LEXIFYING IDEALS

Jeffrey Mermin Irena Peeva
Department of Mathematics, Cornell University, Ithaca, NY 14853, USA.

Abstract: This paper is on monomial quotients of polynomial rings over which Hilbert functions are attained by lexicographic ideals.

1. Introduction

Let $B=k\left[x_{1}, \ldots, x_{n}\right]$ be a polynomial ring over a field k graded by $\operatorname{deg}\left(x_{i}\right)=1$ for all i.
What are the possible Hilbert functions of graded ideals in B ? This question was answered by Macaulay [Ma], who showed that for every graded ideal there exists a lexicographic ideal with the same Hilbert function. Lexicographic ideals are highly structured: they are defined combinatorially and it is easy to derive the inequalities characterizing their possible Hilbert functions. Macaulay's Theorem also plays an important role in the study of graded B-ideals; for example,

- Hartshorne's [Ha] proof that the Hilbert scheme is connected uses lexicographic ideals in an essential way.
- The homological properties of lexicographic ideals are combinatorially tractable [EK]. This leads to results by Bigatti, Hulett, Pardue, showing that the lexicographic ideals have extremal Betti numbers.

Let M be a monomial ideal. We say that a graded ideal in B / M is lexifiable if there exists a lexicographic ideal in B / M with the same Hilbert function. We call M and B / M Macaulay-Lex if every graded ideal in B / M is lexifiable. The following results are well known: Macaulay's Theorem [Ma] says that 0 is a Macaulay-Lex ideal, Kruskal-Katona's Theorem [Ka, Kr] says that $\left(x_{1}^{2}, \ldots, x_{n}^{2}\right)$ is a Macaulay-Lex ideal, and Clements-Lindström's Theorem [CL] says that $\left(x_{1}^{e_{1}}, \ldots, x_{n}^{e_{n}}\right)$ is a Macaulay-Lex ideal if $e_{1} \leq \ldots \leq e_{n} \leq \infty$. These theorems are well-known and have many applications in Commutative Algebra, Combinatorics, and Algebraic Geometry.

1991 Mathematics Subject Classification: 13F20.
Keywords and Phrases:Hilbert function, lexicographic ideals.

It is easy to construct examples like Example 2.13, where problems occur in the degrees of the minimal generators of M. This motivated us to slightly weaken the definition: Let q be the maximal degree of a minimal monomial generator of M; we call M and B / M pro-lex if every graded ideal generated in degrees $\geq q$ in B / M is lexifiable. There exist examples of non pro-lex rings; see Example 3.14. The main goal in this paper is to open a new direction of research along the lines of the following problem.

Problem 1.1. Find classes of pro-lex monomial ideals.
Theorem 5.1 shows that if M is Macaulay-Lex and N is lexicographic, then $M+N$ is Macaulay-Lex. Theorem 4.1 shows that if M is Macaulay-Lex, then it stays Macaulay-Lex after we add extra variables to the ring B. In Section 3 we prove:

Theorem 1.2. Let $P=\left(x_{1}^{e_{1}}, \cdots, x_{n}^{e_{n}}\right)$, with $e_{1} \leq e_{2} \leq \cdots \leq e_{n} \leq \infty$ (here $x_{i}^{\infty}=0$), and M be a compressed monomial ideal in B / P generated in degrees $\leq p$. If $n=2$, assume that M is (B / P)-lex. Set $\Upsilon=B /(M+P)$. Then Υ is pro-lex above p, that is, for every graded ideal Γ in Υ generated in degrees $\geq p$ there exists an Υ-lex ideal Θ with the same Hilbert function.

In the case when $M=P=0$, Theorem 1.2 is Macaulay's Theorem [Ma]; in the case when $M=0$, Theorem 1.2 is Clements-Lindström's Theorem [CL]. Examples 3.13 and 3.14 show that there are obstructions to generalizing Theorem 1.2.

We make use of ideas of Bigatti [Bi], Clements and Lindström [CL], and Green [Gr]. Our proofs are algebraic, and we avoid computations using generic forms (used in [Gr]) and combinatorial counting (used in [CL]). In Section 2 we introduce definitions and notation used throughout the paper.

Acknowledgments. We thank Christopher Francisco, Mike Stillman, and Steven Sinnott for helpful discussions.

2. Lexification

The notation in this section will be used throughout the paper. We introduce several definitions.
Let k be a field and $B=k\left[x_{1}, \ldots, x_{n}\right]$ be graded by $\operatorname{deg}\left(x_{i}\right)=1$ for all i. We denote by B_{d} the k-vector space spanned by all monomials of degree d. Denote $\mathbf{m}=\left(x_{1}, \ldots, x_{n}\right)_{1}$ the k-vector space spanned by the variables. We order the variables lexicographically by $x_{1}>\ldots>x_{n}$, and we denote by $\succ_{l e x}$ the homogeneous lexicographic order on the monomials. We say that an ideal is p-generated if it has a system of generators of degree p.

A monomial $x_{1}^{a_{1}} \ldots x_{n}^{a_{n}}$ has exponent vector $\mathbf{a}=\left(a_{1}, \ldots, a_{n}\right)$, and is sometimes denoted by $\mathbf{x}^{\mathbf{a}}$. An ideal is called monomial if it can be generated by monomials; such an ideal has a
unique minimal system of monomial generators.
Notation 2.1. Let M be a monomial ideal. Set $\Upsilon=B / M$. Vector spaces in Υ (and sometimes ideals) are denoted by greek letters. For example, we denote by C_{d} a subspace of B_{d}, and we denote by τ_{d} a subspace of Υ_{d}.

Definition 2.2. A monomial is a product of powers of the variables, so it can be considered as an element in either B or Υ. We say that a monomial is an Υ-monomial if it does not vanish in Υ, that is, it is not in M. We say that a monomial is an Υ_{d}-monomial if it is an Υ-monomial of degree d. Furthermore, we say that τ_{d} is an Υ_{d}-monomial space if it can be spanned by Υ_{d}-monomials. We denote by $\left\{\tau_{d}\right\}$ the set of Υ_{d}-monomials contained in τ_{d}. The cardinality of this set is $\left|\tau_{d}\right|=\operatorname{dim}_{k} \tau_{d}$. By $\mathbf{m} \tau_{d}$ we mean the k-vector subspace $\left(\mathbf{m}\left(\tau_{d}\right)\right)_{d+1}$ of Υ_{d+1}.

Definition 2.3. Let L be a monomial ideal in Υ minimally generated by Υ-monomials l_{1}, \ldots, l_{r}. We say that L is Υ-lex, (Υ-lexicographic), if the following property is satisfied:

$$
\left.\begin{array}{c}
m \text { is an } \Upsilon \text {-monomial } \\
m \succ_{l e x} l_{i} \text { and } \operatorname{deg}(m)=\operatorname{deg}\left(l_{i}\right), \text { for some } 1 \leq i \leq r
\end{array}\right\} \quad \Longrightarrow \quad m \in L
$$

The Υ_{d}-lex-segment $\lambda_{d, p}$ of length p in degree d is defined as the k-vector space spanned by the lexicographically first (greatest) p monomials in Υ_{d}. We say that λ_{d} is a lex-segment in Υ_{d} if there exists a p such that $\lambda_{d}=\lambda_{d, p}$. For a Υ_{d}-monomial space τ_{d}, we say that $\lambda_{d,\left|\tau_{d}\right|}$ is its Υ_{d}-lexification.

