Monomial regular sequences

Jeffrey Mermin

DEPARTMENT OF MATHEMATICS, CORNELL UNIVERSITY, ITHACA, NY 14853, USA

March 7, 2005

Abstract: We study Hilbert functions of ideals containing a regular sequence of monomials.

1 Introduction

Let $B = k[x_1, \dots, x_n]$ be a polynomial ring over a field k, and $I \subset B$ a homogeneous ideal. One of the most important invariants of I is its Hilbert function, $\operatorname{Hilb}_I^B(d) = \dim_k I_d$. We study Hilbert functions of ideals containing a regular sequence of monomials.

Macaulay [Ma] showed in 1927 that all Hilbert functions over $B = k[x_1, \cdots, x_n]$ are attained by lex ideals. Over what quotients of B is this true? Let M be a monomial ideal of B. We say that M is *Lex-Macaulay* if every Hilbert function over B/M is attained by a lex ideal of B/M. Clements and Lindström [CL] proved that $(x_1^{e_1}, \cdots, x_n^{e_n})$ is Lex-Macaulay for $e_1 \leq \cdots \leq e_n$. In section 4 we classify the monomial regular sequences which are Lex-Macaulay: Theorem 4.8 says that a regular sequence of monomials is Lex-Macaulay if and only if it has the form $(x_1^{e_1}, \cdots, x_{r-1}^{e_{r-1}}, x_r^{e_r-1}y)$, with $e_1 \leq \cdots \leq e_r$ and $y = x_i$ for some $i \geq r$.

Eisenbud, Green, and Harris [EGH1, EGH2] made the following conjecture motivated by applications in algebraic geometry:

Conjecture 1.1 (Eisenbud-Green-Harris). Let N be any homogeneous ideal containing a regular sequence in degrees $e_1 \leq \cdots \leq e_r$. There is a lex ideal L such that N and $L + (x_1^{e_1}, \cdots, x_r^{e_r})$ have the same Hilbert function.

In the original conjecture, r = n. The conjecture is wide open. We prove it for ideals containing a regular sequence of monomials in Theorem 3.10.

The main tool in our proofs is S-compression, which we introduce in Section 3. It generalizes the notion of x_i -compression used in [CL, MP1, MP2].

Acknowledgements. I thank David Eisenbud for asking which monomial regular sequences are Lex-Macaulay. I thank Irena Peeva, Steve Sinnott, and Mike Stillman for helpful discussions. I am particularly grateful to Irena Peeva for considerable help in editing this paper.

2 Preliminaries

We give some definitions and notation that are used throughout.

Let k be a field and $B = k[x_1, \dots, x_n]$ be graded by $\deg x_i = 1$. We order the variables by $x_1 > \dots > x_n$, and denote by $>_{\text{Lex}}$ the graded lexicographic order on the monomials, $x_1^{\alpha_1} \dots x_n^{\alpha_n} >_{\text{Lex}} x_1^{\beta_1} \dots x_n^{\beta_n}$ if $\deg x_1^{\alpha_1} \dots x_n^{\alpha_n} >$ $\deg x_1^{\beta_1} \dots x_n^{\beta_n}$, or if $\deg x_1^{\alpha_1} \dots x_n^{\alpha_n} = \deg x_1^{\beta_1} \dots x_n^{\beta_n}$ and for some index j we have $\alpha_j > \beta_j$ and $\alpha_i = \beta_i$ for all i < j.

A monomial $x_1^{\alpha_1} \dots x_n^{\alpha_n}$ has exponent vector $\alpha = (\alpha_1, \dots, \alpha_n)$, and is sometimes written \mathbf{x}^{α} . We denote by $|\alpha|$ the degree of \mathbf{x}^{α} , $|\alpha| = \sum_{i=1}^{n} \alpha_i$.

A *d*-vector space is a *k*-vector subspace of *B* spanned by homogeneous polynomials in degree *d*. A *d*-monomial space is a *d*-vector space spanned by monomials. The dimension of such a space M_d will be denoted $|M_d|$. Let **m** be the monomial space generated by the variables, $\mathbf{m} = (x_1, \dots, x_n)_1$.

