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Abstract: We study sets of monomials that have the same Hilbert function

growth as initial lexicographic segments.

1. Introduction

Macaulay [Ma] showed in 1927 that for every graded ideal of k[x1, · · · , xn]

there exists a lexicographic ideal with the same Hilbert function. Lexicographic

ideals are highly structured: they can be defined combinatorially and it is easy

to describe their Hilbert functions. In particular, Macaulay’s theorem shows

that d-generated lex ideals have minimal Hilbert function growth. In this paper

we consider the following:

Question 1.1: What other d-generated monomial ideals have minimal Hilbert

function growth?

In Section 3, we introduce lexlike sequences and study their properties. Let

X be a sequence of the degree d monomials of k[x1, · · · , xn]. We say that X is

lexlike if the ideal generated by any initial segment of X has the same Hilbert

function as the ideal generated by the initial segment with the same length of
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the degree d lex sequence. Theorems 3.8 and 3.13 provide criteria for a given

sequence of monomials to be lexlike. Theorem 3.13 describes the structure of a

lexlike sequence. This leads to Algorithm 3.14 producing all lexlike sequences

and to Corollary 3.15 which gives the number of all lexlike sequences (in a

fixed degree and fixed number of variables). Furthermore, we show that lexlike

sequences share some of the nice properties of the lex sequence. In [MP2] we

use lexlike sequences to build lexlike ideals and prove an analog of Macaulay’s

Theorem [Ma].

In Section 5, we introduce and study squarefree lexlike sequences in an

exterior algebra. We classify such squarefree lexlike sequences and produce

analogs to the results in Section 3. Theorem 5.26 shows that the Alexander dual

of a squarefree lexlike sequence is squarefree lexlike. We introduce squarefree

lexlike ideals in Definition 5.32 and show that in an exterior algebra E:

(1) If J is a graded ideal in E, then there exist (usually many) squarefree

lexlike ideals with the same Hilbert function as J . This is an analog of the

Kruskal-Katona theorem [Kr,Ka] which says that every Hilbert function is

attained by a lex ideal.

(2) Every squarefree lexlike ideal has maximal graded Betti numbers over E

among all ideals with the same Hilbert function. This is an analog of the

Aramova-Herzog-Hibi theorem [AHH] which says that the lex ideals have

maximal graded Betti numbers over E.

Acknowledgements I thank Steve Sinnott and Mike Stillman for helpful dis-

cussions. I am particularly grateful to Irena Peeva for help in writing this

paper.

2. Preliminaries

Let k be a field and B = k[x1, . . . , xn] or k[x1, · · · , xn]/(x2
1, · · · , x

2
n) be graded

by deg (xi) = 1 for all i. We denote by Bd the k-vector space spanned by all

monomials of degree d. Denote m = (x1, . . . , xn)1 the k-vector space spanned

by the variables. We order the variables lexicographically by x1 > . . . > xn,
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and we denote by �lex the homogeneous lexicographic order on the monomials.

A monomial xa1

1 . . . xan
n has exponent vector a = (a1, . . . , an), and is some-

times denoted by xa. An ideal is called monomial if it can be generated by

monomials; such an ideal has a unique minimal system of monomial genera-

tors.

Let I be a graded ideal in B. It decomposes as a direct sum of its com-

ponents I = ⊕d≥0 Id. Its Hilbert function HilbB
I : N ∪ 0 → N ∪ 0 is defined

by

HilbB
I (d) = dimk(Id) for all d ≥ 0 .

We use the following notation

|Id|
B = HilbB

I (d) ;

and for simplicity, we write |Id| if it is clear over which ring we work.

An ideal is called d-generated if it has a system of generators of degree d.

We say that a vector space V is a monomial space if it is spanned by

monomials, and a degree d monomial space if it is spanned by monomials of

degree d, in which case we sometimes write it Vd.

Let L be a monomial ideal minimally generated by monomials l1, . . . , lr.

The ideal L is called lex, (lexicographic), if the following property is satisfied:

m is a monomial

m �lex li and deg (m) = deg (li), for some 1 ≤ i ≤ r

}

=⇒ m ∈ L .