For simplicity, we sometimes say lex instead of Υ-lex if it is clear over which ring we work.
Example 2.4. The ideal $\left(a^{2}, a b, b^{2}\right)$ is lex in the ring $k[a, b, c, d] /(a c, a d)$, and its generators span a lex-segment. The k-vector space spanned by $a^{2}, a b, b^{2}$ is the lexification of the k-vector space spanned by $b^{2}, c^{2}, c d$. However, the ideal is not lex in $k[a, b, c, d]$.

Proposition 2.5. If τ_{d} is an Υ_{d}-lex-segment, then $\mathbf{m} \tau_{d}$ is an Υ_{d+1}-lex-segment.

Definition 2.6. A monomial m^{\prime} is said to be in the big shadow of a monomial m if $m^{\prime}=\frac{x_{i} m}{x_{j}}$ for some x_{j} dividing m and some $i \leq j$. A monomial ideal in Υ is Υ-Borel if it contains all Υ-monomials in the big shadows of its minimal Υ-monomial generators. Ideals that are B-Borel are usually called strongly stable or 0-Borel fixed. We say that a monomial space τ_{d} is Υ_{d}-Borel if it contains all Υ_{d}-monomials in the big shadows of its monomial generators.

Proposition 2.7. If τ_{d} is Υ_{d}-Borel, then $\mathbf{m} \tau_{d}$ is Υ_{d+1}-Borel.
Proposition 2.8. If τ_{d} is an Υ_{d}-lex-segment, then it is Υ_{d}-Borel.

Notation 2.9. Let Γ be a graded ideal in Υ. It decomposes as a direct sum of its components $\Gamma=\oplus_{d \geq 0} \Gamma_{d}$. Its Hilbert function $\operatorname{Hilb}_{\Gamma}^{\Upsilon}: \mathbf{N} \cup 0 \rightarrow \mathbf{N} \cup 0$ is defined by

$$
\operatorname{Hilb}_{\Gamma}^{\Upsilon}(d)=\operatorname{dim}_{k}\left(\Gamma_{d}\right) \quad \text { for all } d \geq 0
$$

We use the following notation

$$
\left|\Gamma_{d}\right|^{\Upsilon}=\operatorname{Hilb}_{\Gamma}^{\Upsilon}(d) ;
$$

and for simplicity, we write $\left|\Gamma_{d}\right|$ if it is clear over which ring we work.
Definition 2.10. We say that an Υ_{d}-monomial space τ_{d} is Υ_{d}-lexifiable if its lexification λ_{d} has the property that $\left|\mathbf{m} \lambda_{d}\right| \leq\left|\mathbf{m} \tau_{d}\right|$. The monomial ideal M and the quotient ring $\Upsilon=B / M$ are called d-pro-lex, if every Υ_{d}-monomial space is Υ_{d}-lexifiable.

Definition 2.11. We say that a graded ideal R in Υ is lexifiable if there exists an Υ-lex ideal with the same Hilbert function as R. The monomial ideal M and the quotient ring $\Upsilon=B / M$ are called Macaulay-Lex if every graded ideal in Υ is lexifiable.

Example 2.12. This example shows that the order of the variables can make a difference. The ideal $(a b)$ is not lexifiable in the ring $k[a, b] /\left(a b^{2}\right)$ for the lex order with $a>b$, but it is lexifiable for the lex order with $b>a$.

Example 2.13. The ideal $(a b)$ is not lexifiable in the ring $k[a, b] /\left(a^{2} b, a b^{2}\right)$ in any lex order.
It is easy to construct many examples like Example 2.13. This observation suggests that in order to obtain positive results we need to slightly relax Definition 2.11:

Definition 2.14. Let q be the maximal degree of a minimal monomial generator of M. The monomial ideal M and the quotient ring $\Upsilon=B / M$ are called pro-lex if every graded ideal generated in degrees $\geq q$ in Υ is lexifiable.

In the examples we usually denote the variables by a, b, c, d for simplicity.

3. Compression

The following definition generalizes a definition introduced by Clements and Lindström [CL], who used it over a quotient of a polynomial ring modulo pure powers of the variables.

Definition 3.1. Let E be a monomial ideal in B. A $(B / E)_{d}$-monomial space τ_{d} is called i-compressed (or i-compressed in $(B / E)_{d}$) if we have the disjoint union

$$
\left\{\tau_{d}\right\}=\coprod_{0 \leq j \leq d} x_{i}^{d-j}\left\{\sigma_{j}\right\}
$$

and each σ_{j} is a lex-segment in $\left(B /\left(E, x_{i}\right)\right)_{j}$. We say that a k-vector space τ_{d} is $(B / E)_{d^{-}}$ compressed (or compressed) if it is a $(B / E)_{d}$-monomial space and is i-compressed for all $1 \leq$ $i \leq n$. A monomial ideal W in B / E is called compressed if W_{d} is compressed for all $d \geq 0$.

Example 3.2. The ideal

$$
\left(a^{3}, a^{2} b, a^{2} c, a b^{2}, a b c, b^{3}, b^{2} c\right)
$$

is compressed in the ring $k[a, b, c]$.
Lemma 3.3. If τ_{d} is i-compressed in $(B / E)_{d}$, then $\mathbf{m} \tau_{d}$ is i-compressed in $(B / E)_{d+1}$. If τ_{d} is $(B / E)_{d}$-lex, then it is $(B / E)_{d}$-compressed.

Definition 3.4. A B-monomial ideal K is called compressed-plus-powers if $K=M+P$, where $P=\left(x_{1}^{e_{1}}, \cdots, x_{n}^{e_{n}}\right)$ with $e_{1} \leq e_{2} \leq \cdots \leq e_{n} \leq \infty$ and the monomial ideal M is compressed in B / P. Sometimes, when we need to be more precise, we say that K is compressed-plus- P. Furthermore, we say that K is lex-plus- P if M is lex in B / P.

Notation 3.5. Throughout this section we use the following notation and make the following assumptions:

- $P=\left(x_{1}^{e_{1}}, \cdots, x_{n}^{e_{n}}\right)$ with $2 \leq e_{1} \leq e_{2} \leq \cdots \leq e_{n} \leq \infty$.
- The ideal $K=M+P$ is a compressed-plus- P monomial ideal in B; here M is compressed in B / P.
- If $n=2$ we assume in addition that K is lex-plus- P.
- We assume that M is p-generated.
- Set $\Upsilon=B / K$.
- d is a degree such that $d \geq p$.

