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Abstract: This paper is on monomial quotients of polynomial rings over which Hilbert functions

are attained by lexicographic ideals.

1. Introduction

Let B = k[x1, . . . , xn] be a polynomial ring over a field k graded by deg(xi) = 1 for all i.

What are the possible Hilbert functions of graded ideals in B? This question was answered

by Macaulay [Ma], who showed that for every graded ideal there exists a lexicographic ideal

with the same Hilbert function. Lexicographic ideals are highly structured: they are defined

combinatorially and it is easy to derive the inequalities characterizing their possible Hilbert

functions. Macaulay’s Theorem also plays an important role in the study of graded B-ideals;

for example,

• Hartshorne’s [Ha] proof that the Hilbert scheme is connected uses lexicographic ideals in

an essential way.

• The homological properties of lexicographic ideals are combinatorially tractable [EK]. This

leads to results by Bigatti, Hulett, Pardue, showing that the lexicographic ideals have

extremal Betti numbers.

Let M be a monomial ideal. We say that a graded ideal in B/M is lexifiable if there exists a

lexicographic ideal in B/M with the same Hilbert function. We call M and B/M Macaulay-Lex

if every graded ideal in B/M is lexifiable. The following results are well known: Macaulay’s

Theorem [Ma] says that 0 is a Macaulay-Lex ideal, Kruskal-Katona’s Theorem [Ka, Kr] says

that (x2
1, . . . , x

2
n) is a Macaulay-Lex ideal, and Clements-Lindström’s Theorem [CL] says that

(xe1

1 , . . . , xen
n ) is a Macaulay-Lex ideal if e1 ≤ . . . ≤ en ≤ ∞. These theorems are well-known

and have many applications in Commutative Algebra, Combinatorics, and Algebraic Geometry.
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It is easy to construct examples like Example 2.13, where problems occur in the degrees

of the minimal generators of M . This motivated us to slightly weaken the definition: Let q

be the maximal degree of a minimal monomial generator of M ; we call M and B/M pro-lex

if every graded ideal generated in degrees ≥ q in B/M is lexifiable. There exist examples of

non pro-lex rings; see Example 3.14. The main goal in this paper is to open a new direction of

research along the lines of the following problem.

Problem 1.1. Find classes of pro-lex monomial ideals.

Theorem 5.1 shows that if M is Macaulay-Lex and N is lexicographic, then M + N is

Macaulay-Lex. Theorem 4.1 shows that if M is Macaulay-Lex, then it stays Macaulay-Lex

after we add extra variables to the ring B. In Section 3 we prove:

Theorem 1.2. Let P = (xe1

1 , · · · , xen
n ), with e1 ≤ e2 ≤ · · · ≤ en ≤ ∞ (here x∞

i = 0), and M

be a compressed monomial ideal in B/P generated in degrees ≤ p. If n = 2, assume that M is

(B/P )-lex. Set Υ = B/(M + P ). Then Υ is pro-lex above p, that is, for every graded ideal Γ

in Υ generated in degrees ≥ p there exists an Υ-lex ideal Θ with the same Hilbert function.

In the case when M = P = 0, Theorem 1.2 is Macaulay’s Theorem [Ma]; in the case when

M = 0, Theorem 1.2 is Clements-Lindström’s Theorem [CL]. Examples 3.13 and 3.14 show

that there are obstructions to generalizing Theorem 1.2.

We make use of ideas of Bigatti [Bi], Clements and Lindström [CL], and Green [Gr].

Our proofs are algebraic, and we avoid computations using generic forms (used in [Gr]) and

combinatorial counting (used in [CL]). In Section 2 we introduce definitions and notation used

throughout the paper.

Acknowledgments. We thank Christopher Francisco, Mike Stillman, and Steven Sinnott for

helpful discussions.

2. Lexification

The notation in this section will be used throughout the paper. We introduce several definitions.

Let k be a field and B = k[x1, . . . , xn] be graded by deg(xi) = 1 for all i. We denote by Bd

the k-vector space spanned by all monomials of degree d. Denote m = (x1, . . . , xn)1 the k-vector

space spanned by the variables. We order the variables lexicographically by x1 > . . . > xn,

and we denote by �lex the homogeneous lexicographic order on the monomials. We say that

an ideal is p-generated if it has a system of generators of degree p.

A monomial xa1

1 . . . xan
n has exponent vector a = (a1, . . . , an), and is sometimes denoted

by xa. An ideal is called monomial if it can be generated by monomials; such an ideal has a
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unique minimal system of monomial generators.