A sequence of monomials X : m1, · · · , mr will frequently be written as X

for simplicity, or as X : m1, · · · if its length is unknown or unimportant. Xi

will refer not to the ith term of X but to the vector space spanned by the first

i terms of X.

If we multiply a sequence by a monomial a via termwise multiplication,

then we denote it by aX : am1, · · · , amr. If Y : t1, · · · , ts is another sequence,

we denote concatenation with a semicolon, so X; Y : m1, · · · , mr, t1, · · · , ts.
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3. Lexlike sequences and redundancy

In this section we introduce lexlike sequences.

Definition 3.1. A monomial sequence (of degree d) is a sequence X : xt1 , · · · ,

xts of all the monomials of B = k[x1, · · · , xn] of degree d. We say that X is

lexlike if, for every i, and for every vector space V generated by i degree d

monomials, we have |m(xt1 , · · · ,xti)| ≤ |mV |.

Example 3.2. The sequence X : ab, a2, ac, bc, c2, b2 is lexlike in k[a, b, c], but

not in k[a, b, c, d]. The sequence Y : a2, b2, ab is not lexlike in k[a, b].

Example 3.3. The lex sequence in degree d consists of all the degree d mono-

mials ordered lexicographically. By Macaulay’s Theorem [Ma], this sequence is

lexlike. It is denoted by Lex(d) or simply Lex throughout the paper.

The Lex sequence begins with every monomial divisible by x1, and ends

with every monomial not divisible by x1. It is thus partitioned into two lex

sequences: Let A be the lex sequence in degree d − 1 in n variables, and let

C be the lex sequence in degree d in the variables x2, · · · , xn. Then the lex

sequence in degree d in n variables is Lex:x1A; C. We will see that all lexlike

sequences can be partitioned similarly; this idea is at the heart of most of our

proofs.

Definition 3.4. Let Md be a monomial subspace of Bd and m a monomial

of degree d. The redundancy Red(M, m) is the number of variables xi such

that xim ∈ M : Red(M, m) = |mM ∩ m(m)|. Alternatively, Red(M, m) is the

k-dimension of the degree one part of the colon ideal (M : m).

Corollary 3.5. Let M and m be as above. Then

|m(M + (m))| = |mM | + n − Red(M, m) .

Definition 3.6. For a sequence X : m1, · · · , ms of monomials of the same

degree, set

Redi(X) := Red ((mi, · · · , mi−1), mi) ,
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Example 3.7. Let Lex:m1, · · · , ms be the lex sequence in degree d, and let

max(mi) = j, where xj is the lex-last variable dividing mi. Then Redi(Lex) =

j − 1.

This leads to our first criterion for a monomial sequence to be lexlike.

Theorem 3.8. A monomial sequence X is lexlike if and only if

Redi(X) = Redi(Lex)

for all i (here Lex stands for the lex sequence in the same degree as X).

Proof: Inductively, we have |mXi+1| = |mXi|+n−Redi+1(X) and |mLexi+1| =

|mLexi| + n − Redi+1(Lex).

Lemma 3.9. Let X : xt1 , · · · ,xtr be a sequence of some of the monomials

of B in degree d having the same redundancies as Lex (in degree d), and set

s = |(x1)d|. Then:

(1) If r ≤ s there exists a variable xi such that xi divides xtj for all j.

(2) If r ≥ s there exists a variable xi such that {xt1 , · · · ,xts} = {md−1xi}.

Proof: We induct on r and d. The base case, where either is zero, is clear. If

r− 1 ≥ s, there is nothing to prove, so we assume that r− 1 < s. Thus without

loss of generality the first r − 1 terms of X are divisible by x1. Let Y be the

sequence obtained by dividing every element of X by x1. Set t = |(x2
1)(d)|.

Suppose r − 1 ≤ t, so by induction the first r − 1 elements of X are divisible

by, without loss of generality, x1x2. If xtr is not divisible by x1 or x2 we have

0 = Redr(X) = Redr(Lex) ≥ 1. If on the other hand r − 1 > t and x1 does not

divide xtr , we have 1 ≥ Redr(X) = Redr(Lex) ≥ 2.

