.
Type 3: (τµ, gq, α) is not an EK-triple for T and q is a minimal monomial generator

of (N : τµ)g but not of (T : τµ)g.
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(2) The EK-triples of Type 2 satisfy qµ = wz and max(g) > max(q). In particular,

µ 6= 1, because xn = zr divides µ.

(3) Let N and T be as in Lemma 4.9. If (τµ, gq, α) is an EK-triple of Type 3 for N ,

then q is a minimal monomial generator for (N : µ) but not for (T : µ).
(4) Suppose that (τµ, gq, α) is an EK-triple of Type 3 for N . All possibilities for µ,

and the corresponding ideals (N : µ) and (T : µ), are listed in the second table in

Lemma 4.9(2).

Proof: (1) It suffices to show that q is a minimal monomial generator of the ideal

(N : τµ)g. Since gq ∈ (N : τµ), we have that q ∈ (N : τµ)g. If we had
q

a
∈ (N : τµ)g,

it would follow that
gq

a
∈ (N : τµ) = (N : τµ), so that gq would not be a minimal

monomial generator of (N : τµ). Thus, q is a minimal monomial generator of (N : τµ)g.
(2) Since gq ∈ (T : τµ) is not a minimal monomial generator, there exists a variable

c dividing gq such that
gq

c
∈ (T : τµ). Since T is Borel, we may take c = xmax(gq). If

c divides q, we have
q

c
∈ (T : τµ)g, so that q is not a minimal monomial generator of

(T : τµ)g. Therefore c divides g. Since c = xmax(gq), we have max(g) > max(q). As gq

is a minimal monomial generator of (N : τµ), we have
g

c
q /∈ (N : τµ), so

g

c
qτµ ∈ T \N .

By Lemma 4.6(2) it follows that qµ = wz.
(3) By Lemma 4.8, we have that

(N : τµ)g = ((N : τ)g : µ) and (T : τµ)g = ((T : τ)g : µ) .

We are going to apply Lemma 4.9(3) to the ideals Y = (N : τ)g and Z = (T : τ)g.
By Lemma 4.8(3), we have that Y = Ngτ and Z = Tgτ . By Lemma 4.6 we get that
Yr = Nr. Clearly, Z is the squarefree lex ideal with the same Hilbert function as
Y . Note that Y is (2r − 2)-compressed since N is. Therefore, Y and Z satisfy the
conditions of Lemma 4.9(3) and we can apply it.

We have that
q ∈ gens(Y : µ) \ gens(Z : µ)

since we consider EK-triples of Type 3. Lemma 4.9(3) yields

q ∈ gens(N : µ) \ gens(T : µ).
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(4) follows from (3) and Lemma 4.9(2).

Next, we construct a map from the set of EK-triples for N to the set of EK-triples
for T . We will use this map to prove the Main Lemma 3.9.

Construction 4.12. We will define a map φ from the set of EK-triples for N to the
EK-triples for T . First, we introduce notation.

If α = v
∏
i∈I yi

∏
j∈J zj , where v is a squarefree monomial in k[Ac] and we use

the convention w = z1, then let α̂ be the monomial

α̂ = v
∏
i∈I

zi
∏
j∈J

yj .

Let t1 > · · · > ts = zr = xn be all the variables of S not in τy, ordered lexico-
graphically. For a monomial m, such that mτ is squarefree, set

tm =


xmax(m) if xmax(m) /∈ y

the lex-last variable among the t-variables
that is lex-before xmax(m) if xmax(m) ∈ y ,

and furthermore, for a monomial m and an integer j, set

tm+j = tp+j where the integer p is defined by tp = tm .

In cases 2 and 3 below, we will set the integer d such that max(g) = max(td). In
case 2, e will be the integer such that td is between zr−e and zr−e+1. Thus, r − e =
#{zj : max(zj) < max(td)} (recall the convention z1 = w). In case 3 we will set i such
that td is between yi−1 and yi.