Notation 2.1. Let M be a monomial ideal. Set Υ = B/M . Vector spaces in Υ (and sometimes

ideals) are denoted by greek letters. For example, we denote by Cd a subspace of Bd, and we

denote by τd a subspace of Υd.

Definition 2.2. A monomial is a product of powers of the variables, so it can be considered as

an element in either B or Υ. We say that a monomial is an Υ-monomial if it does not vanish in

Υ, that is, it is not in M . We say that a monomial is an Υd-monomial if it is an Υ-monomial

of degree d. Furthermore, we say that τd is an Υd-monomial space if it can be spanned by

Υd-monomials. We denote by {τd} the set of Υd-monomials contained in τd. The cardinality

of this set is |τd| = dimk τd. By mτd we mean the k-vector subspace
(

m (τd)
)

d+1
of Υd+1.

Definition 2.3. Let L be a monomial ideal in Υ minimally generated by Υ-monomials l1, . . . , lr.

We say that L is Υ-lex, (Υ-lexicographic), if the following property is satisfied:

m is an Υ-monomial

m �lex li and deg(m) = deg(li), for some 1 ≤ i ≤ r

}

=⇒ m ∈ L .

The Υd-lex-segment λd,p of length p in degree d is defined as the k-vector space spanned

by the lexicographically first (greatest) p monomials in Υd. We say that λd is a lex-segment in

Υd if there exists a p such that λd = λd,p. For a Υd-monomial space τd, we say that λd,|τd| is

its Υd-lexification.

For simplicity, we sometimes say lex instead of Υ-lex if it is clear over which ring we work.

Example 2.4. The ideal (a2, ab, b2) is lex in the ring k[a, b, c, d]/(ac, ad), and its generators

span a lex-segment. The k-vector space spanned by a2, ab, b2 is the lexification of the k-vector

space spanned by b2, c2, cd. However, the ideal is not lex in k[a, b, c, d].

Proposition 2.5. If τd is an Υd-lex-segment, then mτd is an Υd+1-lex-segment.

Definition 2.6. A monomial m′ is said to be in the big shadow of a monomial m if m′ =
xi m

xj

for some xj dividing m and some i ≤ j. A monomial ideal in Υ is Υ-Borel if it contains all

Υ-monomials in the big shadows of its minimal Υ-monomial generators. Ideals that are B-Borel

are usually called strongly stable or 0-Borel fixed. We say that a monomial space τd is Υd-Borel

if it contains all Υd-monomials in the big shadows of its monomial generators.

Proposition 2.7. If τd is Υd-Borel, then mτd is Υd+1-Borel.

Proposition 2.8. If τd is an Υd-lex-segment, then it is Υd-Borel.
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Notation 2.9. Let Γ be a graded ideal in Υ. It decomposes as a direct sum of its components

Γ = ⊕d≥0 Γd. Its Hilbert function HilbΥ
Γ : N ∪ 0 → N ∪ 0 is defined by

HilbΥ
Γ (d) = dimk(Γd) for all d ≥ 0 .

We use the following notation

|Γd|
Υ = HilbΥ

Γ (d) ;

and for simplicity, we write |Γd| if it is clear over which ring we work.

Definition 2.10. We say that an Υd-monomial space τd is Υd-lexifiable if its lexification λd

has the property that |mλd| ≤ |mτd|. The monomial ideal M and the quotient ring Υ = B/M

are called d-pro-lex, if every Υd-monomial space is Υd-lexifiable.

Definition 2.11. We say that a graded ideal R in Υ is lexifiable if there exists an Υ-lex ideal

with the same Hilbert function as R. The monomial ideal M and the quotient ring Υ = B/M

are called Macaulay-Lex if every graded ideal in Υ is lexifiable.

Example 2.12. This example shows that the order of the variables can make a difference.

The ideal (ab) is not lexifiable in the ring k[a, b]/(ab2) for the lex order with a > b, but it is

lexifiable for the lex order with b > a.

Example 2.13. The ideal (ab) is not lexifiable in the ring k[a, b]/(a2b, ab2) in any lex order.

It is easy to construct many examples like Example 2.13. This observation suggests that

in order to obtain positive results we need to slightly relax Definition 2.11:

Definition 2.14. Let q be the maximal degree of a minimal monomial generator of M . The

monomial ideal M and the quotient ring Υ = B/M are called pro-lex if every graded ideal

generated in degrees ≥ q in Υ is lexifiable.

In the examples we usually denote the variables by a, b, c, d for simplicity.

3. Compression

The following definition generalizes a definition introduced by Clements and Lindström [CL],

who used it over a quotient of a polynomial ring modulo pure powers of the variables.