A *d*-monomial space L_d is *lex* or a *lex segment* if, whenever \mathbf{x}^{α} and \mathbf{x}^{β} are degree *d* monomials with \mathbf{x}^{α} lexicographically greater than \mathbf{x}^{β} and $\mathbf{x}^{\beta} \in L_d$, we have $\mathbf{x}^{\alpha} \in L_d$ as well. A monomial ideal *L* is *lex* if $L_d = \{f : f \in L \text{ and } \deg f = d\}$ is a lex segment for all *d*.

A d-monomial space N_d is strongly stable or Borel if, whenever i < j and $gx_j \in N_d$, we have $gx_i \in N_d$ as well. A monomial ideal N is strongly stable or Borel if N_d is Borel for all d.

A monomial regular sequence is a set of monomials $\{f_1, \dots, f_r\}$ satisfying $gcd(f_i, f_j) = 1$ for all $i \neq j$.

3 S-compression

Compressed ideals were used heavily in [CL, MP1, MP2]. We introduce S-compressed ideals, which are more general.

Definition 3.1. Let S be a subset of $\{x_1, \dots, x_n\}$, and let M_d be a d-monomial vector space. Denote by \oplus_S a direct sum over exponent vectors $\alpha = (\alpha_1, \dots, \alpha_n)$ such that $\alpha_i = 0$ whenever $x_i \in S$. Then M_d may be written uniquely in the form

$$M_d = \bigoplus_S \mathbf{x}^{\alpha} V_{\alpha},$$

where V_{α} is a $(d - |\alpha|)$ -monomial space in the ring k[S]. We say that M_d is *S*-compressed if each V_{α} is lex in k[S].

If L_{α} is the lex monomial space in degree $(d - |\alpha|)$ with $|L_{\alpha}| = |V_{\alpha}|$, and $L_d = \bigoplus_S \mathbf{x}^{\alpha} L_{\alpha}$, we say that L_d is the *S*-compression of M_d .

Remark. What [CL, MP1, MP2] called *i*-compressed ideals (or monomial spaces) are $\{x_1, \dots, \hat{x_i}, \dots, x_n\}$ -compressed in this notation. (Here the $\hat{x_i}$ means that x_i is omitted.) This reversal is for simplicity in several proofs below, and so that S-compressed spaces will remain S-compressed after new variables are added to the ring B.

Example 3.2. If S is a one-element set, every monomial space is S-compressed.

Example 3.3. Let $M = (a^3, a^2b, a^2c, ab^2, abc, abd, b^3, b^2c)$. Then M is not $\{a, b\}$ -compressed because $V_d = (ab)$ is not lex in k[a, b], but M is S-compressed for every other two-element set S.

Lemma 3.4. Let M_d be S-compressed. Then $\mathbf{m}M_d$ is S-compressed as well.

Definition 3.5. A monomial ideal M is *S*-compressed if it is *S*-compressed in every degree d.

It is easy to prove the following two propositions:

Proposition 3.6. A lex ideal (or lex monomial space) is S-compressed for every S.

Proposition 3.7. Suppose $S \supset T$. Then every S-compressed ideal (or S-compressed monomial space) is T-compressed.

Example 3.8. Borel ideals are S-compressed for every two-element set S.

Due to the following lemma, S-compressed ideals are useful in the study of Hilbert functions:

Lemma 3.9. Let M_d be a d-monomial vector space, and let K_d be its S-compression. Then $|\mathbf{m}K_d| \leq |\mathbf{m}M_d|$.

Proof. Let **n** be the monomial space generated by the variables of *S*. Denote by $\beta \uparrow \alpha$ the property that \mathbf{x}^{β} divides \mathbf{x}^{α} and deg $\mathbf{x}^{\beta} = \text{deg } \mathbf{x}^{\alpha} - 1$.