Denote by α̃ the monomial

α̃ = α
∏

yj divides α
j 6=1

tgq+j−1

yj

∏
y1 divides α

w

y1
.

and denote by ᾱ the monomial

ᾱ = α

( ∏
yj divides α,

max(zj)<max(g)

zj
yj

)( ∏
yj divides α,

max(zj)>max(g)

td+j−(r−e)

yj

)
.
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The map φ is defined as follows: If Γ is an EK-triple for N of the form given in
the third column in the table below, then φ(Γ) is given in the fourth column.

Case Type of Γ EK-triple Γ φ(Γ)

1) Type 1 Γ = (τµ, gq, α) Γ = (τµ, gq, α)
2) Type 2 (τµ, gwz

µ , α), (τ µ̂, g
xmax(g)

td+e
y
µ̂ , ᾱ),

∅ ⊂ µ ⊂ supp(wz), max(g) > max(yr)
3) Type 2 (τz, gw, α),max(y1) < max(g) < max(yr) (τ y

y1
, g
xmax(g)

td+i−1y1, α̃)

or (τwz, g, α) or (τy, g
xmax(g)

td+i−1, α̃)

4) Type 2 (τz, gw, α), (τ y
y1y2

, g
xmax(g)

y1y2z2, αxmax(g))

max(w) < max(g) < max(y1)
5) Type 3 (τ, gy, α) (τ, gwz, α̂)
6) Type 3 (τρ, g y

ρ , α), ∅ ⊂ ρ ⊂ supp(y), ρ 6= y
y1

(τ ρ̂, gwz
ρ̂ , α̂)

7) Type 3 (τ y
y1
, gy1, α) (τ z

zr
, gwzr, yrα̂)

8) Type 3 (τy, g, α) (τ wz
zr
, gzr, yrα̂)

9) Type 3 (τz, gwyj , α) (τ y
yj
, gyjtyj+j , α̃)

10) Type 3 (τwz, gyj , α), j 6= 1 (τy, gtyj+j , α̃)
11) Type 3 (τwz, gy1, α) (τ y

y1
, gy1ty1+1, wα̃)

Lemma 4.13. The third column in the table in Construction 4.12 lists all the possi-

bilities for EK-triples for N .

Proof: Apply Lemma 4.11. For EK-triples of Type 3, straightforward computation
yields q since we know all possibilities for(N : µ) and (T : µ) (see the second table in
Lemma 4.9(3)) and in view of Lemma 4.11(3).

Lemma 4.14.
(1) The map φ is well-defined (i.e., φ(Γ) is an EK-triple for T , for all Γ).

(2) The map φ preserves bidegree.

(3) The map φ is an injection.

Proof: (2) Straightforward verification shows that φ preserves bidegrees.

(3) Let Γ = (τµ, gq, α), Γ′ = (τ ′µ′, g′q′, α′), φ(Γ) = (θ, `, β), φ(Γ′) = (θ′, `′, β′).
Write θ = τλ, θ′ = τ ′λ′, ` = uv and `′ = u′v′ with λ, λ′, u, u′ ∈ k[A], v, v′ ∈ k[Ac].
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Suppose that Γ 6= Γ′.

If τ 6= τ ′, then φ(Γ) 6= φ(Γ′) and we are done. For the rest of the proof, we assume
that τ = τ ′. In this case, note that we have the same choice for the variables tj in
Construction 4.12 for Γ and Γ′. Also, note that if α 6= α′, then α̂ 6= α̂′, ᾱ 6= ᾱ′, and
α̃ 6= α̃′ by Construction 4.12.

If Γ and Γ′ fall under the same Case in Construction 4.12, it is immediate that
φ(Γ) 6= φ(Γ′), except in Cases 2 and 3. In Cases 2 and 3, we have to consider the

situation when
g

xmax(g)
=

g′

max(g′)
, and τ = τ ′, µ = µ′, α = α′. Let d′, e′, i′ be defined

analogously to d, e, i. Without loss of generality we can assume that max(g) > max(g′).
Hence, max(td) > max(td′), and so d > d′. Therefore, we have the inequalities i ≥ i′

and

e′ − e = #{zj : zj between td and td′} ≤ 1 + #{tj : tj between td and td′} = d− d′ .

It follows that d+ e > d′ + e′ and d+ i− 1 > d′ + i′ − 1. Therefore, ` 6= `′ .