Proposition 3.10. Let X : xt1 , · · · ,xtr be a sequence of some of the degree d

monomials of B having the same redundancies as Lex (in degree d). Then X

can be extended to a lexlike sequence.

Proof: It suffices to show that X may be extended to a sequence of length r+1.

Let s = HilbB(x1)(d). If r < s, we may without loss of generality divide every
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term of X by x1, and the resulting sequence may be extended by induction

on d; multiplying back by x1 gives the desired extension. If r ≥ s, we write

X = Y ; Z where Y contains precisely the monomials divisible by x1 and Z is

a sequence of length r − s of degree d monomials in the variables x2, · · · , xn,

having the same redundancies as Lex. By induction on n, Z may be extended

to length r − s + 1; appending this to Y gives the desired result.

Corollary 3.11. A monomial sequence X : m1, · · · , ms is lexlike if and only

if, for all i < j, we have Redi+1(X) ≥ Red ((m1, · · · , mi), mj).

Proof: Let Xi be the vector space generated by the first i terms of X, and Li be

the vector space generated by the first i terms of Lex. Suppose the inequalities

hold. Then by induction we have |mXi| = |mLi| and Redj(X) = Redj(Lex) for

j ≤ i. By Proposition 3.10, m1, · · · , mi may be extended to a lexlike sequence Y .

Let n be the (i+1)-th term of Y . We have Redi+1(X) ≥ Red ((m1, · · · , mi), n);

by Macaulay’s theorem this must be an equality, so Redi+1(X) = Redi+1(Lex)

and |mXi+1| = |mLi+1|. On the other hand, if X is lexlike we immediately

have Redi+1(X) ≥ Red ((m1, · · · , mi), mj).

Example 3.12. Consider the sequence X : abc, a2b, ab2, b2c, which has the

same redundancies as Lex in k[a, b, c] in degree 3. To extend X to length 5, we

observe that every term of X is divisible by b; dividing by b yields the degree 2

sequence Y : ac, a2, ab, bc. To extend Y , we observe that Y contains everything

divisible by a. Truncating, we obtain the sequence Z : bc in the variables b, c.

To extend Z, we note that every term is divisible by b and by c; we arbitrarily

choose c. Dividing by c yields the degree 1 sequence W : b which may be

extended to W ′ : b, c. The sequence Z is then extended to Z ′ = cW ′ : bc, c2.

The sequence Y is extended to Y ′ : ac, a2, ab, bc, c2 by appending Z ′, and X is

extended to X ′ = bY ′ : abc, a2b, ab2, b2c, bc2.

Next, we obtain a complete structural description of the lexlike sequences.

In particular, it can be used as a criterion for a monomial sequence to be lexlike.
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Theorem 3.13. Let X : m1, · · · be a monomial sequence in degree d, and let

s = |(x1)d|. Set Y : m1, · · · , ms, and set Z : ms+1, · · ·. The sequence X is

lexlike if and only if the following hold:

(1) There is a variable xi such that (xi)d = (m1, · · · , ms).

(2) There is a lexlike sequence W in degree d − 1 such that xiW = Y .

(3) Z is lexlike in the variables x1, · · · , x̂i, · · · , xn, (here x̂i means xi is omitted.)

Proof: Suppose that X is lexlike. Then we obtain xi from Lemma 3.8; writing

X = xiW ; Z, it remains to show that W and Z are lexlike. We write Lex =

x1A; C with A and C lexlike,as in Example 3.3 and compute:

Redi(W ) = Redi(X) = Redi(Lex) = Redi(A)

and

Redi(Z) = Redi+s(X) − 1 = Redi+s(Lex) − 1 = Redi(C).

Conversely, if Z and W are lexlike, a similar computation shows that X is

lexlike.

This structure theorem yields the following algorithm enumerating all the

lexlike sequences in n variables in degree d.

