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Abstract. We characterize the lcm lattices that support a monomial ideal with a pure
resolution. Given such a lattice, we provide a construction that yields a monomial ideal
with that lcm lattice and whose minimal free resolution is pure.

1. Introduction

Understanding the minimal free resolutions of monomial ideals has been a deceptively
difficult problem that has occupied researchers for over 50 years. In recent decades, combi-
natorial techniques have both helped shed new light on methods for constructing minimal
resolutions and illustrated some of the problems that arise. For example, while simplicial
and cellular resolutions have proven useful in many situations, Velasco showed that there are
monomial ideals whose minimal resolutions are not even supported on a CW-complex [V].

Nevertheless, combinatorial and topological methods still allow one to understand the
minimal resolutions of monomial ideals at the cost of computing homologies. For example,
formulas of Hochster [H] and Bayer, Charalambous, and Popescu [BCP] yield multigraded
Betti numbers for any monomial ideal provided that one can compute the relevant homology
groups for certain simplicial complexes. Gasharov, Peeva, and Welker introduce the lcm
lattice in the context of resolutions in [GPW]. The combinatorial structure of the lcm lattice
of an ideal determines its total Betti numbers and projective dimension. (See [Pe, Section
58] for background on lcm lattices.)

However, two ideals with isomorphic lcm lattices need not have the same graded Betti
numbers. One particularly interesting type of free resolution is the class of pure resolutions,
those for which at each step in the resolution, there is only a single shift. Pure resolutions
play a vital role in Boij-Söderberg theory, which decomposes free resolutions in an especially
nice way. In this paper, we ask:

Question 1.1. When is a lattice the lcm lattice of a monomial ideal with a pure resolution?

We provide a complete answer to this question in Theorem 3.8, using a topological condi-
tion on the lattice that we call homologically monotonic (HM).

Theorem 1.2 (Theorem 3.8). Let Λ be an atomic lattice. Then there exists an ideal I with
pure resolution such that lcm(I) = Λ if and only if Λ is HM.

As we note in Remark 3.2, geometric and distributive (or, more generally, supersolvable)
lattices are HM, and thus Theorem 3.8 encompasses a wide range of lattices. Using the proof
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of Theorem 3.8, given any lattice Λ that is HM, we explain how to construct a monomial
ideal with a pure resolution and lcm lattice Λ.

In Section 2, which follows the work of Phan [Ph] and Mapes [M], we review the necessary
background on lcm lattices and describe the labeling techniques we will use in our proofs.
The main results are in Section 3.

2. Background and Notation

Throughout the paper, let R = k[x1, x2, . . . , xn] be the polynomial ring with sufficiently
many variables over a field k. Let Λ denote a finite atomic lattice, defined below.

Definition 2.1. A finite poset Λ is called a finite atomic lattice if it satisfies the following
properties:

(1) Every subset S ⊆ Λ has a unique least upper bound
∨

(S), called the join of S, and
a unique greatest lower bound

∧
(S), called the meet of S.

(2) Every element of Λ is a join of atoms. (Recall that an atom is an element that covers
the least element 0̂.)

Note that, if Λ is a finite atomic lattice, there are unique maximal and minimal elements
1̂ =

∨
(Λ) and 0̂ =

∧
(Λ).

Finally, an element v ∈ Λ r {1̂} is called meet-irreducible if it cannot be written as the
meet of two larger elements.

Let I be a monomial ideal with minimal generating set G = (m1, . . . ,mt). Put Λ = {µ :
µ = lcm(S) for some S ⊆ G}. Then Λ, ordered by divisibility, forms a finite atomic lattice.
The generators of I are the atoms, and 0̂ = 1. In this case, Λ is called the lcm lattice of I,
denoted lcm(I) = Λ. See Figure 1 for an example.

Given a finite atomic lattice, there are two standard ways to associate monomials to some
of its vertices (see [M] for details), and we are in the habit of referring to both associations as
labelings. Unfortunately, the present paper will require these two labelings to interact with
one another in complicated ways, so to avoid ambiguity we will avoid words like “labeling”
in favor of “tags” for one association, and “multidegree” for the other.

Definition 2.2. A multigraded lattice is a pair (Λ,mdeg), where Λ is a finite atomic lattice,
and mdeg is a function from the vertices of Λ to the monomials of R which satisfies the
properties below. (We refer to mdeg(v) as the multidegree of v.)