For a $(B / P)_{d}$-monomial space A_{d} set

$$
\begin{aligned}
& t_{i}\left(A_{d}\right)=\left|\left\{m \in\left\{A_{d}\right\} \mid \max (m) \leq i\right\}\right| \\
& s_{i}\left(A_{d}\right)=\mid\left\{m \in\left\{A_{d}\right\} \mid \max (m)=i \text { and } x_{i}^{e_{i}-1} \text { divides } m\right\} \mid \\
& r_{i, j}\left(A_{d}\right)=\mid\left\{m \in\left\{A_{d}\right\} \mid \max (m) \leq i \text { and } x_{i}^{j} \text { does not divide } m\right\} \mid
\end{aligned}
$$

The formula in the following lemma is a generalization of a formula introduced by Bigatti [Bi], who used it for B-Borel ideals.

Lemma 3.6. Let A_{d} be a $(B / P)_{d}$-monomial space.
(1) If A_{d} is compressed and $n \geq 3$, then A_{d} is $(B / P)_{d}$-Borel.
(2) If A_{d} is $(B / P)_{d}$-Borel, then

$$
\left|\left\{\mathbf{m} A_{d}\right\}\right|=\sum_{i=1}^{n} t_{i}\left(A_{d}\right)-s_{i}\left(A_{d}\right)=\sum_{i=1}^{n} r_{i, e_{i}-1}\left(A_{d}\right)
$$

Proof: First, we prove (1). Let $m \in\left\{A_{d}\right\}$ and m^{\prime} be a $(B / P)_{d}$ - monomial in its big shadow. Hence $m^{\prime}=\frac{x_{i} m}{x_{j}}$ for some x_{j} dividing m and some $i \leq j$. There exists an index $1 \leq q \leq n$ such that $q \neq i, j$. Note that that m and m^{\prime} have the same q-exponents. Since A_{d} is q-compressed and $m^{\prime} \succ_{l e x} m$, it follows that $m^{\prime} \in\left\{A_{d}\right\}$. Therefore, A_{d} is $(B / P)_{d}$-Borel.

Now, we prove (2). We will show that $\left\{\mathbf{m} A_{d}\right\}$ is equal to the set

$$
\coprod_{i=1}^{n} x_{i}\left\{m \in\left\{A_{d}\right\} \mid \max (m) \leq i\right\} \backslash \coprod_{i=1}^{n} x_{i}\left\{m \in\left\{A_{d}\right\} \mid \max (m)=i \text { and } x_{i}^{e_{i}-1} \text { divides } m\right\}
$$

Denote by \mathcal{P} the set above. Let $w \in A_{d}$. For $j \geq \max (w)$ we have that $x_{j} w \in \mathcal{P}$. Let $j<\max (w)$. Then $v=x_{j} \frac{w}{x_{\max (w)}} \in A_{d}$. So, $x_{j} w=x_{\max (w)} v \in \mathcal{P}$.

Lemma 3.7 is a generalization of a result by M. Green [Gr], who proved a particular case of it it over a polynomial ring (in the case $M=0$). Green's proof is entirely different than ours; he makes a computation with generic linear forms. It is not clear how to apply his computation to the case $M \neq 0$.

Lemma 3.7. Let τ_{d} be an n-compressed Borel Υ_{d}-monomial space, and let λ_{d} be a lexsegment in Υ_{d} with $\left|\left\{\lambda_{d}\right\}\right| \leq\left|\left\{\tau_{d}\right\}\right|$. Let L_{d} and T_{d} be the $(B / P)_{d}$-monomial spaces such that $\left\{L_{d}\right\}=\left\{\lambda_{d}\right\} \coprod\left\{M_{d}\right\}$ and $\left\{T_{d}\right\}=\left\{\tau_{d}\right\} \coprod\left\{M_{d}\right\}$. For each $1 \leq i \leq n$ and each $1 \leq j \leq e_{i}$ we have

$$
r_{i, j}\left(L_{d}\right) \leq r_{i, j}\left(T_{d}\right)
$$

Proof: Set $R=B / P$. By Lemma 3.6, M_{d} is R_{d}-Borel. Therefore, both L_{d} and T_{d} are R_{d}-Borel and n-compressed.

First, we consider the case $i=n$. Clearly, $r_{n, e_{n}}\left(L_{d}\right)=\left|L_{d}\right|=\left|T_{d}\right|=r_{n, e_{n}}\left(T_{d}\right)$ (if $e_{n}=$ ∞, then we consider $r_{n, d+1}$ here). We induct on j decreasingly. Suppose that $r_{i, j+1}\left(L_{d}\right) \leq$ $r_{i, j+1}\left(T_{d}\right)$ holds by induction.

If $\left\{T_{d}\right\}$ contains no monomial divisible by x_{n}^{j} then

$$
r_{i, j}\left(L_{d}\right) \leq r_{i, j+1}\left(L_{d}\right) \leq r_{i, j+1}\left(T_{d}\right)=r_{i, j}\left(T_{d}\right)
$$

Suppose that $\left\{T_{d}\right\}$ contains a monomial divisible by x_{n}^{j}. Denote by $e=x_{1}^{b_{1}} \ldots x_{n}^{b_{n}}$, with $b_{n} \geq j$, the lex-smallest monomial in T_{d} that is divisible by x_{n}^{j}. Let $0 \leq q \leq j-1$. Since T_{d} is R_{d}-Borel,
it follows that $c_{q}=x_{n-1}^{b_{n}-q} \frac{e}{x_{n}^{b_{n}-q}} \in T_{d}$. This is the lex-smallest monomial that is lex-greater than e and x_{n} divides it at power q. Let the monomial $a=x_{1}^{a_{1}} \ldots x_{n-1}^{a_{n-1}} x_{n}^{q} \in R_{d}$ be lex-greater than e. Since T_{d} is n-compressed and a is lex-greater (or equal) than c_{q}, it follows that $a \in T_{d}$.

For a monomial u, we denote by $x_{n} \notin u$ the property that x_{n}^{j} does not divide u. By what we proved above, it follows that

$$
\begin{equation*}
\left|\left\{u \in\left\{T_{d}\right\} \mid x_{n} \notin u, u \succ_{l e x} e\right\}\right|=\left|\left\{u \in\left\{R_{d}\right\} \mid x_{n} \notin u, u \succ_{l e x} e\right\}\right| . \tag{3.8}
\end{equation*}
$$