Algorithm 3.14. Inductively enumerate all lexlike sequences in n variables in

degree d − 1 and all lexlike sequences in n − 1 variables in degree d. For each

variable xi and each sequence Z in n− 1 variables, let Zi be Z on the variables

{x1, · · · , x̂i, · · · , xn}. For each variable xi, lexlike sequence Y in degree d − 1,

and lexlike sequence Z in n − 1 variables, write down the lexlike sequence

Xi,Y,Z : xiY ; Zi.

Corollary 3.15. Let f(n, d) be the number of lexlike sequences in n variables

in degree d. Then we have f(n, d) = nf(n − 1, d)f(n, d − 1) if n > 1 and

f(1, d) = 1. Thus,

f(n, d) =
n−1
∏

i=0

(n − i)(
d+i

i+1) .
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Proof: Given a variable xi, a lexlike sequence Y in n variables in degree d− 1,

and a lexlike sequence Z in the variables x1, · · · , x̂i, · · · , xn in degree d, we

may construct the lexlike sequence X : xiY ; Z. Every lexlike sequence in n

variables in degree d may be attained in this way, and every choice of xi, Y, and

Z produces a different X.

Example 3.16. It is natural to ask if every monomial ideal with minimal

Hilbert function growth occurs as an initial segment of some lexlike sequence.

It does not. For example, I := (a2b, a2c, ab2, abc, ac2, b2c, bc2) has minimal

Hilbert function growth, but does not contain (m2xi), for xi = a, b, or c.

Definition 3.17. Let Y : xt1 , · · · ,xts be a sequence of all the monomials of B

of degree d, and let X : xv1 , · · · ,xvr be a sequence of all the monomials of B

of degree d − 1. We say that Y is above Y if, for all i, there is a j such that

mXi = Yj .

Example 3.18. The sequence X : b3, b2c, ab2, abc, bc2, a2b, a2c, ac2, a3, c3 is

above Y : b2, bc, ab, ac, a2, c2.

Example 3.19 The Lex sequence in degree d + 1 is above the Lex sequence in

degree d.

Proposition 3.20. Let X be a lexlike sequence in degree d.

(1) There exists a monomial sequence Y above X.

(2) If Y is above X then Y is lexlike.

In particular, there exists a lexlike sequence Y in degree d + 1 such that Y is

above X.

Proof: In order to prove (1), we construct a sequence Y above X inductively:

Y starts with the monomials in mX1 in any order; then we add the monomials

of mX2 \ mX1 in any order; and so on.

Now, we will prove (2). Write X : a1, · · · and Y : b1, · · ·. It suffices to show

that, for all i, Redi(Y ) ≥ Redi(Lex). Let j be such that |m(a1, · · · , aj−1)| < i ≤
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|m(a1, · · · , aj)|, and set s = |m(a1, · · · , aj−1)|. Then we claim that

Redi(Y ) = Redj(X) + (i − s − 1) = Redi(Lex) .

Since bi ∈ {m(a1, · · · , aj)} but bi /∈ {m(a1, · · · , aj−1)}, we may write bi = yaj.

We see that xpbi ∈ (b1, · · · , bi−1) whenever xpaj ∈ (a1 · · · , aj−1) or xpaj ∈

{bs+1, · · · , bi−1}, i.e., Redi(Y ) = Redj(X) + (i − s − 1).

Now suppose that X and Y are the Lex sequences in degrees d and d +

1, respectively. Then Redi(Y ) = max(ai) − 1 = max(bj) − 1 + (max(ai) −

max(bj)) = Redj(X) + (i − s − 1) as desired.

Corollary 3.21. Let Vd be spanned by an initial segment of a lexlike sequence

X. Then mVd is spanned by an initial segment of some lexlike sequence Y .

Theorem 3.22. Let Y be a lexlike sequence in degree d. There is a unique

lexlike sequence X in degree d − 1 such that Y is above X.

Proof: By Lemma 2.6 we may write Y = Y1; Y2, where without loss of generality

every monomial of Y1 is divisible by x1 and every monomial of Y2 is not. Let

Y3 be the sequence obtained by dividing everything in Y1 by x1. Y3 is a lexlike

sequence in n variables and degree d− 1, so by induction on d there is a unique

lexlike sequence X3 below it. Multiplying everything in X3 by x1 yields X1. Y2

is a lexlike sequence in n− 1 variables and degree d, so by induction on n there

is a unique X2 below it. X := X1; X2 is the unique lexlike sequence below Y .