(1) Atoms of Λ have incomparable multidegree.
(2) mdeg(w1 ∨ w2) = lcm(mdeg(w1),mdeg(w2)).
(3) mdeg(0̂) = 1.
(4) For all v, mdeg(v) = lcm(mdeg(a) : a ≤ v and a is an atom).

Observe that (4) is equivalent to (2) and (3).

Example 2.3. The lcm lattice of the ideal I = (c2d, acde, a2b2, abce) is shown in Figure 1.
The multigrading function assigns each vertex its own multidegree; the lcm lattice together
with this natural multigrading is a multigraded lattice.
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Figure 1. The (multigraded) lcm lattice of the ideal I = (c2d, acde, a2b2, abce).

Definition 2.4. A tagged lattice is a a pair (Λ, τ), where Λ is a finite atomic lattice and τ is
a function from the vertices of Λ to the monomials of R which satisfies the properties below.
(We refer to τ(v) as the tag of v.)

(1) If v is meet-irreducible, then τ(v) 6= 1.
(2) For every variable x, the set {v : x divides τ(v)} forms a chain in Λ.
(3) τ(1̂) = 1.

a

b

ab c

e
d

c

Figure 2. A tagged lattice.

Example 2.5. The lattice in Figure 2 is tagged. The underlying lattice Λ is the same as in
Figure 1. The tagging function τ assigns each unmarked vertex to the monomial 1, and each
marked vertex to its marking. Observe that every meet-irreducible vertex has a non-trivial
tag, and that, while the variables a, b, and c each appear in multiple tags, these tags always
form a chain. We will see below that the tagged lattice of Figure 2 and the multigraded
lattice of Figure 1 contain the same information.
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There is a natural duality between tagged and multigraded lattices, given by the following
constructions. (We use only Construction 2.6 in this paper but state Construction 2.7 for
completeness.)

Construction 2.6 (Phan, Mapes). Suppose (Λ, τ) is a tagged lattice. For each vertex v ∈ Λ,

set τm(v) =
∏
w 6≥v

τ(w). Then the pair (Λ, τm) is a multigraded lattice.

Construction 2.7 (Mapes). Suppose (Λ,mdeg) is a multigraded lattice. For each vertex
v ∈ Λ and each variable xi, set `i(v) = minw 6≤v(max(` : x`i divides mdeg(w))) and si(v) =

max(s : xsi divides mdeg(v)). Finally, set τ(v) =
∏

x
`i(v)−si(v)
i . Then the pair (Λ, τ) is a

tagged lattice.

Proposition 2.8 (Mapes). Constructions 2.6 and 2.7 are inverse bijections. In particu-
lar, there is a one-to-one correspondence between monomial ideals, multigraded lattices, and
tagged lattices.

Proof. For the inverse bijection, see [M]. The correspondence to monomial ideals associates
a monomial ideal to its (multigraded) lcm lattice, and a multigraded lattice to the ideal
generated by the multidegrees of its atoms. �

The lattices of Examples 2.3 and 2.5 are associated to one another via Constructions 2.6
and 2.7.

v

Figure 3. The lattice of the examples.

Example 2.9. Let v ∈ Λ be as in Figure 3, where Λ is the underlying lattice of our running
examples. In Example 2.5, the vertices greater than or equal to v have tags b and ab, so
the multidegree of v is the product of the other tags, τm(v) = (a)(c)(e)(d)(c) = ac2de. In
Example 2.3, the multidegree of v is ac2de, which is not divisible by b. Since every vertex not
less than or equal to v has multidegree divisible by b, it follows that the tag of v is divisible
by b. Since there are incomparable elements with multidegrees divisible by the same power
of every other variable, it follows that the tag of v is in fact equal to b. Analyzing every
other vertex in this manner, we see that the lattices of Examples 2.3 and 2.5 correspond
under Constructions 2.6 and 2.7.
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Notation 2.10. Throughout the paper, we will study the (multigraded lattice and) mono-
mial ideal coming from a tagged lattice via Construction 2.6. In order to avoid notational
monstrosities like “deg(mdeg(v)),” we refer to the multigrading by τm. Thus our multigraded
lattices are (Λ, τm), and in Example 2.9 we have τm(v) = ac2de and deg(τm(v)) = 5.