Therefore,

$$
\begin{aligned}
r_{i, j}\left(L_{d}\right) & =\left|\left\{u \in\left\{L_{d}\right\} \mid x_{n} \notin u, u \succ_{\text {lex }} e\right\}\right|+\left|\left\{u \in\left\{L_{d}\right\} \mid x_{n} \notin u, u \prec_{l e x} e\right\}\right| \\
& \leq\left|\left\{u \in\left\{R_{d}\right\} \mid x_{n} \notin u, u \succ_{\text {lex }} e\right\}\right|+\left|\left\{u \in\left\{L_{d}\right\} \mid x_{n} \notin u, u \prec_{\text {lex }} e\right\}\right| \\
& \leq\left|\left\{u \in\left\{R_{d}\right\} \mid x_{n} \notin u, u \succ_{\text {lex }} e\right\}\right|+\left|\left\{u \in\left\{L_{d}\right\} \mid u \prec_{\text {lex }} e\right\}\right| \\
& \leq\left|\left\{u \in\left\{R_{d}\right\} \mid x_{n} \notin u, u \succ_{\text {lex }} e\right\}\right|+\left|\left\{u \in\left\{T_{d}\right\} \mid u \prec_{\text {lex }} e\right\}\right| \\
& =\left|\left\{u \in\left\{R_{d}\right\} \mid x_{n} \notin u, u \succ_{\text {lex }} e\right\}\right|+\left|\left\{u \in\left\{T_{d}\right\} \mid x_{n} \notin u, u \prec_{\text {lex }} e\right\}\right| \\
& =\left|\left\{u \in\left\{T_{d}\right\} \mid x_{n} \notin u, u \succ_{\text {lex }} e\right\}\right|+\left|\left\{u \in\left\{T_{d}\right\} \mid x_{n} \notin u, u \prec_{\text {lex }} e\right\}\right| \\
& =r_{i, j}\left(T_{d}\right)
\end{aligned}
$$

for the third inequality we used the fact that λ_{d} is a lex-segment in Υ_{d} with $\left|\left\{\lambda_{d}\right\}\right| \leq\left|\left\{\tau_{d}\right\}\right|$; for the equality after that we used the definition of e; for the next equality we used (3.8). Thus, we have the desired inequality in the case $i=n$.

In particular, we proved that

$$
\begin{equation*}
t_{n-1}\left(L_{d}\right)=r_{n, 1}\left(L_{d}\right) \leq r_{n, 1}\left(T_{d}\right)=t_{n-1}\left(T_{d}\right) \tag{3.9}
\end{equation*}
$$

Finally, we prove the lemma for all $i<n$. Both $\left\{\tau_{d} / x_{n}\right\}$ and $\left\{\lambda_{d} / x_{n}\right\}$ are lex-segments in Υ_{d} / x_{n} since τ_{d} is n-compressed. By (3.9) the inequality $t_{n-1}\left(L_{d}\right) \leq t_{n-1}\left(T_{d}\right)$ holds, and it implies the inclusion $\left\{\tau_{d} / x_{n}\right\} \supseteq\left\{\lambda_{d} / x_{n}\right\}$. The desired inequalities follow since

$$
\begin{aligned}
& r_{i, j}\left(T_{d}\right)=r_{i, j}\left(T_{d} /\left(x_{i+1}, \ldots, x_{n}\right)\right)=r_{i, j}\left(\left\{\tau_{d} /\left(x_{i+1}, \ldots, x_{n}\right)\right\} \coprod\left\{M_{d} /\left(x_{i+1}, \ldots, x_{n}\right)\right\}\right) \\
& r_{i, j}\left(L_{d}\right)=r_{i, j}\left(L_{d} /\left(x_{i+1}, \ldots, x_{n}\right)\right)=r_{i, j}\left(\left\{\lambda_{d} /\left(x_{i+1}, \ldots, x_{n}\right)\right\} \coprod\left\{M_{d} /\left(x_{i+1}, \ldots, x_{n}\right)\right\}\right)
\end{aligned}
$$

Lemma 3.10. Let v_{d} be a Υ_{d}-monomial space. There exists a compressed monomial space τ_{d} in Υ_{d} such that $\left|\tau_{d}\right|=\left|v_{d}\right|$ and $\left|\mathbf{m} \tau_{d}\right| \leq\left|\mathbf{m} v_{d}\right|$.
Proof: Suppose that v_{d} is not i-compressed. Set $z=x_{i}$. Since M is z-compressed in B / P, we have the disjoint union

$$
\left\{M_{d}\right\}=\coprod_{0 \leq j \leq d} z^{d-j}\left\{N_{j}\right\}
$$

where each N_{j} is a $(B /(z, P))_{j}$-lex-segment.
We also have the disjoint union

$$
\left\{v_{d}\right\}=\coprod_{0 \leq j \leq d} z^{d-j}\left\{\nu_{j}\right\}
$$

where each ν_{j} is a monomial space in $B /\left(z, P, N_{j}\right)$. Let γ_{j} be the lexification of the space ν_{j} in $B /\left(z, P, N_{j}\right)$. Consider the Υ_{d}-monomial space τ_{d} defined by

$$
\left\{\tau_{d}\right\}=\coprod_{0 \leq j \leq d} z^{d-j}\left\{\gamma_{j}\right\}
$$

Clearly, $\left|\tau_{d}\right|=\left|v_{d}\right|$.
Consider the $(B / P)_{d}$-monomial spaces V_{d} and T_{d} such that

$$
\left\{V_{d}\right\}=\left\{v_{d}\right\} \coprod\left\{M_{d}\right\} \quad \text { and } \quad\left\{T_{d}\right\}=\left\{\tau_{d}\right\} \coprod\left\{M_{d}\right\}
$$

Set $R=B / P$. The short exact sequence of k-vector subspaces of $(B / P)_{d+1}$

$$
0 \rightarrow \mathbf{m} M_{d} \rightarrow \mathbf{m} T_{d} \longrightarrow \mathbf{m} T_{d} / \mathbf{m} M_{d}=\mathbf{m} \tau_{d} /\left(\mathbf{m} \tau_{d} \cap \mathbf{m} M_{d}\right) \rightarrow 0
$$

shows that $\left|\mathbf{m} \tau_{d}\right|=\left|\mathbf{m} T_{d}\right|-\left|\mathbf{m} M_{d}\right|$ (here we mean $\left.\left|\mathbf{m} \tau_{d}\right|^{\Upsilon}=\left|\mathbf{m} T_{d}\right|^{B / P}-\left|\mathbf{m} M_{d}\right|^{B / P}\right)$. Similarly, the short exact sequence of k-vector subspaces of $(B / P)_{d+1}$

$$
0 \rightarrow \mathbf{m} M_{d} \rightarrow \mathbf{m} V_{d} \longrightarrow \mathbf{m} V_{d} / \mathbf{m} M_{d}=\mathbf{m} v_{d} /\left(\mathbf{m} v_{d} \cap \mathbf{m} M_{d}\right) \rightarrow 0
$$

shows that $\left|\mathbf{m} v_{d}\right|=\left|\mathbf{m} V_{d}\right|-\left|\mathbf{m} M_{d}\right|$. Therefore, the desired inequality $\left|\mathbf{m} \tau_{d}\right| \leq\left|\mathbf{m} v_{d}\right|$ is equivalent to the inequality

$$
\left|\mathbf{m} T_{d}\right| \leq\left|\mathbf{m} V_{d}\right|
$$

We will prove the latter inequality.
We have the disjoint unions

$$
\begin{aligned}
& \left\{V_{d}\right\}=\coprod_{0 \leq j \leq d} z^{d-j}\left\{U_{j}\right\} \quad \text { and } \quad\left\{T_{d}\right\}=\coprod_{0 \leq j \leq d} z^{d-j}\left\{F_{j}\right\}, \text { where } \\
& \left\{U_{j}\right\}=\left\{\nu_{j}\right\} \coprod\left\{N_{j}\right\} \quad \text { and } \quad\left\{F_{j}\right\}=\left\{\gamma_{j}\right\} \coprod\left\{N_{j}\right\} \quad \text { in the ring } B /(z, P)
\end{aligned}
$$