Example 3.23. Consider the lexlike sequence Y : abc, bc2, b2c, b3, ab2, a2b, ac2,

a2c, a3, c3. The unique lexlike sequence below Y in degree 2 is the sequence

X : bc, b2, ab, ac, a2, c2.

4. Lex-favoring ideals

In this section we relate lexlike sequences to our work in [MP1]. Throughout

the section, M stands for a monomial d-generated ideal.

Definition 4.1. Let Σ be the set of all monomial sequences in degree d − 1.

For a monomial sequence A of all the monomials in a fixed degree, set Ai :=
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(a1, · · · , ai). Then Σ is partially ordered by

A ≤M C if |mAi|
B/M ≤ |mCi|

B/M for all i.

Definition 4.2. We say that M is lex-favoring if for every lexlike sequence A

in degree d − 1 we have Lex ≤M A.

The above two definitions are motivated by our work in [MP1]. We recall

a definition from [MP1]:

Definition 4.3. We say that M is p-pro-lex if, for every p-generated mono-

mial vector space Np, there exists a p-generated lex vector space Lp such that

|Lp|
B/M = |Np|

B/M , and |mLp|
B/M ≤ |mNp|

B/M .

Corollary 4.4. The ideal M is (d − 1)-pro-lex if and only if Lex is minimal

among all monomial sequences with respect to ≤M .

Thus pro-lex ideals are lex-favoring, but lex-favoring ideals are not nec-

essarily pro-lex. Example 4.6 shows that this can be the case even for Borel

ideals.

Example 4.6. Set M = (a3, a2b, a2c, ab2, abc, b3, b2c) in B = k[a, b, c] is lex-

favoring but not pro-lex: There is no lex ideal of B/M with the same Hilbert

function as (a2, ab, b2).

Strongly stable ideals occur as generic initial ideals and have been exten-

sively studied. We recall the definition: A monomial ideal W is called a strongly

stable ideal or Borel if, for every monomial m ∈ W , and for every xi dividing

M and j < i, we have (xj/xi)m ∈ W .

Proposition 4.5. A d-generated strongly stable ideal M is lex-favoring.

Proof: Let A : m1, m2, ... be any lexlike sequence in degree d− 1, and let B be

the sequence below A in degree 1. If x1 is the first term of B, we have Lex ≤M A

by induction on n and d. If not, assume without loss of generality that the first

two terms of B are x2 and x1. Let s = |(x2)d−1|
B and t = |(x2, x1)d−1|

B . Let
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C : v1, v2 · · · be the sequence obtained from A by setting vi = x1

x2
mi when i ≤ s,

vi = xei

2 ni for s < i ≤ t, mi = xei

1 ni, and vi = mi for t < i.

Then for j ≤ s, we have ymj ∈ M ⇒ yvj ∈ M , so |mCk|
B/M ≤ |mAk|

B/M

whenever k ≤ s. And for s < j ≤ t we have yvj ∈ M ⇒ ymj ∈ M , so for

s < k ≤ t we have

|mCk|
B/M = |mCt|

B/M −

t
∑

j=k+1

(|{yvj /∈ M : yvj /∈ mCj−1}|)

≤ |mAt|
B/M −

t
∑

j=k+1

(|{yvj /∈ M : ymj /∈ mAj−1}|)

= |mAk|
B/M .

Thus we have C ≤M A.

Proposition 4.7. Let M and N be d-generated d-lex-favoring ideals, and (M∩

N)d = 0. Then M + N is d-lex-favoring.

Proof: Let A be any lexlike sequence in degree d− 1, and let I and J be initial

segments of Lex and A, respectively, of the same length. Then

|mI ∩ M | ≥ |mJ ∩ M | and |mI ∩ N | ≥ |mJ ∩ N | ,

so

|mI ∩ (M + N)| = |mI ∩ M | + |mI ∩ N |

≥ |mJ ∩ M | + |mJ ∩ N |

= |mJ ∩ (M + N)|

as desired.

