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Abstract: We study Hilbert functions of ideals containing a regular sequence of
monomials.

1 Introduction

Let B = k[x1, · · · , xn] be a polynomial ring over a field k, and I ⊂ B a homo-
geneous ideal. One of the most important invariants of I is its Hilbert function,
HilbB

I (d) = dimk Id. We study Hilbert functions of ideals containing a regular
sequence of monomials.

Macaulay [Ma] showed in 1927 that all Hilbert functions over B = k[x1, · · · ,
xn] are attained by lex ideals. Over what quotients of B is this true? Let M be a
monomial ideal of B. We say that M is Lex-Macaulay if every Hilbert function
over B/M is attained by a lex ideal of B/M . Clements and Lindström [CL]
proved that (xe1

1 , · · · , xen
n ) is Lex-Macaulay for e1 ≤ · · · ≤ en. In section 4 we

classify the monomial regular sequences which are Lex-Macaulay: Theorem 4.8
says that a regular sequence of monomials is Lex-Macaulay if and only if it has
the form (xe1

1 , · · · , x
er−1
r−1 , xer−1

r y), with e1 ≤ · · · ≤ er and y = xi for some i ≥ r.

Eisenbud, Green, and Harris [EGH1,EGH2] made the following conjecture
motivated by applications in algebraic geometry:

Conjecture 1.1 (Eisenbud-Green-Harris). Let N be any homogeneous ideal
containing a regular sequence in degrees e1 ≤ · · · ≤ er. There is a lex ideal L
such that N and L + (xe1

1 , · · · , xer
r ) have the same Hilbert function.

In the original conjecture, r = n. The conjecture is wide open. We prove it
for ideals containing a regular sequence of monomials in Theorem 3.10.

The main tool in our proofs is S-compression, which we introduce in Sec-
tion 3. It generalizes the notion of xi-compression used in [CL,MP1,MP2].
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regular sequences are Lex-Macaulay. I thank Irena Peeva, Steve Sinnott, and
Mike Stillman for helpful discussions. I am particularly grateful to Irena Peeva
for considerable help in editing this paper.
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2 Preliminaries

We give some definitions and notation that are used throughout.
Let k be a field and B = k[x1, · · · , xn] be graded by deg xi = 1. We or-

der the variables by x1 > · · · > xn, and denote by >Lex the graded lexico-
graphic order on the monomials, xα1

1 . . . xαn
n >Lex xβ1

1 . . . xβn
n if deg xα1

1 . . . xαn
n >

deg xβ1
1 . . . xβn

n , or if deg xα1
1 . . . xαn

n = deg xβ1
1 . . . xβn

n and for some index j we
have αj > βj and αi = βi for all i < j.

A monomial xα1
1 . . . xαn

n has exponent vector α = (α1, . . . , αn), and is some-
times written xα. We denote by |α| the degree of xα, |α| =

∑n
i=1 αi.

A d-vector space is a k-vector subspace of B spanned by homogeneous poly-
nomials in degree d. A d-monomial space is a d-vector space spanned by mono-
mials. The dimension of such a space Md will be denoted |Md|. Let m be the
monomial space generated by the variables, m = (x1, · · · , xn)1.

A d-monomial space Ld is lex or a lex segment if, whenever xα and xβ are
degree d monomials with xα lexicographically greater than xβ and xβ ∈ Ld, we
have xα ∈ Ld as well. A monomial ideal L is lex if Ld = {f : f ∈ L and deg f =
d} is a lex segment for all d.

A d-monomial space Nd is strongly stable or Borel if, whenever i < j and
gxj ∈ Nd, we have gxi ∈ Nd as well. A monomial ideal N is strongly stable or
Borel if Nd is Borel for all d.

A monomial regular sequence is a set of monomials {f1, · · · , fr} satisfying
gcd(fi, fj) = 1 for all i 6= j.

3 S-compression

Compressed ideals were used heavily in [CL, MP1, MP2]. We introduce S-
compressed ideals, which are more general.

Definition 3.1. Let S be a subset of {x1, · · · , xn}, and let Md be a d-monomial
vector space. Denote by⊕S a direct sum over exponent vectors α = (α1, · · · , αn)
such that αi = 0 whenever xi ∈ S. Then Md may be written uniquely in the
form

Md =
⊕

S

xαVα,

where Vα is a (d − |α|)-monomial space in the ring k[S]. We say that Md is
S-compressed if each Vα is lex in k[S].

If Lα is the lex monomial space in degree (d − |α|) with |Lα| = |Vα|, and
Ld = ⊕SxαLα, we say that Ld is the S-compression of Md.

Remark. What [CL,MP1,MP2] called i-compressed ideals (or monomial spaces)
are {x1, · · · , x̂i, · · · , xn}-compressed in this notation. (Here the x̂i means that
xi is omitted.) This reversal is for simplicity in several proofs below, and so that
S-compressed spaces will remain S-compressed after new variables are added to
the ring B.
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Example 3.2. If S is a one-element set, every monomial space is S-compressed.