Note that each F_{j} is a $(B /(z, P))_{j}$-lex-segment. Furthermore, we have the disjoint unions

$$
\begin{aligned}
& \left\{\mathbf{m} V_{d}\right\}=\coprod_{0 \leq j \leq d} z^{d-j+1}\left\{U_{j}+\mathbf{n} U_{j-1}\right\} \\
& \left\{\mathbf{m} T_{d}\right\}=\coprod_{0 \leq j \leq d} z^{d-j+1}\left\{F_{j}+\mathbf{n} F_{j-1}\right\}
\end{aligned}
$$

where $\mathbf{n}=\mathbf{m} / z$. We will show that

$$
\left|F_{j}+\mathbf{n} F_{j-1}\right|=\max \left\{\left|F_{j}\right|,\left|\mathbf{n} F_{j-1}\right|\right\} \leq \max \left\{\left|U_{j}\right|,\left|\mathbf{n} U_{j-1}\right|\right\} \leq\left|U_{j}+\mathbf{n} U_{j-1}\right|
$$

The first equality above holds because both F_{j} and $\mathbf{n} F_{j-1}$ are $(B /(z, P))_{j}$-lex-segments, so $F_{j}+\mathbf{n} F_{j-1}$ is the longer of these two lex-segments. The last inequality is obvious. It remains to prove the middle inequality. Using the short exact sequences of k-vector subspaces of $(B / P)_{j}$

$$
\begin{aligned}
& 0 \rightarrow \mathbf{n} N_{j-1} \rightarrow \mathbf{n} F_{j-1} \longrightarrow \mathbf{n} F_{j-1} / \mathbf{n} N_{j-1}=\mathbf{n} \gamma_{j-1} /\left(\mathbf{n} \gamma_{j-1} \cap \mathbf{n} N_{j-1}\right) \rightarrow 0 \\
& 0 \rightarrow \mathbf{n} N_{j-1} \rightarrow \mathbf{n} U_{j-1} \longrightarrow \mathbf{n} U_{j-1} / \mathbf{n} N_{j-1}=\mathbf{n} \nu_{j-1} /\left(\mathbf{n} \nu_{j-1} \cap \mathbf{n} N_{j-1}\right) \rightarrow 0
\end{aligned}
$$

we get $\left|\mathbf{n} \gamma_{j-1}\right|=\left|\mathbf{n} F_{j-1}\right|-\left|\mathbf{n} N_{j-1}\right|$ and $\left|\mathbf{n} \nu_{j-1}\right|=\left|\mathbf{n} U_{j-1}\right|-\left|\mathbf{n} N_{j-1}\right|$. Therefore, the desired inequality $\left|\mathbf{n} F_{j-1}\right| \leq\left|\mathbf{n} U_{j-1}\right|$ is equivalent to the inequality $\left|\mathbf{n} \gamma_{j-1}\right| \leq\left|\mathbf{n} \nu_{j-1}\right|$. The latter inequality holds since by construction γ_{j-1} is the lexification of ν_{j-1}, so $\left|\gamma_{j-1}\right|=\left|\nu_{j-1}\right|$ and by induction on the number of variables we can apply Theorem 3.11 to the ring $B /\left(z, P, N_{j}\right)$.

Thus, $\left|F_{j}+\mathbf{n} F_{j-1}\right| \leq\left|U_{j}+\mathbf{n} U_{j-1}\right|$. Multiplication by z^{d-j+1} is injective if $d-j+1 \leq e_{i}-1$ and is zero otherwise, therefore we conclude that

$$
\left|z^{d-j+1}\left(F_{j}+\mathbf{n} F_{j-1}\right)\right| \leq\left|z^{d-j+1}\left(U_{j}+\mathbf{n} U_{j-1}\right)\right|
$$

This implies the desired inequality $\left|\mathbf{m} T_{d}\right| \leq\left|\mathbf{m} V_{d}\right|$.
Note that $\left\{\tau_{d}\right\}$ is greater lexicographically than $\left\{v_{d}\right\}$. If τ_{d} is not compressed, we can apply the argument above. After finitely many steps in this way, the process must terminate because at each step we construct a lex-greater monomial space. Thus, after finitely many steps, we reach a compressed monomial space.

Theorem 3.11. Let v_{d} be a Υ_{d}-monomial space and λ_{d} be its lexification in Υ_{d}. Then $\left|\mathbf{m} \lambda_{d}\right| \leq\left|\mathbf{m} v_{d}\right|$.

Proof: The theorem clearly holds if $n=1$. Suppose that $n=2$. An easy calculation shows that the theorem holds, provided we do not have $e_{2} \leq d+1<e_{1}$. By the assumption on the ordering of the exponents, this does not hold and we are fine.

Suppose that $n \geq 3$. First, we apply Lemma 3.10 to reduce to the compressed case. We obtain a compressed Υ_{d}-monomial space τ_{d} such that $\left|\tau_{d}\right|=\left|v_{d}\right|$ and $\left|\mathbf{m} \tau_{d}\right| \leq\left|\mathbf{m} v_{d}\right|$. Let L_{d} and T_{d} be the $(B / P)_{d}$-monomial spaces such that $\left\{L_{d}\right\}=\left\{\lambda_{d}\right\} \cup\left\{M_{d}\right\}$ and $\left\{T_{d}\right\}=\left\{\tau_{d}\right\} \cup\left\{M_{d}\right\}$, where the disjoint unions take place in B / P. Both L_{d} and T_{d} are $(B / P)_{d}$-compressed. We apply Lemma 3.6 to conclude that

$$
\left|\left\{\mathbf{m} T_{d}\right\}\right|=\sum_{i=1}^{n} t_{i}\left(T_{d}\right)-\sum_{i=1}^{n} s_{i}\left(T_{d}\right) \quad \text { and } \quad\left|\left\{\mathbf{m} L_{d}\right\}\right|=\sum_{i=1}^{n} t_{i}\left(L_{d}\right)-\sum_{i=1}^{n} s_{i}\left(L_{d}\right)
$$

Finally, we apply Lemma 3.7 and conclude that $\left|\left\{\mathbf{m} L_{d}\right\}\right| \leq\left|\left\{\mathbf{m} T_{d}\right\}\right|$. This inequality and short exact sequences, as in the proof of Lemma 3.10, imply the desired $\left|\mathbf{m} \lambda_{d}\right| \leq\left|\mathbf{m} v_{d}\right|$.