The main algebraic motivation for studying lattices is that the Betti numbers of a mono-
mial ideal are encoded in the poset structure of its lcm lattice. For x < y in a poset P , recall
that the order complex of the open interval (x, y) is the simplicial complex whose faces are
chains in P between x and y. The following result is normally stated for the quotient S/I
rather than the ideal I; see, e.g., [Pe, Theorem 58.8].

Theorem 2.11 (Hochster’s formula for lcm lattices). Let I be a monomial ideal, and let
(Λ, τm) be its multigraded lcm lattice. Fix v 6= 0̂ ∈ Λ, with τm(v) = µ. Then the multigraded
Betti numbers of I with multidegree µ are given by the reduced homology of the order complex
of the open interval (0̂, v):

bi,µ(I) = H̃i−1(0̂, v).

All other nontrivial multigraded Betti numbers are zero.

3. Lattices supporting a pure resolution

In this section, we prove our main theorem, characterizing the lattices supporting a pure
resolution.

Definition 3.1. We say that Λ is homologically monotonic or HM if whenever v < w ∈ Λ
with H̃i(0̂, v) 6= 0 6= H̃j(0̂, w), then i < j.

For a nonnegative integer k, we say that Λ is k-HM if the above condition holds whenever
i ≥ k. (So the notion of “HM” is the same as “0-HM.”)

Remark 3.2. If a lattice Λ has a Cohen-Macaulay order complex, then it is HM. Recall
Reisner’s criterion: For any x in such a lattice, H̃i(0̂, x) = 0 whenever i is less than the
dimension of the order complex of (0̂, x). But if x, y ∈ Λ with x < y, the dimension of
(0̂, x) is strictly less than the dimension of (0̂, y). Thus, if we have H̃i(0̂, x) 6= 0 6= H̃j(0̂, y), it

follows that i and j are the dimensions of the order complexes of (0̂, x) and (0̂, y), respectively,
so i < j.

As shellable lattices are Cohen-Macaulay, this observation shows that many classes of
lattices are HM, such as supersolvable lattices (which include distributive lattices) and geo-
metric lattices.

Lemma 3.3. Suppose that Λ is k-HM, and let v ∈ Λ with H̃i(0̂, v) 6= 0 for some i ≥ k.
Then, for all other j ≥ k, we have H̃j(0̂, v) = 0.

Proof. Assume without loss of generality that i < j. Now let I be any ideal having lcm
lattice Λ. (For example, I could be the Phan ideal of Λ, obtained by tagging each meet-
irreducible element with a distinct variable, and tagging all other elements with 1, then
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applying Construction 2.6.) Let

. . . −→ Fj+1
∂j+1−→ Fj −→ . . . −→ Fi −→ . . . −→ F0 −→ I −→ 0

be a minimal free resolution of I. If H̃j(0̂, v) 6= 0, then by Hochster’s formula, Fj+1 has a
basis element e with multidegree τm(v). Then ∂j+1(e) 6= 0, so we may write it as ∂j+1(e) =∑
mff for nonzero monomials mf and basis elements f for Fj. Choose one such f ; we have

mdeg(mff) = mdeg(e) = τm(v). It follows that mdeg(f) divides τm(v) and that there exists

w ∈ Λ with τm(w) = mdeg(f), so w < v. But now we have H̃j−1(0̂, w) 6= 0, and j − 1 ≥ i,
contradicting the assumption that Λ was k-HM.

�

Definition 3.4. Let (Λ, τ) be a tagged lattice. We say that (Λ, τ) is k-pure if whenever
H̃k(0̂, v) 6= 0 6= H̃k(0̂, w) for two elements v, w ∈ Λ then deg(τm(v)) = deg(τm(w)).

We also say that Λ is k-pure if there exists a tagging τ so that (Λ, τ) is k-pure. Finally,
we say that (Λ, τ) (resp. Λ) is pure if it is k-pure for all k ≥ 0.

In order to quantify how far a given tagged lattice (Λ, τ) is from being k-pure, it helps to
define the statistic δk as follows.

Definition 3.5. For a tagged lattice (Λ, τ), set

δk(Λ, τ) = max{deg(τm(v)) : H̃k(0̂, v) 6= 0} −min{deg(τm(v)) : H̃k(0̂, v) 6= 0}.

Note that (Λ, τ) is k-pure if and only if δk(Λ, τ) = 0.