Thus, we may assume that Γ and Γ′ belong to different Cases.

Suppose first that Γ′ falls under Case 1. We will show that φ(Γ) is not an EK-triple
for N , for Γ in each of the Cases 2 through 11. In Cases 2, 3, and 4, we have that `θ

is properly divisible by the monomial τ
g

xmax(g)
y, which is in N by Lemma 4.16; hence

`θ is not a minimal monomial generator of N . In Cases 9, 10, and 11, we have that `θ
is properly divisible by the monomial τgy, which is in N because (N : τ)g 6= (T : τ)g
implies y ∈ (N : τ)g; hence `θ is not a minimal monomial generator of N . In Cases 5
through 8, λ = µ and u = q have concrete values, and the second table in Lemma 4.9(3)
shows that q is not a minimal monomial generator for (N : µ); hence Lemma 4.11(3)
implies that φ(Γ) is not an EK-triple for N .

For the rest of the proof, we assume that that neither Γ nor Γ′ is in Case 1.

In many cases, it is clear that λ 6= λ′. These cases are listed in the following table.
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Case Case of Γ′ Difference between λ and λ′

of Γ Difference between λ and λ′

2 5 µ 6= ∅, so λ = µ̂ 6= ∅. But λ′ = ∅.
2 6,7,8 µ ⊂ supp(wz) by Lemma 4.11(2), so ∅ 6= λ = µ̂ ⊂ supp(y).

But ∅ 6= λ′ ⊂ supp(wz).

3 4 If λ = λ′ =
y
y1y2

then µ =
z
z2

, but µ is z or wz.

3 5 µ = z or µ = wz , so λ = µ̂ is y
y1

or y, but λ′ = ∅.
3 6,7,8 µ = z or µ = wz , so λ = µ̂ is y

y1
or y, but ∅ 6= λ′ ⊂ supp(wz).

4 6 λ = y
y1y2

, but ∅ 6= λ′ = ρ̂ ⊂ supp(wz).
4 8,9,10,11 deg(λ) = r − 2, but deg(λ′) ≥ r − 1.
5 6 λ = ∅ and λ′ 6= ∅.
5 8,9,10,11 λ = ∅ and λ′ 6= ∅.
6 9,10,11 ∅ ⊂ ρ ⊂ supp(y), so ∅ 6= λ = ρ̂ ⊂ supp(wz).

But ∅ 6= λ′ ⊆ supp(y).
7 8,9,10,11 λ = z

zr
, but λ′ has a different value.

8 9,10,11 λ = wz
zr

, but λ′ has a different value.
9 10 λ = y

yj
, but λ′ = y.

10 11 λ = y, but λ′ = y
y1

.

If λ = λ′, then Γ and Γ′ must belong to one of the pairs of Cases listed in the
following table. We assume that λ = λ′ and give the differences between Γ and Γ′ in
the last column of the table.
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Case Case of Γ′ Difference
of Γ
2 3 λ = λ′ = y

y1
, so u = td+ey1 and u′ = td′+i′−1y1. By

Lemma 4.17 (1,2), u 6= u′.

2 4 If λ = λ′ =
y
y1y2

, then µ =
z
z2

so max(g) > max(z2) by

Lemma 4.10(2), but max(g′) < max(z2).
2 9,10,11 max(td) = max(g) > max(yr), so

max(`) = max(td+e) > max(tyr+r) by Lemma 4.17(1).
But max(`′) = max( (max(g′),max(tyj+j) ) ≤ max(tyr+r),
because max(tyj+j) ≤ max(tyr+j) ≤ max(tyr+r)
and max(g′) < max(yr) < max(tyr+r) by Lemmas 4.15
and 4.17(4).

3 9,10,11 max(`) = max(td+i−1). In case 11, set j′ = 1. Then
max(g′) < max(yj′). So max(`′) = max(tyj′+j′) by Lemma 4.15.
By Lemma 4.17(3), max(`) and max(`′) are different.

4 5,7 u = y1y2z2, but wzr divides u′.
5 7 yr /∈ β, but yr ∈ β′
6 7,8 yr ∈ supp(β′). But zr = xn /∈ α so yr /∈ supp(β).
9 11 w ∈ supp(β′). If w ∈ supp(β), then y1 ∈ α, so j 6= 1,

and then y1 /∈ ` but y1 ∈ `′.