5. Lexlike sequences in an exterior algebra.

In this section we characterize the squarefree lexlike sequences. Our ap-

proach is almost identical to that used in section 3. Throughout this section,
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we will work over the ring B = k[x1, · · · , xn]/(x2
1, · · · , x

2
n). (Since we consider

only Hilbert functions of monomial ideals, we can replace an exterior algebra

by B.) We have numbered the results in this section not sequentially but in a

way that emphasizes the analogy with the corresponding results in section 3.

We omit proofs where they are essentially identical to those given in section 3.

Definition 5.1. A squarefree monomial sequence (of degree d) is a sequence

X : xt1 , · · · ,xts of all the degree d monomials of B. We say that X is squarefree

lexlike if, for every i, and for every vector space V generated by i squarefree

degree d monomials, we have |m(xt1 , · · · ,xti)| ≤ |mV |.

Example 5.2. The sequence X : abc, ace, acd, abe, abd, ade, bce, bcd, bde, cde is

squarefree lexlike in B = k[a, b, c, d, e]/(a2, b2, c2, d2, e2).

Example 5.3. The squarefree lex sequence in degree d consists of all the

degree d monomials ordered lexicographically. By Kruskal-Katona’s Theorem

[Kr,Ka], this sequence is squarefree lexlike. It is denoted by Lex(d) or simply

Lex throughout this section.

As in the polynomial case, we may partition Lex into two smaller squarefree

lex sequences. Let A be the squarefree lex sequence in degree d−1 and variables

x2, · · · , xn, and let C be the squarefree lex sequence in degree d and variables

x2, · · · , xn. Then we have Lex = x1A; C.

Definitions and results 3.4 through 3.12, and their proofs, hold verbatim

in the squarefree case.

Theorem 5.13. Let X : m1, · · · be a squarefree monomial sequence in degree

d, and let s = |(x1)d|. Set Y : m1, · · · , ms, and set Z : ms+1, · · ·. The sequence

X is squarefree lexlike if and only if the following hold:

(1) There is a variable xi such that (xi)d = (m1, · · · , ms).

(2) There is a squarefree lexlike sequence W in degree d − 1 and variables

x1, · · · , x̂i, · · · , xn such that xiW = Y .

(3) Z is squarefree lexlike in the variables x1, · · · , x̂i, · · · , xn, (here x̂i means xi

is omitted.)
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Remark. The fundamental difference between the squarefree and polynomial

case appears in (2). In the squarefree case, the variable xi cannot appear in

W , so W occurs in n − 1 variables. In the polynomial case, there was no such

restriction and W occured in n variables.

This structure theorem yields the following algorithm enumerating all the

squarefree lexlike sequences in n variables in degree d.

Algorithm 5.14. Inductively enumerate all squarefree lexlike sequences in n−1

variables in degree d−1 and all squarefree lexlike sequences in n−1 variables in

degree d. For each variable xi and each sequence Z in n− 1 variables, let Zi be

Z on the variables {x1, · · · , x̂i, · · · , xn}. For each variable xi, lexlike sequence

Y in degree d − 1, and lexlike sequence Z in n − 1 variables, write down the

lexlike sequence Xi,Y,Z : xiYi; Zi.

Corollary 5.15. Let f(n, d) be the number of lexlike sequences in n variables

in degree d. Then we have f(n, d) = nf(n − 1, d)f(n − 1, d − 1) if n > d > 0

and f(n, d) = f(n, 0) = 1. Thus,

f(n, d) =
n−1
∏

i=0

(n − i)

∑

n−d−1

j=i−d+1
(i

j) .

(Here we use the convention that
(

i
j

)

= 0 if i < j or j < 0.)

Remark. In particular, we have f(n, d) = f(n, n−d). A nice bijection is given

by the Alexander Dual in Theorem 5.26.

Example 5.16. It is natural to ask if every squarefree monomial ideal with

minimal Hilbert function growth occurs as an initial segment of some squarefree

lexlike sequence. It does not. For example, I = (ac, ad, bc, bd) has minimal

Hilbert function growth in B = k[a, b, c, d]/(a2, b2, c2, d2) but does not contain

(mxi) for xi = a, b, c, or d.