Lemma 3.6. Let (Λ, τ) be a tagged lattice that is not k-pure, and suppose Λ is k-HM. Then
there exists a tagging τ1 with the following two properties:

(1) δk(Λ, τ1) < δk(Λ, τ)
(2) If (Λ, τ) is `-pure for some ` > k, so is (Λ, τ1).

Proof. Define two subsets S, T ⊆ Λ by

S = {v ∈ Λ : H̃k(0̂, v) 6= 0 and deg(τm(v)) is maximal},

T = {v ∈ Λ : H̃k(0̂, v) 6= 0 and deg(τm(v)) is not maximal}.
Because (Λ, τ) is not k-pure, both S and T are nonempty. We claim that no two elements
v, w ∈ S∪T can be comparable (i.e., S∪T is an antichain of Λ). Indeed, if v, w ∈ S∪T were
comparable (suppose v < w), we would have that both H̃k(0̂, v) and H̃k(0̂, w) are nonzero,
but k ≮ k, contradicting the assumption that Λ is k-HM.

Now write S = {v1, v2, . . . , vt}, and let x1, x2, . . . , xt be variables not appearing in the
original tagging τ . Define τ1 by τ1(v) = τ(v) if v /∈ S and τ1(vi) = τ(vi)xi for vi ∈ S. Now
let v ∈ S ∪ T . Since no two elements of S ∪ T are comparable, every element w of S ∪ T
satisfies v � w, except for w = v. It follows that for v ∈ T we have

τm
1 (v) = τm(v)x1x2 · · · xt,



LCM LATTICES SUPPORTING PURE RESOLUTIONS 7

whereas for vi ∈ S we get

τm
1 (vi) = τm(v)x1x2 · · · x̂i · · ·xt.

Thus, deg(τm
1 (v)) = deg(τm(v)) + t if v ∈ T , and deg(τm

1 (v)) = deg(τm(v)) + t− 1 if v ∈ S,
meaning δk(Λ, τ1) = δk(Λ, τ)− 1. This proves (1).

Now we show (2). Choose v, w ∈ Λ with H̃`(0̂, v) 6= 0 6= H̃`(0̂, w). Since (Λ, τ) is `-pure,
we have deg(τm(v)) = deg(τm(w)).

We claim that no u ∈ S can satisfy v ≤ u. Since H̃k(0̂, u) 6= 0 6= H̃`(0̂, v), we could
not have v < u since k > ` would contradict our assumption that Λ is k-HM. Similarly, by
Lemma 3.3, we could not have v = u. Thus,

deg(τm
1 (v)) = deg(τm(v)) + |{u ∈ S : v � u}| = deg(τm(v)) + |S|,

and the same holds for w: deg(τm
1 (w)) = deg(τm(w)) + |S|. So we have deg(τm

1 (v)) =
deg(τm

1 (w)), meaning (Λ, τ1) remains `-pure. �

Lemma 3.7. Let (Λ, τ) be a tagged lattice that is `-pure, and suppose Λ is k-HM for some
k < `. Then there is a tagging of Λ so that the associated tagged lattice is both k-pure and
`-pure.

Proof. If (Λ, τ) is k-pure, we’re done. Otherwise, we have δk(Λ, τ) > 0. We apply Lemma 3.6,
obtaining a tagging τ1 so that (Λ, τ1) is `-pure and δk(Λ, τ1) = δk(Λ, τ)− 1. If δk(Λ, τ1) > 0,
we repeat the algorithm from Lemma 3.6 again, obtaining a tagging τ2 so that (Λ, τ2) is
`-pure and δk(Λ, τ2) = δk(Λ, τ1) − 1. Continuing, we eventually obtain a tagging σ = τj
(actually, j = δk(Λ, τ)) so that (Λ, τj) is `-pure and δk(Λ, τj) = 0, meaning (Λ, τj) is also
k-pure. �

Theorem 3.8. Let Λ be an atomic lattice. Then there exists an ideal I with pure resolution
such that lcm(I) = Λ if and only if Λ is HM.

Proof. First, suppose that Λ is not HM. Then there must be some v, w ∈ Λ with v < w and
H̃i(0̂, v) 6= 0 6= H̃j(0̂, w) but i ≥ j. If I is any ideal with lcm(I) = Λ, then v and w must
correspond to monomials mv and mw with deg(mv) < deg(mw). If i = j, then I does not
have a pure resolution. If i > j, then bi+1(mw) 6= 0. It follows that bj+1(µ) 6= 0 for some µ
dividing mw. Since µ divides mv, it follows that I does not have pure resolution.