Definition 3.1. Let E be a monomial ideal in B. A (B/E)d-monomial space τd is called

i-compressed (or i-compressed in (B/E)d) if we have the disjoint union

{τd} =
∐

0≤j≤d

xd−j
i {σj}
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and each σj is a lex-segment in
(

B/(E, xi)
)

j
. We say that a k-vector space τd is (B/E)d-

compressed (or compressed) if it is a (B/E)d-monomial space and is i-compressed for all 1 ≤

i ≤ n. A monomial ideal W in B/E is called compressed if Wd is compressed for all d ≥ 0.

Example 3.2. The ideal

(a3, a2b, a2c, ab2, abc, b3, b2c)

is compressed in the ring k[a, b, c].

Lemma 3.3. If τd is i-compressed in (B/E)d, then mτd is i-compressed in (B/E)d+1. If τd

is (B/E)d-lex, then it is (B/E)d-compressed.

Definition 3.4. A B-monomial ideal K is called compressed-plus-powers if K = M +P , where

P = (xe1

1 , · · · , xen
n ) with e1 ≤ e2 ≤ · · · ≤ en ≤ ∞ and the monomial ideal M is compressed

in B/P . Sometimes, when we need to be more precise, we say that K is compressed-plus-P .

Furthermore, we say that K is lex-plus-P if M is lex in B/P .

Notation 3.5. Throughout this section we use the following notation and make the following

assumptions:

◦ P = (xe1

1 , · · · , xen
n ) with 2 ≤ e1 ≤ e2 ≤ · · · ≤ en ≤ ∞.

◦ The ideal K = M + P is a compressed-plus-P monomial ideal in B; here M is compressed

in B/P .

◦ If n = 2 we assume in addition that K is lex-plus-P .

◦ We assume that M is p-generated.

◦ Set Υ = B/K.

◦ d is a degree such that d ≥ p.

For a (B/P )d-monomial space Ad set

ti(Ad) =
∣

∣

∣
{m ∈ {Ad} | max(m) ≤ i }

∣

∣

∣

si(Ad) =
∣

∣

∣
{m ∈ {Ad} | max(m) = i and xei−1

i divides m }
∣

∣

∣

ri,j(Ad) =
∣

∣

∣
{m ∈ {Ad} | max(m) ≤ i and xj

i does not divide m }
∣

∣

∣
.

The formula in the following lemma is a generalization of a formula introduced by Bigatti

[Bi], who used it for B-Borel ideals.

Lemma 3.6. Let Ad be a (B/P )d-monomial space.

(1) If Ad is compressed and n ≥ 3, then Ad is (B/P )d-Borel.
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(2) If Ad is (B/P )d-Borel, then

∣

∣

∣
{mAd}

∣

∣

∣
=

n
∑

i=1

ti(Ad) − si(Ad) =

n
∑

i=1

ri,ei−1(Ad) .

Proof: First, we prove (1). Let m ∈ {Ad} and m′ be a (B/P )d–monomial in its big shadow.

Hence m′ =
xi m

xj
for some xj dividing m and some i ≤ j. There exists an index 1 ≤ q ≤ n such

that q 6= i, j. Note that that m and m′ have the same q-exponents. Since Ad is q-compressed

and m′ �lex m, it follows that m′ ∈ {Ad}. Therefore, Ad is (B/P )d–Borel.

Now, we prove (2). We will show that {mAd} is equal to the set

n
∐

i=1

xi {m ∈ {Ad} |max(m) ≤ i } \
n

∐

i=1

xi {m ∈ {Ad} |max(m) = i and xei−1
i divides m }.

Denote by P the set above. Let w ∈ Ad. For j ≥ max(w) we have that xjw ∈ P . Let

j < max(w). Then v = xj
w

xmax(w)
∈ Ad. So, xjw = xmax(w)v ∈ P .

Lemma 3.7 is a generalization of a result by M. Green [Gr], who proved a particular case

of it it over a polynomial ring (in the case M = 0). Green’s proof is entirely different than ours;

he makes a computation with generic linear forms. It is not clear how to apply his computation

to the case M 6= 0.

Lemma 3.7. Let τd be an n-compressed Borel Υd-monomial space, and let λd be a lex-

segment in Υd with |{λd}| ≤ |{τd}|. Let Ld and Td be the (B/P )d-monomial spaces such

that {Ld} = {λd}
∐

{Md} and {Td} = {τd}
∐

{Md}. For each 1 ≤ i ≤ n and each 1 ≤ j ≤ ei

we have

ri,j(Ld) ≤ ri,j(Td) .

Proof: Set R = B/P . By Lemma 3.6, Md is Rd-Borel. Therefore, both Ld and Td are Rd-Borel

and n-compressed.