Write $M = \bigoplus_S x^{\alpha} N_{\alpha}$, and $K = \bigoplus_S x^{\alpha} L_{\alpha}$. Now we have $\mathbf{m}K = \bigoplus_S x^{\alpha} L'_{\alpha}$ and $\mathbf{m}M = \bigoplus_S x^{\alpha} N'_{\alpha}$, where

$$N'_{\alpha} = \mathbf{n}N_{\alpha} + \sum_{\beta\uparrow\alpha}N_{\beta}$$

 $L'_{\alpha} = \mathbf{n}L_{\alpha} + \sum_{\beta\uparrow\alpha}L_{\beta}.$

 $|\mathbf{n}L_{\alpha}| \leq |\mathbf{n}N_{\alpha}|$ by Macaulay's Theorem, and $|N_{\beta}| = |L_{\beta}|$ for all β by definition, so we have:

$$|L'_{\alpha}| = \max\{\max_{\beta \uparrow \alpha}\{|L_{\beta}|\}, |\mathbf{n}L_{\alpha}|\} \le \max\{\max_{\beta \uparrow \alpha}\{|N_{\beta}|\}, |\mathbf{n}N_{\alpha}|\} \le |N'_{\alpha}|,$$

the first equality because the L_{β} and $\mathbf{n}L_{\alpha}$ are lex segments, so their sum is the longest segment. This proves the lemma.

Using Lemma 3.9 we prove Conjecture 1.1 for ideals containing a regular sequence of monomials:

Theorem 3.10. Let $R = (f_1 \cdots, f_r)$ be a regular sequence of monomials with deg $f_i = e_i$ and $e_1 \leq \cdots \leq e_r$. Let N be any homogeneous ideal containing R. Then there is a lex ideal L such that N and $L + (x_1^{e_1}, \cdots, x_r^{e_r})$ have the same Hilbert function.

Proof. Set $P = (x_1^{e_1}, \dots, x_r^{e_r})$. It suffices to show that, for any *d*-vector space N_d containing R_d , there is a lex monomial space L_d such that $|L_d + P_d| = |N_d|$ and $|\mathbf{m}L_d + P_{d+1}| \leq |\mathbf{m}N_d|$.

Reorder the variables so that x_i divides f_i for all i. By Gröbner basis theory, we may assume (after taking an initial ideal if necessary) that N_d is a monomial space. Set $N(0) = N_d$. For each $i \leq r$, let S_i be the set of variables dividing f_i , and let N(i) be the S_i -compression of N(i-1). Then N(i) contains $x_i^{e_i}$ if $d \geq e_i$. Furthermore, $|N(r)| = |N_d|$ and $|\mathbf{m}N(r)| \leq |\mathbf{m}N_d|$ by Lemma 3.9. By Clements-Lindström's theorem, there is a lex space L_d such that $|L_d + P_d| = |N(r)|$ and $|\mathbf{m}L_d + P_{d+1}| \leq |\mathbf{m}N(r)|$.

4 Lex-Macaulay monomial regular sequences

Throughout this section, let M be a monomial ideal of B. We recall the following definitions and results from [MP1]:

Definition 4.1. [MP1] M is *Lex-Macaulay* if every Hilbert function in the quotient B/M is attained by a lex ideal. Equivalently, M is Lex-Macaulay if, for every d and every d-monomial vector space V_d , there exists a lex space L_d such that $|L_d + M_d| = |V_d + M_d|$ and $|\mathbf{m}L_d + M_{d+1}| \leq |\mathbf{m}V_d + M_{d+1}|$.

Theorem 4.2. [MP1] If M is Lex-Macaulay as an ideal of B, then it is Lex-Macaulay as an ideal of B[y].

Proposition 4.3. [MP1] If M is Lex-Macaulay and L is lex, then L + M is Lex-Macaulay.

Now, we will characterize the monomial regular sequences which are Lex-Macaulay.

Let $R = (f_1, \dots, f_r)$ be a monomial regular sequence (that is, $gcd(f_i, f_j) = 1$ for all $i \neq j$), and order these monomials so that i < j if deg $f_i < \deg f_j$, or if deg $f_i = \deg f_j$ and $f_i >_{\text{Lex}} f_j$. Set $e_i = \deg f_i$, and suppose throughout that $e_i > 1$.