Equivalently, we obtain the following theorem, stated in the introduction:
Theorem 1.2. Let $P=\left(x_{1}^{e_{1}}, \cdots, x_{n}^{e_{n}}\right)$, with $e_{1} \leq e_{2} \leq \cdots \leq e_{n} \leq \infty$ (here $x_{i}^{\infty}=0$), and M be a compressed monomial ideal in B / P generated in degrees $\leq p$. If $n=2$, assume that M is (B / P)-lex. Set $\Upsilon=B /(M+P)$. Then Υ is pro-lex above p, that is, for every graded ideal Γ in Υ generated in degrees $\geq p$ there exists an Υ-lex ideal Θ with the same Hilbert function.

Proof: We can assume that Γ is a monomial ideal by Gröbner basis theory. For each $d \geq p$, let λ_{d} be the lexification of Γ_{d}. By Theorem 3.11, it follows that $\Theta=\oplus_{d \geq p} \lambda_{d}$ is an ideal. By construction, it is a lex-ideal and has the same Hilbert function as Γ in all degrees greater than or equal to p.

Remark 3.12. In the case when $M=P=0$, Theorem 1.2 is the well-known Macaulay's Theorem [Ma]. In the case $M=0$, Theorem 1.2 is the Clements-Lindström's Theorem [CL].

Example 3.13. It is natural to ask if a compressed ideal is Macaulay-Lex. This example shows that the answer is negative. Take $P=0$. The ideal

$$
M=\left(a^{3}, a^{2} b, a^{2} c, a b^{2}, a b c, b^{3}, b^{2} c\right)
$$

is compressed (and Borel) in the ring $k[a, b, c]$. The ideal $\left(a^{2}, a b, b^{2}\right)$ in $k[a, b, c] / M$ is not lexifiable.

Example 3.14. It is natural to ask if Theorem 1.2 holds in the case when M is a B-Borel ideal. It does not. Take $P=0$. The ideal

$$
M=\left(a^{3}, a^{2} b, a^{2} c, a^{2} d, a b^{2}, a b c, a b d, b^{3}, b^{2} c\right)
$$

is Borel in the ring $k[a, b, c]$. However it is not pro-lex because the ideal $\left(b^{2} d\right)$ is not lexifiable in $k[a, b, c] / M$.

4. Adding new variables

Theorem 4.1. If B / M is Macaulay-Lex then $B[y] / M$ is Macaulay-Lex.
In this section, $W=B[y] / M, \mathbf{m}$ is the k-vector space spanned by the variables in B (as in Section 2), and \mathbf{q} is the k-vector space spanned by \mathbf{m} and y.

Lemma 4.2. Let V_{d} be a W_{d}-monomial space, and let T_{d} be its y-compression. Then $\left|T_{d}\right|=$ $\left|V_{d}\right|$ and $\left|\mathbf{q} T_{d}\right| \leq\left|\mathbf{q} V_{d}\right|$.

Proof: The proof is based on the same idea as the proof of Lemma 3.10. We write $\left\{V_{d}\right\}=$ $\coprod_{0 \leq j \leq d} y^{d-j}\left\{U_{j}\right\}$ and $T_{d}=\coprod_{0 \leq j \leq d} y^{d-j}\left\{F_{j}\right\}$, where the F_{j} are B / M-lex satisfying $\left|F_{j}\right|=\left|U_{j}\right|$. Then, as in the proof of Lemma 3.10, we have the disjoint unions

$$
\begin{aligned}
& \left\{\mathbf{q} V_{d}\right\}=\coprod_{0 \leq j \leq d} y^{d-i+1}\left\{U_{j}+\mathbf{m} U_{j-1}\right\} \\
& \left\{\mathbf{q} T_{d}\right\}=\coprod_{0 \leq j \leq d} y^{d-i+1}\left\{F_{i}+\mathbf{m} F_{j-1}\right\},
\end{aligned}
$$

and we have the inequalities

$$
\left|F_{i}+\mathbf{m} F_{j-1}\right|=\max \left\{\left|F_{j}\right|,\left|\mathbf{m} F_{j-1}\right|\right\} \leq \max \left\{\left|U_{j}\right|,\left|\mathbf{m} U_{j-1}\right|\right\} \leq\left|U_{j}+\mathbf{m} U_{j-1}\right|,
$$

where the middle inequality holds because B / M is Macaulay-Lex. Since multiplication by y is injective, we get

$$
\left|y^{d-i+1}\left(F_{i}+\mathbf{m} F_{j-1}\right)\right| \leq\left|y^{d-i+1}\left(U_{j}+\mathbf{m} U_{j-1}\right)\right| .
$$

Lemma 4.3. Let T_{d} be a y-compressed W_{d}-monomial space. Then either T_{d} is W_{d}-lex, or there exists a W_{d}-monomial space F_{d}, such that F_{d} is strictly lexicographically greater than T_{d}, $\left|F_{d}\right|=\left|T_{d}\right|$, and $\left|\mathbf{q} F_{d}\right| \leq\left|\mathbf{q} T_{d}\right|$.

Proof: Let r be as large as possible among the numbers for which we can write

$$
T_{d}=y^{d-r} P \oplus\left(\bigoplus_{i>r} y^{d-i} L_{i}\right)
$$

with P a lex segment of W_{d}. Such an r always exists, as we can if necessary take $r=0$.
If $r=d$, then T_{d} is W_{d}-lex and we are done. If not, then $y P+L_{r+1}$ is not lex in W. Let m be the lex-greatest monomial of W_{r+1} such that $m \notin y P+L_{r+1}$. We consider two cases depending on whether y divides m or not.

Suppose that y divides m. Let u be the lex-least monomial of $y P+L_{r+1}$. Since P is lex and y does not divide m, it follows that y does not divide u. Let Q be the k-vector space spanned by $\{Q\}$, defined by

$$
\{Q\}=\left(\{y P\} \cup\left\{L_{r+1}\right\} \cup\{m\}\right) \backslash\{u\} .
$$

Set

$$
F_{d}=y^{d-r-1} Q \oplus\left(\bigoplus_{i>r+1} y^{d-i} L_{i}\right) .
$$

Now, $\left\{F_{d}\right\} \backslash y^{d-r-1} m=\left\{T_{d}\right\} \backslash y^{d-r-1} u$. Hence, $\left\{F_{d}\right\}$ is strictly lexicographically greater than T_{d}. We will compare $\left\{\mathbf{q} F_{d}\right\}$ and $\left\{\mathbf{q} T_{d}\right\}$. The set $\left\{\mathbf{m} y^{d-r-1} m\right\}$ is contained in $\left\{\mathbf{q} T_{d}\right\}$, so we have $\mathbf{q} F_{d} \backslash\left(\mathbf{q} F_{d} \cap \mathbf{q} T_{d}\right) \subseteq\left\{y^{d-r} m\right\}$. Furthermore, we will show that $y^{d-r} u \notin\left\{\mathbf{q} F_{d}\right\}$. Suppose the opposite. Hence, there exists a q such that $y^{d-r} u=x_{q}\left(y^{d-r} \frac{u}{x_{q}}\right)$, where $\frac{u}{x_{q}} \in P$. But $y \frac{u}{x_{q}} \in y P$ is lex-smaller than u; this contradicts the choice of u. Hence $\left\{\mathbf{q} T_{d}\right\} \backslash\left(\mathbf{q} F_{d} \cap \mathbf{q} T_{d}\right) \supseteq\left\{y^{d-r} u\right\}$. Therefore, we have the desired inequality $\left|\mathbf{q} F_{d}\right| \leq\left|\mathbf{q} T_{d}\right|$. Thus, the lemma is proved in this case.