First, we consider the case i = n. Clearly, rn,en
(Ld) = |Ld| = |Td| = rn,en

(Td) (if en =

∞, then we consider rn,d+1 here). We induct on j decreasingly. Suppose that ri,j+1(Ld) ≤

ri,j+1(Td) holds by induction.

If {Td} contains no monomial divisible by xj
n then

ri,j(Ld) ≤ ri,j+1(Ld) ≤ ri,j+1(Td) = ri,j(Td) .

Suppose that {Td} contains a monomial divisible by xj
n. Denote by e = xb1

1 . . . xbn
n , with bn ≥ j,

the lex-smallest monomial in Td that is divisible by xj
n. Let 0 ≤ q ≤ j−1. Since Td is Rd-Borel,

6



it follows that cq = xbn−q
n−1

e

xbn−q
n

∈ Td. This is the lex-smallest monomial that is lex-greater

than e and xn divides it at power q. Let the monomial a = xa1

1 . . . x
an−1

n−1 xq
n ∈ Rd be lex-greater

than e. Since Td is n-compressed and a is lex-greater (or equal) than cq , it follows that a ∈ Td.

For a monomial u, we denote by xn /∈ u the property that xj
n does not divide u. By what

we proved above, it follows that

(3.8)
∣

∣

∣
{u ∈ {Td} |xn /∈ u, u �lex e }| = |{u ∈ {Rd} |xn /∈ u, u �lex e }

∣

∣

∣
.

Therefore,

ri,j(Ld) = |{u ∈ {Ld} |xn /∈ u, u �lex e }| + |{u ∈ {Ld} |xn /∈ u, u ≺lex e }|

≤ |{u ∈ {Rd} |xn /∈ u, u �lex e }|+ |{u ∈ {Ld} |xn /∈ u, u ≺lex e }|

≤ |{u ∈ {Rd} |xn /∈ u, u �lex e }|+ |{u ∈ {Ld} | u ≺lex e }|

≤ |{u ∈ {Rd} |xn /∈ u, u �lex e }|+ |{u ∈ {Td} | u ≺lex e }|

= |{u ∈ {Rd} |xn /∈ u, u �lex e }|+ |{u ∈ {Td} |xn /∈ u, u ≺lex e }|

= |{u ∈ {Td} |xn /∈ u, u �lex e }| + |{u ∈ {Td} |xn /∈ u, u ≺lex e }|

= ri,j(Td) ;

for the third inequality we used the fact that λd is a lex-segment in Υd with |{λd}| ≤ |{τd}|; for

the equality after that we used the definition of e; for the next equality we used (3.8). Thus,

we have the desired inequality in the case i = n.

In particular, we proved that

(3.9) tn−1(Ld) = rn,1(Ld) ≤ rn,1(Td) = tn−1(Td) .

Finally, we prove the lemma for all i < n. Both {τd/xn} and {λd/xn} are lex-segments

in Υd/xn since τd is n-compressed. By (3.9) the inequality tn−1(Ld) ≤ tn−1(Td) holds, and it

implies the inclusion {τd/xn} ⊇ {λd/xn}. The desired inequalities follow since

ri,j(Td) = ri,j

(

Td/(xi+1, . . . , xn)
)

= ri,j

(

{τd/(xi+1, . . . , xn)}
∐

{Md/(xi+1, . . . , xn)}
)

ri,j(Ld) = ri,j

(

Ld/(xi+1, . . . , xn)
)

= ri,j

(

{λd/(xi+1, . . . , xn)}
∐

{Md/(xi+1, . . . , xn)}
)

Lemma 3.10. Let υd be a Υd-monomial space. There exists a compressed monomial space τd

in Υd such that |τd| = |υd| and |mτd| ≤ |mυd|.

Proof: Suppose that υd is not i-compressed. Set z = xi. Since M is z-compressed in B/P , we

have the disjoint union

{Md} =
∐

0≤j≤d

zd−j{Nj} ,
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where each Nj is a (B/(z, P ))j-lex-segment.

We also have the disjoint union

{υd} =
∐

0≤j≤d

zd−j{νj}

where each νj is a monomial space in B/(z, P, Nj). Let γj be the lexification of the space νj in

B/(z, P, Nj). Consider the Υd-monomial space τd defined by

{τd} =
∐

0≤j≤d

zd−j{γj} .

Clearly, |τd| = |υd|.

Consider the (B/P )d-monomial spaces Vd and Td such that

{Vd} = {υd}
∐

{Md} and {Td} = {τd}
∐

{Md} .