Definition 5.17. Let Y : xt1 , · · · ,xts be a sequence of all the monomials of B

of degree d, and let X : xv1 , · · · ,xvr be a sequence of all the monomials of B
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of degree d − 1. We say that Y is above Y if, for all i, there is a j such that

mXi = Yj .

Example 5.18. The sequence X : bcd, abc, acd, abd is above Y : bc, ac, cd,

ab, ad, bd.

Example 5.19 The squarefree Lex sequence in degree d+1 is above the square-

free Lex sequence in degree d.

Proposition 5.20. Let X be a squarefree lexlike sequence in degree d.

(1) There exists a squarefree monomial sequence Y above X.

(2) If Y is above X then Y is lexlike.

In particular, there exists a squarefree lexlike sequence Y in degree d + 1 such

that Y is above X.

Proof: We will prove (2). Write X : a1, · · · and Y : b1, · · ·. It suffices to show

that, for all i, Redi(Y ) ≥ Redi(Lex). Let j be such that |m(a1, · · · , aj−1)| < i ≤

|m(a1, · · · , aj)|, and set s = |m(a1, · · · , aj−1)|. Then we claim that

Redi(Y ) = Redj(X) + (i − s) = Redi(Lex) .

Since bi ∈ {m(a1, · · · , aj)} but bi /∈ {m(a1, · · · , aj−1)}, we may write bi = yaj.

We see that xpbi ∈ (b1, · · · , bi−1) whenever xpaj ∈ (a1 · · · , aj−1) or xpaj ∈

{bs+1, · · · , bi}, i.e., Redi(Y ) = Redj(X) + (i − s − 1).

Now suppose that X and Y are the Lex sequences in degrees d and d +

1, respectively. Then Redi(Y ) = max(ai) − 1 = max(bj) − 1 + (max(ai) −

max(bj)) = Redj(X) + (i − s − 1) as desired.

Corollary 5.21. Let Vd be spanned by an initial segment of a squarefree lexlike

sequence X. Then mVd is spanned by an initial segment of some squarefree

lexlike sequence Y .

Proposition 5.22. Let Y be a lexlike sequence in degree d. There is a lexlike

sequence X in degree d − 1 such that Y is above X.
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Remark. In the polynomial case, X was unique. That uniqueness is lost here.

For example, there are n! squarefree lexlike sequences in degree n − 1, and a

unique squarefree lexlike sequence in degree n above them all.

Definition 5.23. Let X : m1, · · · , ms be a squarefree monomial sequence

in degree d and variables x1, · · · , xs. Let u =
∏n

i=1
xi. Then the monomial

sequence X∨ : u
ms

, · · · , u
m1

in degree n − d is called the Alexander Dual of X.

Remark This definition is motivated by the topological Alexander dual. The

Stanley-Reisner simplicial complex of an initial segment ( u
ms

, · · · , u
ms−r+1

) of

X∨ is the Alexander dual of the Stanley-Reisner complex of the initial segment

(m1, · · · , mr) of X.

Example 5.24. The Alexander dual of X : abd, acd, ade, bde, cde, bcd, bce,

abe, abc, ace is X∨ : bd, de, cd, ad, ae, ab, ac, bc, be, cd.

Proposition 5.25. The Alexander dual of the squarefree Lex sequence in de-

gree d is the squarefree lex sequence in degree n − d.

Theorem 5.26. The Alexander dual of a squarefree lexlike sequence is square-

free lexlike.

Proof: Let X be a squarefree lexlike sequence in variables x1, · · · , xn. Without

loss of generality we may write X = x1Y ; Z with Y and Z squarefree lexlike in

the variables x2, · · · , xn. Then we have X∨ = x1Z
∨; Y ∨, the duals on the right

being taken with respect to the variables x2, · · · , xn. Z∨ and Y ∨ are lexlike by

induction on n, so X∨ is lexlike by Theorem 5.13.