Example 3.3. Let M = (a3, a2b, a2c, ab2, abc, abd, b3, b2c). Then M is not
{a, b}-compressed because Vd = (ab) is not lex in k[a, b], but M is S-compressed
for every other two-element set S.

Lemma 3.4. Let Md be S-compressed. Then mMd is S-compressed as well.

Definition 3.5. A monomial ideal M is S-compressed if it is S-compressed in
every degree d.

It is easy to prove the following two propositions:

Proposition 3.6. A lex ideal (or lex monomial space) is S-compressed for every
S.

Proposition 3.7. Suppose S ⊃ T . Then every S-compressed ideal (or S-
compressed monomial space) is T -compressed.

Example 3.8. Borel ideals are S-compressed for every two-element set S.

Due to the following lemma, S-compressed ideals are useful in the study of
Hilbert functions:

Lemma 3.9. Let Md be a d-monomial vector space, and let Kd be its S-
compression. Then |mKd| ≤ |mMd|.

Proof. Let n be the monomial space generated by the variables of S. Denote
by β ↑ α the property that xβ divides xα and deg xβ = deg xα − 1.

Write M =
⊕

S xαNα,and K =
⊕

S xαLα. Now we have mK =
⊕

S xαL′
α

and mM =
⊕

S xαN ′
α, where

N ′
α = nNα +

∑
β↑α

Nβ

L′
α = nLα +

∑
β↑α

Lβ .

|nLα| ≤ |nNα| by Macaulay’s Theorem, and |Nβ | = |Lβ | for all β by defini-
tion, so we have:

|L′
α| = max{max

β↑α
{|Lβ |}, |nLα|} ≤ max{max

β↑α
{|Nβ |}, |nNα|} ≤ |N ′

α|,

the first equality because the Lβ and nLα are lex segments, so their sum is the
longest segment. This proves the lemma.

Using Lemma 3.9 we prove Conjecture 1.1 for ideals containing a regular
sequence of monomials:
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Theorem 3.10. Let R = (f1 · · · , fr) be a regular sequence of monomials with
deg fi = ei and e1 ≤ · · · ≤ er. Let N be any homogeneous ideal containing R.
Then there is a lex ideal L such that N and L + (xe1

1 , · · · , xer
r ) have the same

Hilbert function.

Proof. Set P = (xe1
1 , · · · , xer

r ). It suffices to show that, for any d-vector space
Nd containing Rd, there is a lex monomial space Ld such that |Ld + Pd| = |Nd|
and |mLd + Pd+1| ≤ |mNd|.

Reorder the variables so that xi divides fi for all i. By Gröbner basis theory,
we may assume (after taking an initial ideal if necessary) that Nd is a monomial
space. Set N(0) = Nd. For each i ≤ r, let Si be the set of variables dividing fi,
and let N(i) be the Si-compression of N(i−1). Then N(i) contains xei

i if d ≥ ei.
Furthermore, |N(r)| = |Nd| and |mN(r)| ≤ |mNd| by Lemma 3.9. By Clements-
Lindström’s theorem, there is a lex space Ld such that |Ld + Pd| = |N(r)| and
|mLd + Pd+1| ≤ |mN(r)|.

4 Lex-Macaulay monomial regular sequences

Throughout this section, let M be a monomial ideal of B. We recall the following
definitions and results from [MP1]:

Definition 4.1. [MP1] M is Lex-Macaulay if every Hilbert function in the
quotient B/M is attained by a lex ideal. Equivalently, M is Lex-Macaulay if,
for every d and every d-monomial vector space Vd, there exists a lex space Ld

such that |Ld + Md| = |Vd + Md| and |mLd + Md+1| ≤ |mVd + Md+1|.

Theorem 4.2. [MP1] If M is Lex-Macaulay as an ideal of B, then it is Lex-
Macaulay as an ideal of B[y].

Proposition 4.3. [MP1] If M is Lex-Macaulay and L is lex, then L + M is
Lex-Macaulay.

Now, we will characterize the monomial regular sequences which are Lex-
Macaulay.

Let R = (f1, · · · , fr) be a monomial regular sequence (that is, gcd(fi, fj) = 1
for all i 6= j), and order these monomials so that i < j if deg fi < deg fj , or if
deg fi = deg fj and fi >Lex fj . Set ei = deg fi, and suppose throughout that
ei > 1.

Lemma 4.4. Suppose that R is Lex-Macaulay. Then xei−1
i divides fi.

Proof. By induction we have x
ej−1
j divides fj for j < i, and by Proposition 4.3

R+(x1, · · · , xi−1) is Lex-Macaulay, so we may assume without loss of generality
that i = 1. Let g be any monomial in degree e1−1 dividing f1. Then, since R is
Lex-Macaulay, we have |(xe1−1

1 )e1 | ≤ |(g)e1 | ≤ n− 1, i.e., xe1−1
1 divides f1.