Set R = B/P . The short exact sequence of k-vector subspaces of (B/P )d+1

0 → mMd → mTd −→ mTd/mMd = mτd/
(

mτd ∩ mMd

)

→ 0

shows that |mτd| = |mTd|−|mMd| (here we mean |mτd|Υ = |mTd|B/P −|mMd|B/P ). Similarly,

the short exact sequence of k-vector subspaces of (B/P )d+1

0 → mMd → mVd −→ mVd/mMd = mυd/
(

mυd ∩ mMd

)

→ 0

shows that |mυd| = |mVd| − |mMd|. Therefore, the desired inequality |mτd| ≤ |mυd| is

equivalent to the inequality

|mTd| ≤ |mVd| .

We will prove the latter inequality.

We have the disjoint unions

{Vd} =
∐

0≤j≤d

zd−j{Uj} and {Td} =
∐

0≤j≤d

zd−j{Fj} , where

{Uj} = {νj}
∐

{Nj} and {Fj} = {γj}
∐

{Nj} in the ring B/(z, P ) .

Note that each Fj is a (B/(z, P ))j-lex-segment. Furthermore, we have the disjoint unions

{mVd} =
∐

0≤j≤d

zd−j+1{Uj + nUj−1}

{mTd} =
∐

0≤j≤d

zd−j+1{Fj + nFj−1} ,
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where n = m/z. We will show that

|Fj + nFj−1| = max

{

|Fj |, |nFj−1|

}

≤ max

{

|Uj |, |nUj−1|

}

≤ |Uj + nUj−1| .

The first equality above holds because both Fj and nFj−1 are (B/(z, P ))j-lex-segments, so

Fj + nFj−1 is the longer of these two lex-segments. The last inequality is obvious. It remains

to prove the middle inequality. Using the short exact sequences of k-vector subspaces of (B/P )j

0 → nNj−1 → nFj−1 −→ nFj−1/nNj−1 = nγj−1/
(

nγj−1 ∩ nNj−1

)

→ 0

0 → nNj−1 → nUj−1 −→ nUj−1/nNj−1 = nνj−1/
(

nνj−1 ∩ nNj−1

)

→ 0

we get |nγj−1| = |nFj−1| − |nNj−1| and |nνj−1| = |nUj−1| − |nNj−1|. Therefore, the desired

inequality |nFj−1| ≤ |nUj−1| is equivalent to the inequality |nγj−1| ≤ |nνj−1|. The latter

inequality holds since by construction γj−1 is the lexification of νj−1, so |γj−1| = |νj−1| and by

induction on the number of variables we can apply Theorem 3.11 to the ring B/(z, P, Nj).

Thus, |Fj +nFj−1| ≤ |Uj +nUj−1|. Multiplication by zd−j+1 is injective if d−j+1 ≤ ei−1

and is zero otherwise, therefore we conclude that

∣

∣

∣
zd−j+1(Fj + nFj−1)

∣

∣

∣
≤

∣

∣

∣
zd−j+1(Uj + nUj−1)

∣

∣

∣
.

This implies the desired inequality |mTd| ≤ |mVd|.

Note that {τd} is greater lexicographically than {υd}. If τd is not compressed, we can apply

the argument above. After finitely many steps in this way, the process must terminate because

at each step we construct a lex-greater monomial space. Thus, after finitely many steps, we

reach a compressed monomial space.

Theorem 3.11. Let υd be a Υd-monomial space and λd be its lexification in Υd. Then

|mλd | ≤ |mυd |.

Proof: The theorem clearly holds if n = 1. Suppose that n = 2. An easy calculation shows

that the theorem holds, provided we do not have e2 ≤ d + 1 < e1. By the assumption on the

ordering of the exponents, this does not hold and we are fine.

Suppose that n ≥ 3. First, we apply Lemma 3.10 to reduce to the compressed case. We

obtain a compressed Υd-monomial space τd such that |τd| = |υd| and |mτd| ≤ |mυd|. Let Ld

and Td be the (B/P )d-monomial spaces such that {Ld} = {λd}∪{Md} and {Td} = {τd}∪{Md},

where the disjoint unions take place in B/P . Both Ld and Td are (B/P )d-compressed. We

apply Lemma 3.6 to conclude that

∣

∣

∣
{mTd}

∣

∣

∣
=

n
∑

i=1

ti(Td) −
n

∑

i=1

si(Td) and
∣

∣

∣
{mLd}

∣

∣

∣
=

n
∑

i=1

ti(Ld) −
n

∑

i=1

si(Ld) .
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Finally, we apply Lemma 3.7 and conclude that
∣

∣ {mLd}
∣

∣ ≤
∣

∣ {mTd}
∣

∣. This inequality and

short exact sequences, as in the proof of Lemma 3.10, imply the desired |mλd| ≤ |mυd|.