It remains to prove (1). In each of the Cases in Construction 4.12, we will show
that φ(Γ) is an EK-triple for T . Set φ(Γ) = (θ, `, β). In all cases it is immediate that
θ`β is squarefree and that max(β) < max(`). Thus we need only verify that ` is a
minimal monomial generator for (T : θ).

Case 1 is clear.

Case 2: We have that τµ
gq

xmax(g)
= τ

g

xmax(g)
wz ∈ T \N . Hence τ

g

xmax(g)
y ∈ N ,

so τ
g

xmax(g)
yzr ∈ N . Thus τ

g

xmax(g)
yzr ∈ T . Since T is squarefree Borel, we have

τ
g

xmax(g)
ytd+e ∈ T , and hence

g

xmax(g)
td+e

y
µ̂
∈ (T : τ µ̂). Suppose that this is not a

minimal monomial generator. Then τ µ̂
gq̂

xmax(g)c
td+e ∈ T . Since T is squarefree Borel
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and td+e is lex-after xmax(g)yn, it follows that τ µ̂
g

xmax(g)
q̂ = τ

g

xmax(g)
y ∈ T . Hence

τ
g

xmax(g)
wz ∈ N . So we get the contradiction

g

xmax(g)q
∈ (N : τµ).

Case 3: Note that max(q) < max(g) < max(yr) < max(z2) implies that either
q = w or q = 1. If max(g) > y1 or q = 1, we have that td+i−1 is lex-after xmax(gq̂) and
the proof of Case 2 holds, mutatis mutandis. If not, we are in Case 4.

Case 4: We have τ
g

xmax(g)
wz ∈ T \N , so τ

g

xmax(g)
y ∈ N \T . Thus τ

g

xmax(g)
yz2 ∈

N and also T . This yields
g

xmax(g)
y1y2z2 ∈ (T : τ

y
y1y2

). If this were not a minimal

monomial generator, we would have
g

xmax(g)
y1y2 ∈

(
T : τ

y
y1y2

)
, so τ

g

xmax(g)
y ∈ T .

In all of the remaining cases, Γ is of Type 3, so it is immediate from the table in
Lemma 4.9 (2) that ` ∈ (T : θ).

Case 5: If gwz were not a minimal monomial generator for (T : τ), we would have
g

c
wz ∈ (T : τ) which implies

g

c
y ∈ (N : τ), contradicting the assumption that gy is a

minimal monomial generator of (N : τ).

Case 6: If g
wz
ρ̂

were not a minimal monomial generator for (T : τ ρ̂), we would

have
g

c
wz ∈ (T : τ).

Case 7: If gwzr were not a minimal monomial generator for
(
T : τ

z
zr

)
, we would

have
g

c
wz ∈ (T : τ).

Case 8: If gzr were not a minimal monomial generator for
(
T :

wz
zr

)
, we would

have
g

c
wz ∈ (T : τ).

Case 9: If gyityi+i were not a minimal monomial generator for
(
T : τ

y
yj

)
, we

would have
g

c
ytyj+j ∈ (T : τ). Since T is squarefree Borel and xmax(g) is lex-before yj

and hence lex-before tyj+j by Lemma 4.15, it would follow that gy ∈ (T : τ).
Case 10: If gtyj+j were not a minimal monomial generator for (T : τy), we would
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have
g

c
tyj+j ∈ (T : τ). Since T is squarefree Borel and xmax(g) is lex-before yj and

hence lex-before tyj+j by Lemma 4.15, it would follow that gy ∈ (T : τ).
Case 11: If gy1ty1+1 were not a minimal monomial generator for (T : τy), we

would have
g

c
y1ty1+1 ∈ (T : τ). Since T is squarefree Borel and xmax(g) is lex-before

yi and hence lex-before tyi+i by Lemma 4.15, it would follow that gy ∈ (T : τ).