Now suppose Λ is HM, and fix a tagging τ . Let i be the greatest integer for which (Λ, τ)
is not i-pure. By Lemma 3.7, we can construct a tagging τ1 so that (Λ, τ1) is k-pure for
all k ≥ i. Now let j be the greatest integer for which (Λ, τ1) is not pure (so that j < i).
Again by Lemma 3.7, we can construct a tagging τ2 such that (Λ, τ2) is k-pure for all k ≥ j.
Continuing in this way, we eventually obtain a tagging τr so that (Λ, τr) is pure. Thus
I = I(Λ, τr) is an ideal with pure resolution satisfying lcm(I) = Λ. �

Example 3.9. If we apply the algorithm implicit in the proof of Theorem 3.8 to the running
example of Section 2, the tagged lattice of Figure 2 becomes the new tagged lattice shown
in Figure 4. The new variables in the tags are shown with capital letters.
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Figure 4. The purification of the tagged lattice in Figure 2.

The corresponding monomial ideal is

(c2dhijk`m, acdefghkm, a2b2ijk`m, abcefgij`),

which has a pure resolution in degrees 9, 13, and 16.
Observe that we could have done this with fewer variables by using pure powers for our

new tags. Then the resulting monomial ideal is (c2dgh3i2, acdef 2gi2, a2b2h3i2, abcef 2h3). We
could have used fewer variables still, if we were willing to reuse preexisting variables for our
new tags, but the result is highly nonunique.

4. Remarks and questions

Say that a monomial ideal is purifiable if there exists another ideal with pure resolution
and the same lcm lattice. Then I is purifiable if and only if its lcm lattice is HM, and
many important classes of monomial ideals are purifiable. It is natural from an algebraic
perspective to seek out classes of ideals which are (or are not) purifiable.

Example 4.1. Recall that a monomial ideal is called Scarf if it is resolved by its Scarf
complex; see [BPS] for the construction. Then, following the same reasoning as in Remark
3.2, Scarf ideals are purifiable: an element of the lcm lattice supports homology only if it
appears in the supporting complex, and then only in the dimension of the corresponding cell.
Since the “generic monomial ideals” defined in [BPS] are all Scarf, it follows that purifiability
is very common.

A larger, if less well-studied, class of purifiable ideals is the rigid monomial ideals intro-
duced by Clark and Mapes [CM]. These are the ideals whose resolutions have only scalar
automorphisms; in particular, Scarf ideals are rigid. Clark and Mapes show that rigidity is
equivalent to a stronger condition on the multigraded Betti numbers than being HM.

Definition 4.2 ([CM]). A monomial ideal I is rigid if it satisfies the following conditions.

(R1) Every multigraded Betti number bi,m(I) is equal to either zero or one.
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(R2) Multidegrees with the same nonzero Betti number are incomparable: If m divides
m′, then for all i at least one of bi,m(I) and bi,m′(i) is equal to zero.

Applying Hochster’s formula Theorem 2.11, it is clear that rigid ideals have HM lcm
lattices and thus are purifiable. In fact, purifiability is equivalent to condition (R2):

Proposition 4.3. A finite atomic lattice Λ is HM if and only if it satisfies the following
condition: Suppose v < w ∈ Λ. Then for all i, at least one of H̃i(0̂, v) and H̃i(0̂, w) is zero.

Proof. If Λ is HM, the given condition is immediate.
For the converse, the idea is the same as the proof of Lemma 3.3. Let I be any ideal with

lcm lattice Λ, and let mv and mw be the corresponding multidegrees. Consider a minimal
free resolution of I. The ith free module has a generator in multidegree mv if and only if
bi,mv(I) 6= 0, if and only if H̃i−1(0̂,mv) 6= 0. Now if Λ is not HM, there exist numbers
i ≥ j and vertices v < w ∈ Λ with bi,mv(I) and bj,mw(I) both nonzero. Choose a generator
for the ith free module with multidegree mv, and apply the differential map. The result is
an R-linear combination of generators for the (i − 1)th free module, each with multidegree
dividing mv. Pick one such generator and repeat; after (i − j) steps we will have found a
generator for the jth free module with multidegree strictly dividing mw, violating the given
condition. �

In another direction, we can attempt to generalize the Scarf condition to a larger class of
supporting complexes.