Equivalently, we obtain the following theorem, stated in the introduction:

Theorem 1.2. Let P = (xe1

1 , · · · , xen
n ), with e1 ≤ e2 ≤ · · · ≤ en ≤ ∞ (here x∞

i = 0), and M

be a compressed monomial ideal in B/P generated in degrees ≤ p. If n = 2, assume that M is

(B/P )-lex. Set Υ = B/(M + P ). Then Υ is pro-lex above p, that is, for every graded ideal Γ

in Υ generated in degrees ≥ p there exists an Υ-lex ideal Θ with the same Hilbert function.

Proof: We can assume that Γ is a monomial ideal by Gröbner basis theory. For each d ≥ p,

let λd be the lexification of Γd. By Theorem 3.11, it follows that Θ = ⊕d≥p λd is an ideal. By

construction, it is a lex-ideal and has the same Hilbert function as Γ in all degrees greater than

or equal to p.

Remark 3.12. In the case when M = P = 0, Theorem 1.2 is the well-known Macaulay’s

Theorem [Ma]. In the case M = 0, Theorem 1.2 is the Clements-Lindström’s Theorem [CL].

Example 3.13. It is natural to ask if a compressed ideal is Macaulay-Lex. This example shows

that the answer is negative. Take P = 0. The ideal

M = ( a3, a2b, a2c, ab2, abc, b3, b2c )

is compressed (and Borel) in the ring k[a, b, c]. The ideal (a2, ab, b2) in k[a, b, c]/M is not

lexifiable.

Example 3.14. It is natural to ask if Theorem 1.2 holds in the case when M is a B-Borel

ideal. It does not. Take P = 0. The ideal

M = ( a3, a2b, a2c, a2d, ab2, abc, abd, b3, b2c )

is Borel in the ring k[a, b, c]. However it is not pro-lex because the ideal (b2d) is not lexifiable

in k[a, b, c]/M .

4. Adding new variables

Theorem 4.1. If B/M is Macaulay-Lex then B[y]/M is Macaulay-Lex.

In this section, W = B[y]/M , m is the k-vector space spanned by the variables in B (as

in Section 2), and q is the k-vector space spanned by m and y.

Lemma 4.2. Let Vd be a Wd-monomial space, and let Td be its y-compression. Then |Td| =

|Vd| and |qTd| ≤ |qVd|.

10



Proof: The proof is based on the same idea as the proof of Lemma 3.10. We write {V d} =
∐

0≤j≤d yd−j{Uj} and Td =
∐

0≤j≤d yd−j{Fj}, where the Fj are B/M -lex satisfying |Fj | = |Uj |.

Then, as in the proof of Lemma 3.10, we have the disjoint unions

{qVd} =
∐

0≤j≤d

yd−i+1{Uj + mUj−1}

{qTd} =
∐

0≤j≤d

yd−i+1{Fi + mFj−1},

and we have the inequalities

|Fi + mFj−1| = max {|Fj |, |mFj−1|} ≤ max {|Uj |, |mUj−1|} ≤ |Uj + mUj−1|,

where the middle inequality holds because B/M is Macaulay-Lex. Since multiplication by y is

injective, we get

|yd−i+1(Fi + mFj−1)| ≤ |yd−i+1(Uj + mUj−1)|.

Lemma 4.3. Let Td be a y-compressed Wd-monomial space. Then either Td is Wd-lex, or

there exists a Wd-monomial space Fd, such that Fd is strictly lexicographically greater than Td,

|Fd| = |Td|, and |qFd| ≤ |qTd|.

Proof: Let r be as large as possible among the numbers for which we can write

Td = yd−rP ⊕

(

⊕

i>r

yd−iLi

)

with P a lex segment of Wd. Such an r always exists, as we can if necessary take r = 0.

If r = d, then Td is Wd-lex and we are done. If not, then yP + Lr+1 is not lex in W . Let

m be the lex-greatest monomial of Wr+1 such that m /∈ yP + Lr+1. We consider two cases

depending on whether y divides m or not.

Suppose that y divides m. Let u be the lex-least monomial of yP + Lr+1. Since P is lex

and y does not divide m, it follows that y does not divide u. Let Q be the k-vector space

spanned by {Q}, defined by

{Q} =
(

{yP} ∪ {Lr+1} ∪ {m}
)

\ {u} .

Set

Fd = yd−r−1Q ⊕

(

⊕

i>r+1

yd−iLi

)

.