It remains to consider the case when m is not divisible by y. In this case, m is the lexgreatest monomial not divisible by y that is lex-smaller than all the monomials in $\left\{L_{r+1}\right\}$. Set $z=x_{\max (m)}$. In our construction we will use the set

$$
N=\left\{u \in y P \mid u \prec_{l e x} m \text { and }\left(\frac{z}{y}\right)^{e_{u}} u \neq 0 \text { in } B / M\right\}
$$

where e_{u} is the largest power of y dividing u. We will show that $N \neq \emptyset$ because $\frac{y}{z} m \in N$. Since m is the lex-greatest monomial missing in $m \notin y P+L_{r+1}$, it follows that there exists a monomial $y m^{\prime} \in y P$ that is lex-smaller than m. Therefore, m^{\prime} is (non-strictly) lex-smaller than $\frac{m}{z}$. As $m^{\prime} \in P$ and P is lex, it follows that $\frac{m}{z} \in P$. Thus, $\frac{y}{z} m \in N$ as desired.

We will need three of the properties of N :

Claim.

(1) m is (non-strictly) lex-greater than all the monomials in $\frac{z}{y} N$.
(2) $\frac{z}{y} N \cap\left\{L_{r+1}\right\}=\emptyset$.
(3) $\frac{z}{y} N \cap\{y P\} \subseteq N$.

We will prove the claim. (3) is clear. (2) follows from (1) and the fact that in the considered case m is the lex-greatest monomial not divisible by y that is lex-smaller than all the monomials in $\left\{L_{r+1}\right\}$. We will prove (1). Write

$$
m=x_{1}^{a_{1}} x_{2}^{a_{2}} \ldots z^{a_{z}} \quad \text { and } \quad u=x_{1}^{b_{1}} x_{2}^{b_{2}} \ldots z^{b_{z}} w y^{b_{y}}
$$

where w is not divisible by x_{1}, \ldots, z or by y. Suppose that $\frac{z}{y} u=x_{1}^{b_{1}} x_{2}^{b_{2}} \ldots z^{b_{z}+1} w y^{b_{y}-1}$ is lex-greater than m. On the other hand, m is lex-greater than u. It follows that $a_{j}=b_{j}$ for $j<\max (m)$ and $b_{z}<a_{z} \leq b_{z}+1$. Since the monomials have the same degree, it follows that $a_{z}=b_{z}+1, w=1$, and $b_{y}=1$. Hence $m=\frac{z}{y} u$. The claim is proved.

Let Q be the k-vector space such that

$$
\{Q\}=\left(\left\{y P+L_{r+1}\right\} \backslash N\right) \cup \frac{z}{y} N
$$

By the claim above, it follows that we have the disjoint union $\{Q\}=\left\{L_{r+1}\right\} \coprod y P \backslash N \coprod \frac{z}{y} N$.
Clearly, $|Q|=\left|L_{r+1} \oplus y P\right|$.
We consider the set

$$
F_{d}=y^{d-r-1} Q \oplus\left(\bigoplus_{i>r+1} y^{d-i} L_{i}\right)
$$

It is clear that $\left|F_{d}\right|=\left|T_{d}\right|$. Since $y^{d-r-1} m \in F_{d}$, we see that F_{d} is strictly lexicographically greater than T_{d}. We will show that the inequality $\left|\mathbf{q} F_{d}\right| \leq\left|\mathbf{q} T_{d}\right|$ holds. Set $U=L_{r+1} \oplus y P$ and $V=\oplus_{i>r+1} y^{d-i} L_{i}$.

Since

$$
|\mathbf{q} Q|-|\mathbf{q} U|=-\left\lvert\,\left\{\left.t \in \mathbf{q} N \backslash\left(\mathbf{q} N \cap \mathbf{q}(U \backslash N) \left\lvert\, \frac{z}{y} t=0\right.\right\} \right\rvert\, \leq 0\right.\right.
$$

it follows that $|\mathbf{q} Q| \leq|\mathbf{q} U|$. Furthermore, we have

$$
\begin{aligned}
\left|\mathbf{q} F_{d}\right| & =\left|\mathbf{q} y^{d-r-1} Q\right|+|\mathbf{q} V|-\left|\mathbf{q} V \cap \mathbf{q} y^{d-r-1} Q\right| \\
& =\left|\mathbf{q} y^{d-r-1} Q\right|+|\mathbf{q} V|-\mid y^{d-r-1}\left(L_{r+2} \cap \mathbf{m}\{v \in Q \mid y \text { does not divide } v\}\right) \mid \\
& \leq\left|\mathbf{q} y^{d-r-1} U\right|+|\mathbf{q} V|-\mid y^{d-r-1}\left(L_{r+2} \cap \mathbf{m}\{v \in Q \mid y \text { does not divide } v\}\right) \mid \\
& \leq\left|\mathbf{q} y^{d-r-1} U\right|+|\mathbf{q} V|-\mid y^{d-r-1}\left(L_{r+2} \cap \mathbf{m}\{v \in U \mid y \text { does not divide } v\}\right) \mid \\
& =\left|\mathbf{q} T_{d}\right| ;
\end{aligned}
$$

the first inequality holds because multiplication by y is injective, the second holds by set containment.

Proof of Theorem 4.1: Let V_{d} be a W_{d}-monomial space. If V_{d} is not W-lex, apply Lemmas 4.2 and 4.3 to obtain a y-compressed W_{d}-monomial space F_{d} which is strictly greater lexicographically than V_{d} and satisfies $\left|F_{d}\right|=\left|V_{d}\right|$ and $\left|\mathbf{q} F_{d}\right| \leq\left|\mathbf{q} V_{d}\right|$. If F_{d} is not W-lex, we can apply the lemmas again. After finitely many steps, the process must terminate in a lexicographic monomial space. Hence W is d-pro-lex for all degrees $d \geq 0$, and so is Macaulay-Lex.

5. Lexicographic quotients

Theorem 5.1. If M is Macaulay-Lex and N is a B / M-lex ideal, then $M+N$ is Macaulay-Lex.
The theorem follows immediately from the following result:
Proposition 5.2. Fix a degree $d \geq 1$. If M is $(d-1)$-pro-lex and N is a B / M-lex ideal, then $M+N$ is $(d-1)$-pro-lex.
Proof: Throughout this proof, for a monomial space \bar{V} in $B /(M+N)$, we denote by V the k-vector space spanned by $\{\bar{V}\}$ in B / M.