In the proof of the above Lemma 4.14 we used the following supplementary lem-
mas:

Lemma 4.15. Let τ ∈ k[Ac] and g be a squarefree monomial in k[Ac] such that

gτy ∈ N . Suppose that either gyj is a minimal monomial generator of (N : τwz) or

that gwyj is a minimal monomial generator of (N : τz). Then max(g) < max(yj).

Proof: Suppose the opposite. Let c = xmax(g) < yj , and
g

c
cτy ∈ N . By Con-

struction 4.2, it follows that the ideal N is ({c} ∪ A \ {yj})-compressed. Therefore,
g

c
yj(τwz) ∈ N . Hence, we have that

g

c
yj ∈ (N : τwz) and

g

c
yjw ∈ (N : τz). This is a

contradiction.

Lemma 4.16. Let (τµ, gq, α) be an EK-triple of Type 2 for N . Then τ
g

xmax(g)
y ∈ N .

Proof: Applying Lemma 4.11(2), we have that µq = wz. Thus gq ∈ Tτµ, so, since
(τµ, gq, α) is an EK-triple of Type 2, it must be the case that gq

xmax(gq)
= g

xmax(g)
q ∈

Tτµ \Nτµ. Hence, g
xmax(g)

τqµ = g
xmax(g)

τwz ∈ T \N , so g
xmax(g)

τy ∈ N \ T .

Lemma 4.17. Let everything be as in the proof of Lemma 4.14(3). Then:

(1) If max(g) > max(yr), then max(td+e) > max(tyr+r).
(2) If max(g) < max(yr), then max(td+i−1) < max(tyr+r).
(3) td+i−1 6= tyj+j for any j ≥ 1.

(4) max(yj) < max(tyj+j) for any j ≥ 1.

Proof: (1) We have max(td) > max(tyr+r−e), as r − e = #{zj : max(zj) < max(td)}.
(2) We have max(td) < max(yr) and i− 1 < r.
(3) If max(td) ≤ max(tyj ), then i < j. If max(td) > max(tyj ), then i ≥ j.
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(4) tyj is the lex-last t-variable that is lex-before yj . Hence, tyj+1 is lex-after yj .
The variable tyj+j comes lex-later still. Thus, yj > tyj+j .

We are ready for the proof of the Main Lemma 3.9.

Proof of the Main Lemma 3.9: Let T be the ideal constructed in Construction 4.5. By
Lemma 4.6, T is a squarefree Borel ideal lexicographically greater than N , and it has
the same Hilbert function as N .

By Theorem 3.3, the graded Betti numbers of S/(N + P ) and of S/(T + P ) can
be counted using EK-triples. By Lemma 4.14, there exists an injection φ from the set
of EK-triples for N to the EK-triples for T which preserves bidegree. Therefore, there
are at least as many EK-triples for T as for N in every bidegree. It follows that for all
p, s, the graded Betti numbers satisfy

bp,s(S/(T + P )) ≥ bp,s(S/(N + P )) .

5. Ideals plus squares

Let F be a graded ideal containing P = (x2
1, . . . , x

2
n); we say that F is an ideal-plus-

squares. If F = I + P for some ideal I which is squarefree Borel or squarefree lex, we
say that F is Borel-plus-squares or lex-plus-squares respectively. By Kruskal-Katona’s
Theorem [Kr,Ka], there exists a squarefree lex ideal L such that F and the lex-plus-
squares ideal L+ P have the same Hilbert function.

Theorem 5.1. Suppose that char (k) = 0. Let F be a graded ideal containing P =
(x2

1, . . . , x
2
n). Let L be the squarefree lex ideal such that F and the lex-plus-squares

ideal L + P have the same Hilbert function. The graded Betti numbers of L + P are

greater than or equal to those of F .

Proof: The proof has 5 steps. In each of the first four steps, we replace the original
(non-lex) ideal by an ideal with the same Hilbert function and greater graded Betti
numbers.

Step 1: Let F ′ be the initial ideal of F (with respect to any fixed monomial order).
It has the following properties:
◦ F ′ ⊇ P .
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◦ F ′ is a monomial ideal with the same Hilbert function as F .
◦ The graded Betti numbers of F ′ are greater than or equal to those of F .