11



Now, {Fd} \ yd−r−1m = {Td} \ yd−r−1u. Hence, {Fd} is strictly lexicographically greater than

Td. We will compare {qFd} and {qTd}. The set {myd−r−1m} is contained in {qTd}, so we have

qFd \ (qFd ∩ qTd) ⊆ {yd−rm}. Furthermore, we will show that yd−ru /∈ {qFd}. Suppose the

opposite. Hence, there exists a q such that yd−ru = xq

(

yd−r u
xq

)

, where u
xq

∈ P . But y u
xq

∈ yP

is lex-smaller than u; this contradicts the choice of u. Hence {qTd} \ (qFd ∩ qTd) ⊇ {yd−ru}.

Therefore, we have the desired inequality |qFd| ≤ |qTd|. Thus, the lemma is proved in this

case.

It remains to consider the case when m is not divisible by y. In this case, m is the lex-

greatest monomial not divisible by y that is lex-smaller than all the monomials in {Lr+1}. Set

z = xmax(m). In our construction we will use the set

N =
{

u ∈ yP
∣

∣

∣
u ≺lex m and

(z

y

)eu

u 6= 0 in B/M
}

,

where eu is the largest power of y dividing u. We will show that N 6= ∅ because y
z m ∈ N .

Since m is the lex-greatest monomial missing in m /∈ yP + Lr+1, it follows that there exists

a monomial ym′ ∈ yP that is lex-smaller than m. Therefore, m′ is (non-strictly) lex-smaller

than m
z . As m′ ∈ P and P is lex, it follows that m

z ∈ P. Thus, y
z m ∈ N as desired.

We will need three of the properties of N :

Claim.

(1) m is (non-strictly) lex-greater than all the monomials in
z

y
N .

(2)
z

y
N ∩ {Lr+1} = ∅.

(3)
z

y
N ∩ {yP} ⊆ N .

We will prove the claim. (3) is clear. (2) follows from (1) and the fact that in the considered

case m is the lex-greatest monomial not divisible by y that is lex-smaller than all the monomials

in {Lr+1}. We will prove (1). Write

m = xa1

1 xa2

2 . . . zaz and u = xb1
1 xb2

2 . . . zbzwyby ,

where w is not divisible by x1, . . . , z or by y. Suppose that z
y u = xb1

1 xb2
2 . . . zbz+1wyby−1 is

lex-greater than m. On the other hand, m is lex-greater than u. It follows that aj = bj for

j < max(m) and bz < az ≤ bz + 1. Since the monomials have the same degree, it follows that

az = bz + 1, w = 1, and by = 1. Hence m = z
yu. The claim is proved.

Let Q be the k-vector space such that

{Q} =
(

{yP + Lr+1} \ N
)

∪
z

y
N .
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By the claim above, it follows that we have the disjoint union {Q} = {Lr+1}
∐

yP \N
∐ z

y
N .

Clearly, |Q| = |Lr+1 ⊕ yP |.

We consider the set

Fd = yd−r−1Q ⊕

(

⊕

i>r+1

yd−iLi

)

.

It is clear that |Fd| = |Td|. Since yd−r−1m ∈ Fd, we see that Fd is strictly lexicographically

greater than Td. We will show that the inequality |qFd| ≤ |qTd| holds. Set U = Lr+1 ⊕ yP and

V = ⊕i>r+1y
d−iLi.

Since

|qQ| − |qU | = −
∣

∣

∣

{

t ∈ qN \ (qN ∩ q(U \ N)
∣

∣

z

y
t = 0

}∣

∣

∣
≤ 0

it follows that |qQ| ≤ |qU |. Furthermore, we have

|qFd| = |q yd−r−1Q| + |qV | − |qV ∩ qyd−r−1Q|

= |q yd−r−1Q| + |qV | −
∣

∣yd−r−1
(

Lr+2 ∩ m
{

v ∈ Q
∣

∣y does not divide v
})

∣

∣

≤ |q yd−r−1U | + |qV | −
∣

∣yd−r−1
(

Lr+2 ∩ m
{

v ∈ Q
∣

∣y does not divide v
})

∣

∣

≤ |q yd−r−1U | + |qV | −
∣

∣yd−r−1
(

Lr+2 ∩ m
{

v ∈ U
∣

∣y does not divide v
})∣

∣

= |qTd|;

the first inequality holds because multiplication by y is injective, the second holds by set

containment.