Lemma 4.5. Suppose that R is Lex-Macaulay, and write fi = xei−1
i yi. Suppose

that yi 6= xi. Then i = r.
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Proof. We may assume as in the proof of Lemma 4.4 that i = 1. Suppose
r 6= 1 and y1 6= x1. Then set g = xe1−1

1 xe2−1
2 . Then |(g)e1+e2−1| = n − 2,

while |(xe1+e2−2
1 )e1+e2−1| = n− 1, contradicting the assumption that R is Lex-

Macaulay.

Thus, all Lex-Macaulay monomial regular sequences may be written in the
form (xe1

1 , · · · , x
er−1
r−1 , xer−1

r y). We will show conversely that all such sequences
are Lex-Macaulay.

Lemma 4.6. Suppose r 6= n, and let R = (xe1
1 , · · · , x

er−1
r−1 , xer−1

r xn). Let Nd

be a d-monomial vector space containing Rd. Then there exists a d-monomial
vector space Kd containing Qd, where Q = (xe1

1 , · · · , x
er−1
r−1 , xer−1

r xn−1) such that
|Kd| = |Md| and |mKd| ≤ |mMd|.

Proof. Set S = {xn, xn−1}, and take Kd to be the S-compression of Md. Apply
Lemma 3.9, and note that Q is the S-compression of R.

Lemma 4.7. Suppose r 6= n, and let R = (xe1
1 , · · · , x

er−1
r−1 , xer−1

r xn) and Q =
(xe1

1 , · · · , x
er−1
r−1 , xer−1

r xn−1). Let Ld be a lex segment in B. Then there exists a
lex d-monomial space Td such that |Td + Rd| = |Ld + Qd| and |mTd + Rd+1| =
|mLd + Qd+1|.

Proof. Let Td be the smallest lex segment such that Td + Qd = Ld + Qd.
We claim that Td satisfies the property: If g is a monomial such that

gxer−1
r xn−1 ∈ Td, then gxer−1

r xn ∈ Td. We will prove this claim. Observe
that gxer−1

r xn−1 ∈ Qd, and that gxer−1
r xn is the successor of gxer−1

r xn−1 in
the graded lex order. By construction, if gxer−1

r xn−1 ∈ Td, we must have a
monomial v ∈ Td which comes lexicographically after gxer−1

r xn−1 and v /∈ Qd.
Then v is lexicographically after gxer−1

r xn as well, and since Td is a lex segment,
we have gxer−1

r xn ∈ Td, proving the claim.
Set A = Td +(xe1

1 , · · · , x
er−1
r−1 )d and B and C such that Td +Qd = A⊕B and

Td + Rd = A⊕C. Then if {B} and {C} are the sets of monomials of B and C,
respectively, we have:

{B} = {gxer−1
r xn−1 : gxer−1

r xn−1 /∈ A}
{C} = {gxer−1

r xn : gxer−1
r xn /∈ A}

= {gxer−1
r xn : gxer−1

r xn−1 ∈ B}.

In particular, multiplication by xn

xn−1
is a bijection from {B} to {C}. Thus

|mB| = |mC| and |mB ∩ mA| = |mC ∩ mA|, so we have |m(Td + Rd)| =
|m(Td + Qd)| = |m(Ld + Qd)|, the first equality by inclusion-exclusion, the
second by construction.

Now |mTd+Rd+1| = |m(Td+Rd)| unless R has minimal monomial generators
in degree d + 1 which are not in mTd; likewise |mLd + Qd+1| = |m(Ld + Qd)|
unless Q has minimal monomial generators in degree d + 1 which are not in
mLd and hence not in mTd. Since xd

rxn−1 ∈ mTd if and only if xd
rxn ∈ mTd,

we obtain |mTd + Rd+1| = |mLd + Qd+1| as desired.
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Theorem 4.8. Let R be a regular sequence of monomials. Then R is Lex-
Macaulay if and only if R = (xe1

1 , · · · , x
er−1
r−1 , xer−1

r y), with e1 ≤ · · · ≤ er and
y = xi for some i ≥ r.

Proof. If R is Lex-Macaulay, apply Lemmas 4.4 and 4.5.
Conversely, suppose R has the form above. By Theorem 4.2, we may assume

y = xn. If n = r, this is Clements-Lindström’s Theorem; otherwise, we induct on
n−r. Set Q = (xe1

1 , · · · , x
er−1
r−1 , xer−1

r xn−1). Choose a degree d, and let Nd be any
d-monomial space containing Rd. By Lemma 4.6, there is a d-monomial space
Kd containing Qd with |Kd| = |Nd| and |mKd| ≤ |mNd|. Q is Lex-Macaulay
by induction, so there is a monomial space Ld containing Qd with |Ld| = |Kd|
and |mLd| ≤ |mKd|. By Lemma 4.7, there is a monomial space Td containing
Rd with |Td| = |Ld| and |mTd| = |mLd|. Thus R is Lex-Macaulay.
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