Lemma 4.4. Suppose that R is Lex-Macaulay. Then $x_i^{e_i-1}$ divides f_i .

Proof. By induction we have $x_j^{e_j-1}$ divides f_j for j < i, and by Proposition 4.3 $R + (x_1, \cdots, x_{i-1})$ is Lex-Macaulay, so we may assume without loss of generality that i = 1. Let g be any momial in degree $e_1 - 1$ dividing f_1 . Then, since R is Lex-Macaulay, we have $|(x_1^{e_1-1})_{e_1}| \leq |(g)_{e_1}| \leq n-1$, i.e., $x_1^{e_1-1}$ divides f_1 . \Box

Lemma 4.5. Suppose that R is Lex-Macaulay, and write $f_i = x_i^{e_i-1}y_i$. Suppose that $y_i \neq x_i$. Then i = r.

Proof. We may assume as in the proof of Lemma 4.4 that i = 1. Suppose $r \neq 1$ and $y_1 \neq x_1$. Then set $g = x_1^{e_1-1}x_2^{e_2-1}$. Then $|(g)_{e_1+e_2-1}| = n-2$, while $|(x_1^{e_1+e_2-2})_{e_1+e_2-1}| = n-1$, contradicting the assumption that R is Lex-Macaulay.

Thus, all Lex-Macaulay monomial regular sequences may be written in the form $(x_1^{e_1}, \dots, x_{r-1}^{e_{r-1}}, x_r^{e_r-1}y)$. We will show conversely that all such sequences are Lex-Macaulay.

Lemma 4.6. Suppose $r \neq n$, and let $R = (x_1^{e_1}, \cdots, x_{r-1}^{e_{r-1}}, x_r^{e_r-1}x_n)$. Let N_d be a d-monomial vector space containing R_d . Then there exists a d-monomial vector space K_d containing Q_d , where $Q = (x_1^{e_1}, \cdots, x_{r-1}^{e_{r-1}}, x_r^{e_r-1}x_{n-1})$ such that $|K_d| = |M_d|$ and $|\mathbf{m}K_d| \leq |\mathbf{m}M_d|$.

Proof. Set $S = \{x_n, x_{n-1}\}$, and take K_d to be the S-compression of M_d . Apply Lemma 3.9, and note that Q is the S-compression of R.

Lemma 4.7. Suppose $r \neq n$, and let $R = (x_1^{e_1}, \dots, x_{r-1}^{e_{r-1}}, x_r^{e_r-1}x_n)$ and $Q = (x_1^{e_1}, \dots, x_{r-1}^{e_{r-1}}, x_r^{e_r-1}x_{n-1})$. Let L_d be a lex segment in B. Then there exists a lex d-monomial space T_d such that $|T_d + R_d| = |L_d + Q_d|$ and $|\mathbf{m}T_d + R_{d+1}| = |\mathbf{m}L_d + Q_{d+1}|$.

Proof. Let T_d be the smallest lex segment such that $T_d + Q_d = L_d + Q_d$.

We claim that T_d satisfies the property: If g is a monomial such that $gx_r^{e_r-1}x_{n-1} \in T_d$, then $gx_r^{e_r-1}x_n \in T_d$. We will prove this claim. Observe that $gx_r^{e_r-1}x_{n-1} \in Q_d$, and that $gx_r^{e_r-1}x_n$ is the successor of $gx_r^{e_r-1}x_{n-1}$ in the graded lex order. By construction, if $gx_r^{e_r-1}x_{n-1} \in T_d$, we must have a monomial $v \in T_d$ which comes lexicographically after $gx_r^{e_r-1}x_{n-1}$ and $v \notin Q_d$. Then v is lexicographically after $gx_r^{e_r-1}x_n$ as well, and since T_d is a lex segment, we have $gx_r^{e_r-1}x_n \in T_d$, proving the claim.