Proof of Theorem 4.1: Let Vd be a Wd-monomial space. If Vd is not W -lex, apply Lemmas 4.2

and 4.3 to obtain a y-compressed Wd-monomial space Fd which is strictly greater lexicograph-

ically than Vd and satisfies |Fd| = |Vd| and |qFd| ≤ |qVd|. If Fd is not W -lex, we can apply

the lemmas again. After finitely many steps, the process must terminate in a lexicographic

monomial space. Hence W is d-pro-lex for all degrees d ≥ 0, and so is Macaulay-Lex.

5. Lexicographic quotients

Theorem 5.1. If M is Macaulay-Lex and N is a B/M -lex ideal, then M +N is Macaulay-Lex.

The theorem follows immediately from the following result:

Proposition 5.2. Fix a degree d ≥ 1. If M is (d− 1) -pro-lex and N is a B/M -lex ideal, then

M + N is (d − 1) -pro-lex.

Proof: Throughout this proof, for a monomial space V̄ in B/(M + N), we denote by V the

k-vector space spanned by {V̄ } in B/M .

13



Let S̄d−1 be a monomial space in
(

B/(M+N)
)

d−1
. Let L̄d−1 be the B/(M+N)-lexification

of S̄d−1. Set L̄d to be the k-vector space spanned by m{L̄d−1} and S̄d be the k-vector space

spanned by m{S̄d−1}. We will prove that

|L̄d|
B/(M+N) ≤ |S̄d|

B/(M+N) .

First, we assume that the ideal N has no minimal generators in degree d.

Note that Nd−1 + Ld−1 is a B/M -lex-segment. Therefore, Nd−1 + Ld−1 is the B/M -

lexification of Nd−1+Sd−1 in the ring B/M . Since M is (d−1)-pro-lex, the following inequality

holds:

|Nd + Ld|
B/M ≤ |Nd + Sd|

B/M .

On the other hand,

|Nd + Ld|
B/M = |Nd|

B/M + |Ld|
B/M − |Nd ∩ Ld|

B/M

|Nd + Sd|
B/M = |Nd|

B/M + |Sd|
B/M − |Nd ∩ Sd|

B/M

Therefore, we obtain the inequality

|Ld|
B/M − |Nd ∩ Ld|

B/M ≤ |Sd|
B/M − |Nd ∩ Sd|

B/M .

Note that the left hand-side is equal to |L̄d|B/(M+N) whereas the right-hand side is equal to

|S̄d|B/(M+N). Thus, we get the desired inequality

|L̄d|
B/(M+N) ≤ |S̄d|

B/(M+N) .

Now, suppose that N has minimal monomial generators in degree d.

If Ld ⊆ Nd, then

0 = |L̄d|
B/(M+N) ≤ |S̄d|

B/(M+N) .

Suppose that Ld 6⊆ Nd. Set Q = {Nd} \ {mNd−1}. Since both mNd−1 + Ld and Nd

are B/M -lex-segments, it follows that one of them contains the other. Hence {Ld} ⊇ Q, and

therefore

|L̄d|
B/(M+N) = |Ld|

B/(M+(Nd−1)) − |Q| .

The argument above (for the case when the ideal is (d− 1)-generated) can be applied to Nd−1,

and it yields

|Ld|
B/(M+(Nd−1)) ≤ |Sd|

B/(M+(Nd−1)) .
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Therefore we have

|L̄d|
B/(M+N) = |Ld|

B/(M+(Nd−1)) − |Q|

≤ |Sd|
B/(M+(Nd−1)) − |Q| ≤ |Sd|

B/(M+(Nd−1)) − |Q ∩ {Sd}|

= |S̄d|
B/(M+N) .

Macaulay’s Theorem [Ma] says that 0 is pro-lex. Hence, Theorem 5.1 applied to M = 0

yields the following:

Corollary 5.3. If U is a B-lex ideal then it is Macaulay-Lex.

Remark 5.4. Following [Sh], we say that a monomial ideal M in B is piecewise lex if, whenever

xa ∈ M , xb �lex xa, and max(xb) ≤ max(xa), we have xb ∈ M . Shakin [Sh] proved that if

M is a piecewise lex ideal in B, then it is Macaulay-Lex. This result can be proved differently

using our technique as follows: We induct on n. Let xa1 , . . . ,xar be the minimal monomial

generators of M divisible by xn. So the lex segment Lj ending in xaj must be contained in M .

Set N = M ∩ k[x1, · · · , xn−1]. Then N is piecewise lex and so by induction is Macaulay-Lex

in k[x1, · · · , xn−1]. By Theorem 4.1, N is Macaulay-Lex in B. By induction on j, we conclude

that (N +L1+ . . .+Lj−1)+Lj is Macaulay-Lex by Theorem 5.1. Hence, M = N +L1+ . . .+Lr

is Macaulay-Lex as well.
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