Let \bar{S}_{d-1} be a monomial space in $(B /(M+N))_{d-1}$. Let \bar{L}_{d-1} be the $B /(M+N)$-lexification of \bar{S}_{d-1}. Set \bar{L}_{d} to be the k-vector space spanned by $\mathbf{m}\left\{\bar{L}_{d-1}\right\}$ and \bar{S}_{d} be the k-vector space spanned by $\mathbf{m}\left\{\bar{S}_{d-1}\right\}$. We will prove that

$$
\left|\bar{L}_{d}\right|^{B /(M+N)} \leq\left|\bar{S}_{d}\right|^{B /(M+N)}
$$

First, we assume that the ideal N has no minimal generators in degree d.
Note that $N_{d-1}+L_{d-1}$ is a B / M-lex-segment. Therefore, $N_{d-1}+L_{d-1}$ is the B / M lexification of $N_{d-1}+S_{d-1}$ in the ring B / M. Since M is $(d-1)$-pro-lex, the following inequality holds:

$$
\left|N_{d}+L_{d}\right|^{B / M} \leq\left|N_{d}+S_{d}\right|^{B / M}
$$

On the other hand,

$$
\begin{aligned}
& \left|N_{d}+L_{d}\right|^{B / M}=\left|N_{d}\right|^{B / M}+\left|L_{d}\right|^{B / M}-\left|N_{d} \cap L_{d}\right|^{B / M} \\
& \left|N_{d}+S_{d}\right|^{B / M}=\left|N_{d}\right|^{B / M}+\left|S_{d}\right|^{B / M}-\left|N_{d} \cap S_{d}\right|^{B / M}
\end{aligned}
$$

Therefore, we obtain the inequality

$$
\left|L_{d}\right|^{B / M}-\left|N_{d} \cap L_{d}\right|^{B / M} \leq\left|S_{d}\right|^{B / M}-\left|N_{d} \cap S_{d}\right|^{B / M}
$$

Note that the left hand-side is equal to $\left|\bar{L}_{d}\right|^{B /(M+N)}$ whereas the right-hand side is equal to $\left|\bar{S}_{d}\right|^{B /(M+N)}$. Thus, we get the desired inequality

$$
\left|\bar{L}_{d}\right|^{B /(M+N)} \leq\left|\bar{S}_{d}\right|^{B /(M+N)}
$$

Now, suppose that N has minimal monomial generators in degree d.
If $L_{d} \subseteq N_{d}$, then

$$
0=\left|\bar{L}_{d}\right|^{B /(M+N)} \leq\left|\bar{S}_{d}\right|^{B /(M+N)}
$$

Suppose that $L_{d} \nsubseteq N_{d}$. Set $Q=\left\{N_{d}\right\} \backslash\left\{\mathbf{m} N_{d-1}\right\}$. Since both $\mathbf{m} N_{d-1}+L_{d}$ and N_{d} are B / M-lex-segments, it follows that one of them contains the other. Hence $\left\{L_{d}\right\} \supseteq Q$, and therefore

$$
\left|\bar{L}_{d}\right|^{B /(M+N)}=\left|L_{d}\right|^{B /\left(M+\left(N_{d-1}\right)\right)}-|Q| .
$$

The argument above (for the case when the ideal is $(d-1)$-generated) can be applied to N_{d-1}, and it yields

$$
\left|L_{d}\right|^{B /\left(M+\left(N_{d-1}\right)\right)} \leq\left|S_{d}\right|^{B /\left(M+\left(N_{d-1}\right)\right)} .
$$

Therefore we have

$$
\begin{aligned}
&\left|\bar{L}_{d}\right|^{B /(M+N)}=\left|L_{d}\right|^{B /\left(M+\left(N_{d-1}\right)\right)}-|Q| \\
& \leq\left|S_{d}\right|^{B /\left(M+\left(N_{d-1}\right)\right)}-|Q| \leq\left|S_{d}\right|^{B /\left(M+\left(N_{d-1}\right)\right)}-\left|Q \cap\left\{S_{d}\right\}\right| \\
&=\left|\bar{S}_{d}\right|^{B /(M+N)} .
\end{aligned}
$$

Macaulay's Theorem [Ma] says that 0 is pro-lex. Hence, Theorem 5.1 applied to $M=0$ yields the following:

Corollary 5.3. If U is a B-lex ideal then it is Macaulay-Lex.

Remark 5.4. Following [Sh], we say that a monomial ideal M in B is piecewise lex if, whenever $\mathbf{x}^{\mathbf{a}} \in M, \mathbf{x}^{\mathbf{b}} \succ_{\text {lex }} \mathbf{x}^{\mathbf{a}}$, and $\max \left(\mathbf{x}^{\mathbf{b}}\right) \leq \max \left(\mathbf{x}^{\mathbf{a}}\right)$, we have $\mathbf{x}^{\mathbf{b}} \in M$. Shakin [Sh] proved that if M is a piecewise lex ideal in B, then it is Macaulay-Lex. This result can be proved differently using our technique as follows: We induct on n. Let $\mathbf{x}^{\mathbf{a}_{1}}, \ldots, \mathbf{x}^{\mathbf{a}_{r}}$ be the minimal monomial generators of M divisible by x_{n}. So the lex segment L_{j} ending in $\mathbf{x}^{\mathbf{a}_{j}}$ must be contained in M. Set $N=M \cap k\left[x_{1}, \cdots, x_{n-1}\right]$. Then N is piecewise lex and so by induction is Macaulay-Lex in $k\left[x_{1}, \cdots, x_{n-1}\right]$. By Theorem 4.1, N is Macaulay-Lex in B. By induction on j, we conclude that $\left(N+L_{1}+\ldots+L_{j-1}\right)+L_{j}$ is Macaulay-Lex by Theorem 5.1. Hence, $M=N+L_{1}+\ldots+L_{r}$ is Macaulay-Lex as well.

References

[Bi] A. Bigatti: Upper bounds for the Betti numbers of a given Hilbert function, Comm. in Algebra 21 (1993), 2317-2334.
[CL] G. Clements and B. Lindström: A generalization of a combinatorial theorem of Macaulay, J. Combinatorial Theory 7 (1969), 230-238.
[EK] S. Eliahou and M. Kervaire: Minimal resolutions of some monomial ideals, J. Algebra, 129 (1990), 1-25.
[Gr] M. Green: Generic initial ideals, in Six lectures on commutative algebra, Birkhäuser, Progress in Mathematics 166, (1998), 119-185.
[Ha] R. Hartshorne: Connectedness of the Hilbert scheme, Publications Mathématiques IHES 29 (1966), 5-48.
[Ka] G. Katona: A theorem for finite sets, Theory of Graphs (P. Erdös and G. Katona, eds.), Academic Press, New York (1968), 187-207.
[Kr] J. Kruskal: The number of simplices in a complex, Mathematical Optimization Techniques (R. Bellman, ed.), University of California Press, Berkeley/Los Angeles (1963), 251-278.
[Ma] F. Macaulay: Some properties of enumeration in the theory of modular systems, Proc. London Math. Soc. 26 (1927), 531-555.
[Sh] D. A. Shakin: Piecewise lexsegment ideals, Mat. Sbornik 194 (2003), 1701-1724.