Question 4.4. Suppose that a minimal resolution of I is supported by a topological object
X with nice structure. Are there conditions on X (e.g., being a regular cell complex) which
allow us to conclude that I is purifiable?

Our intuition here is along the lines of Remark 3.2 and Example 4.1: each cell should
correspond to a vertex in the lcm lattice, supporting homology only in its top dimension.
The problem is that the face poset of X is not just a subset of the lcm lattice of I: faces can
share multidegree, and incomparable faces can have comparable multidegrees.

We conclude with a remark about the role of k.

Remark 4.5. Both purifiability of an ideal and homological monotonicity of a lattice are
characteristic-dependent phenomena. Let I = (abc, abf, ace, ade, adf, bcd, bde, bef, cdf, cef)
be the Stanley-Reisner ideal of the minimal triangulation of the real projective plane, and
let Λ be the lcm lattice of I. In characteristic other than two, I has a pure resolution, so Λ
is HM. However, in characteristic two, I has multiple Betti numbers in multidegree abcdef .
This corresponds to the open interval (0̂, 1̂) having nonzero first and second homology in Λ,
which means that Λ is not HM.

In fact, if Λ is any lattice with characteristic-dependent homology, it cannot be HM in the
special characteristics: Looking at the resolution of any corresponding ideal, the consecutive
cancellations that occur when passing from the special characteristic to characteristic zero
correspond to a trivial complex in some (fixed) multidegree. The vertex of Λ with that
multidegree consequently has two nonzero homologies in the special characteristic.



10 CHRISTOPHER A. FRANCISCO, JEFFREY MERMIN, AND JAY SCHWEIG

Acknowledgments: This work was partially supported by grants from the Simons Foun-
dation (#199124 to Christopher Francisco and #202115 to Jeffrey Mermin).

References

[BCP] D. Bayer, H. Charalambous, and S. Popescu, Extremal Betti numbers and applications to monomial
ideals. J. Algebra 221 (1999), no. 2, 497–512.

[BPS] D. Bayer, I. Peeva, and B. Sturmfels, Monomial resolutions. Math. Res. Lett. 5 (1998), no. 1–2, 31-46.
[CM] T. B. P. Clark and S. Mapes, Rigid monomial ideals. J. Commut. Algebra 6 (2014), no. 1, 33–52.
[GPW] V. Gasharov, I. Peeva, and V. Welker, The lcm-lattice in monomial resolutions. Math. Res. Lett. 6

(1999), no. 5–6, 521-532.
[H] M. Hochster, Cohen-Macaulay rings, combinatorics, and simplicial complexes. Ring theory, II (Proc.

Second Conf., Univ. Oklahoma, Norman, Okla., 1975), pp. 171-223. Lecture Notes in Pure and Appl.
Math., Vol. 26, Dekker, New York, 1977.

[M] S. Mapes, Finite atomic lattices and resolutions of monomial ideals. J. Algebra 379 (2013), 259-276.
[Pe] I. Peeva, Graded Syzygies. Algebra and Applications, Volume 14. Springer, London (2011).
[Ph] J. P. Phan, Order properties of monomial ideals and their free resolutions. Thesis (Ph.D.), Columbia

University. 2006. 54 pp.
[V] M. Velasco, Minimal free resolutions that are not supported by a CW-complex. J. Algebra 319 (2008),

no. 1, 102-114.

Department of Mathematics, Oklahoma State University, 401 Mathematical Sciences,
Stillwater, OK 74078

E-mail address: chris.francisco@okstate.edu
URL: http://math.okstate.edu/people/chris/

Department of Mathematics, Oklahoma State University, 401 Mathematical Sciences,
Stillwater, OK 74078

E-mail address: mermin@math.okstate.edu
URL: http://math.okstate.edu/people/mermin/

Department of Mathematics, Oklahoma State University, 401 Mathematical Sciences,
Stillwater, OK 74078

E-mail address: jay.schweig@okstate.edu
URL: http://math.okstate.edu/people/jayjs/


	1. Introduction
	2. Background and Notation
	3. Lattices supporting a pure resolution
	4. Remarks and questions
	References