We will prove the theorem by showing that the graded Betti numbers of the lex-plus-
squares ideal L+ P are greater than or equal to those of F ′.

Step 2: Now, we change the ground field k to an infinite field k̃ of characteristic
2. We denote by F̃ ⊂ k̃[x1, · · · , xn] the monomial ideal generated by the monomials in
F ′. It has the following properties:
◦ F̃ ⊇ P .
◦ F̃ is a monomial ideal with the same Hilbert function as F ′.
◦ The graded Betti numbers of F̃ are greater than or equal to those of F ′.

We will prove the theorem by showing that the graded Betti numbers of the lex-plus-
squares ideal L+ P are greater than or equal to those of F̃ .

Step 3: Now, let M̃ be a generic initial ideal of F̃ (with respect to any monomial
order). It has the following properties:
◦ M̃ ⊇ P because the characteristic of k̃ is 2.
◦ M̃ is a Borel-plus-squares ideal with the same Hilbert function as F̃ .
◦ The graded Betti numbers of M̃ are greater than or equal to those of F̃ .

We will prove the theorem by showing that the graded Betti numbers of the lex-plus-
squares ideal L+ P are greater than or equal to those of M̃ .

Step 4: The Eliahou-Kervaire resolution [EK] shows that the graded Betti numbers
of a squarefree Borel ideal do not depend on the characteristic. By Theorem 2.1(4)
and Lemma 3.1(1), it follows that the graded Betti numbers of a Borel-plus-squares
ideal do not depend on the characteristic. So now, we return to the ground field k.
We denote by M ⊂ k[x1, · · · , xn] the monomial ideal generated by the monomials in
M̃ . It has the following properties:
◦ M ⊇ P .
◦ M is a Borel-plus-squares ideal with the same Hilbert function as M̃ .
◦ The graded Betti numbers of M are equal to those of M̃ .

We will prove the theorem by showing that the graded Betti numbers of the lex-plus-
squares ideal L+ P are greater than or equal to those of M .

Step 5: Let N be the squarefree Borel ideal such that M = N + P . Since N + P

and L + P have the same Hilbert function, we can apply Theorem 3.4. It yields that
the graded Betti numbers of the lex-plus-squares ideal L+P are greater than or equal
to those of M = N + P .
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6. Ideals plus powers

Let a = {a1 ≤ a2 ≤ . . . ≤ an} be a sequence of integers or ∞. Set U = (xa1
1 , . . . , xann ),

where x∞i = 0. We say that a monomial m ∈ S is an a-monomial if the image of m in
S/U is non-zero. Following [GHP], an ideal in S is called an a-ideal if it is generated
by a-monomials.

Set σa =
∏
i∈σ

xaii , and for a monomial a-ideal I set Fσ = S/(I : σa)(−2σa). Note

that Fσ = 0 if, for any i ∈ σ, ai = ∞. Note also that (I : σa) = (I :
∏
i∈σ

xai−1
i ) is

the ideal formed by “erasing” all the variables in σ from a generating set for I. The
argument in the proof of Theorem 2.1 yields:

Theorem 6.1. Let I be a monomial a-ideal.

(1) We have the long exact sequence

(6.2)

0 →
⊕
|σ|=n

Fσ
ϕn−−→ . . . →

⊕
|σ|=i

Fσ
ϕi−−→

⊕
|σ|=i−1

Fσ →

. . .→
⊕
|σ|=1

Fσ
ϕ1−−→

⊕
|σ|=0

Fσ = S/I → S/(I + U) → 0

with maps ϕi the Koszul maps for the sequence xa1
1 , . . . , xann .

(2) Each of the ideals (I : σa) in (1) is an a-ideal monomial ideal.

(3) S/(I + U) is minimally resolved by the iterated mapping cones from (6.2).

Remark 6.3. The other results in the previous sections cannot be generalized to
this situation. The first problem is that if I and J are a-ideals, then it is not true
that I and J have the same Hilbert function if and only if I + U and J + U have
the same Hilbert function. The following example from [GHP] illustrates this: the
ideals I = (x2, y2) and J = (x2, xy) have different Hilbert functions, but the ideals
I + (x3, y3) and J + (x3, y3) have the same Hilbert function.
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