Set $A = T_d + (x_1^{e_1}, \dots, x_{r-1}^{e_{r-1}})_d$ and B and C such that $T_d + Q_d = A \oplus B$ and $T_d + R_d = A \oplus C$. Then if $\{B\}$ and $\{C\}$ are the sets of monomials of B and C, respectively, we have:

$$\{B\} = \{gx_r^{e_r-1}x_{n-1} : gx_r^{e_r-1}x_{n-1} \notin A\}$$

$$\{C\} = \{gx_r^{e_r-1}x_n : gx_r^{e_r-1}x_n \notin A\}$$

$$= \{gx_r^{e_r-1}x_n : gx_r^{e_r-1}x_{n-1} \in B\}.$$

In particular, multiplication by $\frac{x_n}{x_{n-1}}$ is a bijection from $\{B\}$ to $\{C\}$. Thus $|\mathbf{m}B| = |\mathbf{m}C|$ and $|\mathbf{m}B \cap \mathbf{m}A| = |\mathbf{m}C \cap \mathbf{m}A|$, so we have $|\mathbf{m}(T_d + R_d)| = |\mathbf{m}(T_d + Q_d)| = |\mathbf{m}(L_d + Q_d)|$, the first equality by inclusion-exclusion, the second by construction.

Now $|\mathbf{m}T_d + R_{d+1}| = |\mathbf{m}(T_d + R_d)|$ unless R has minimal monomial generators in degree d + 1 which are not in $\mathbf{m}T_d$; likewise $|\mathbf{m}L_d + Q_{d+1}| = |\mathbf{m}(L_d + Q_d)|$ unless Q has minimal monomial generators in degree d + 1 which are not in $\mathbf{m}L_d$ and hence not in $\mathbf{m}T_d$. Since $x_r^d x_{n-1} \in \mathbf{m}T_d$ if and only if $x_r^d x_n \in \mathbf{m}T_d$, we obtain $|\mathbf{m}T_d + R_{d+1}| = |\mathbf{m}L_d + Q_{d+1}|$ as desired. **Theorem 4.8.** Let R be a regular sequence of monomials. Then R is Lex-Macaulay if and only if $R = (x_1^{e_1}, \dots, x_{r-1}^{e_{r-1}}, x_r^{e_r-1}y)$, with $e_1 \leq \dots \leq e_r$ and $y = x_i$ for some $i \geq r$.

Proof. If R is Lex-Macaulay, apply Lemmas 4.4 and 4.5.

Conversely, suppose R has the form above. By Theorem 4.2, we may assume $y = x_n$. If n = r, this is Clements-Lindström's Theorem; otherwise, we induct on n-r. Set $Q = (x_1^{e_1}, \dots, x_{r-1}^{e_{r-1}}, x_r^{e_r-1}x_{n-1})$. Choose a degree d, and let N_d be any d-monomial space containing R_d . By Lemma 4.6, there is a d-monomial space K_d containing Q_d with $|K_d| = |N_d|$ and $|\mathbf{m}K_d| \leq |\mathbf{m}N_d|$. Q is Lex-Macaulay by induction, so there is a monomial space L_d containing Q_d with $|L_d| = |K_d|$ and $|\mathbf{m}L_d| \leq |\mathbf{m}K_d|$. By Lemma 4.7, there is a monomial space T_d containing R_d with $|T_d| = |L_d|$ and $|\mathbf{m}T_d| = |\mathbf{m}L_d|$. Thus R is Lex-Macaulay.

References

- [CL] G. Clements and B. Lindström, A generalization of a combinatorial theorem of Macaulay, J. Combinatorial Theory 7 (1969), 230–238.
- [EGH1] D. Eisenbud, M. Green, and J. Harris, *Higher Castelnuovo theory*, Astérisque 218 (1993), 187–202.
- [EGH2] _____, Cayley-Bacharach theorems and conjectures, Bull. Amer. Math. Soc. 33 (1996), 295–324.
- [Ma] F. Macaulay, Some properties of enumeration in the theory of modular systems, Proc. London Math. Soc. 26 (1927), 531–555.
- [MP1] J. Mermin and I. Peeva, *Lexifying ideals* (submitted).
- [MP2] _____, The Clements-Lindström theorem (submitted).