Proposition 5.27. Let X and Y be squarefree lexlike sequences such that Y

is above X. Then X∨ is above Y ∨.

Proof: Without loss of generality we may write X = x1A; B and Y = x1C; D,

with C above A and D above B. Then A∨ is above C∨ and B∨ is above D∨

by induction on n, so X∨ = x1B
∨; A∨ is above Y ∨ = x1D

∨; C∨.

In [MP2] we construct lexlike ideals in the polynomial ring, and show that
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they have maximal Betti numbers. Here, we do the same for squarefree lexlike

ideals.

Definition 5.28. A squarefree lexlike tower is a collection X of lexlike sequences

Xd, one for each degree d < n, such that Xd+1 is above Xd for all d.

Example 5.29. Lex, defined by letting Lexd equal the squarefree Lex sequence

in degree d, is a lexlike tower.

Example 5.30. Let

X1 : b, a, c, d

X2 : bc, ab, bd, ad, ac, cd

X3 : bcd, abc, abd, acd

X4 : abcd.

Then X is a squarefree lexlike tower.

Proposition 5.31. Let X be any squarefree lexlike sequence in degree d. Then

there exists a squarefree lexlike tower X with Xd = X.

Proof: Repeatedly apply Propositions 5.20 and 5.22.

Definition 5.32. Fix a squarefree lexlike tower X. Then a squarefree monomial

ideal M is called an X-ideal if for every degree d, Md is an initial segment of

Xd. M is a squarefree lexlike ideal if M is an X-ideal for some squarefree lexlike

tower X.

Example 5.33 The ideal M = (bc, ab, acd) is an X-ideal, for X as in Example

5.30.

Theorem 5.34. For any squarefree monomial ideal I, there exists an X−ideal

J with HilbB(I) = HilbB(J).

Remark. If X = Lex, this is Kruskal-Katona’s theorem [Kr,Ka].
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Proof: For each d, let Jd be the initial segment of Xd with length |Jd| = |Id|.

It suffices to show that J is an ideal, that is, that |Jd+1| ≥ |mJd| for all d. We

have |Jd+1| = |Id+1| ≥ |mId| ≥ |mJd|.

The proof of [MP2, Theorem 4.14] also yields the following result:

Theorem 5.35. Let J be any squarefree monomial ideal, and let L be the

squarefree lex ideal with the same Hilbert function as J . Let J̃ and L̃ be the

ideals of Ã = k[x1, · · · , xn] generated by the monomials of J and L, respectively.

Then J̃ and L̃ have the same graded Betti numbers over Ã.

Theorem 5.36. If J is a squarefree lexlike ideal, and L is the squarefree ideal

with the same Hilbert function as J , then J and L have the same graded

Betti numbers over B. In particular, the squarefree lexlike ideals have maximal

graded Betti numbers over B among all monomial ideals with a fixed Hilbert

function.

Proof: Let I be any squarefree ideal, and define Ĩ as in Theorem 5.35. Then

the Betti numbers of I over B are related to those of Ĩ over Ã by the following

formula [GHP]:

∑

i,j

βB
i,j(B/I)tivj =

∑

i,j

βÃ
i,i+j(Ã/Ĩ)tivj 1

(1 − tv)j
.

Combining this with Theorem 5.35 yields the desired result.

Theorem 5.37. If J is a squarefree lexlike ideal, and L is the squarefree lex

ideal with the same Hilbert function, then J and L have the same graded Betti

numbers over the exterior algebra. In particular, lexlike ideals have maximal

graded Betti numbers over the exterior algebra among all graded ideals with a

fixed Hilbert function.

Proof: The Betti numbers of any squarefree ideal I over the exterior algebra
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E are related to those over Ã by the following formula [AAH]:

∑

i,j

βE
i,j(E/I)tivj =

∑

i,j

βÃ
i,j(Ã/Ĩ)tivj 1

(1 − tv)j
.

Combining this with Theorem 5.35 yields the desired result. The fact that

the Betti numbers are maximal follows from a result in [AHH] which states

that the lex ideal has maximal graded Betti numbers over the exterior algebra

among all graded ideals with a fixed Hilbert function.
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