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Abstract: We study Hilbert functions of ideals containing a regular sequence of
monomials.

1 Introduction

Let B = k[z1,- -+ ,x,] be a polynomial ring over a field k, and I C B a homo-
geneous ideal. One of the most important invariants of I is its Hilbert function,
Hilb? (d) = dimy, I;. We study Hilbert functions of ideals containing a regular
sequence of monomials.

Macaulay [Ma] showed in 1927 that all Hilbert functions over B = k[zq,-- -,
x| are attained by lex ideals. Over what quotients of B is this true? Let M be a
monomial ideal of B. We say that M is Lex-Macaulay if every Hilbert function
over B/M is attained by a lex ideal of B/M. Clements and Lindstrém [CL]
proved that (z{',---,z%) is Lex-Macaulay for e; < --- < e,. In section 4 we
classify the monomial regular sequences which are Lex-Macaulay: Theorem 4.8
says that a regular sequence of monomials is Lex-Macaulay if and only if it has

er_1

the form (z{*, -, 2, , e~ ly), with eg < --- < e, and y = z; for some i > r.

Eisenbud, Green, and Harris [EGH1, EGH2] made the following conjecture
motivated by applications in algebraic geometry:

Conjecture 1.1 (Eisenbud-Green-Harris). Let N be any homogeneous ideal
containing a reqular sequence in degrees e; < --- < e,.. There is a lex ideal L
such that N and L + (z7*,--- ,zt") have the same Hilbert function.

In the original conjecture, » = n. The conjecture is wide open. We prove it
for ideals containing a regular sequence of monomials in Theorem 3.10.

The main tool in our proofs is S-compression, which we introduce in Sec-
tion 3. It generalizes the notion of x;-compression used in [CL, MP1, MP2].
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2 Preliminaries

We give some definitions and notation that are used throughout.

Let k be a field and B = k[xy, -+ ,x,] be graded by degz; = 1. We or-
der the variables by =1 > -+ > x,, and denote by >p.x the graded lexico-
graphic order on the monomials, 7" ... 28" >pex x?l coaPnifdega (.. a0 >
degzy' ...zl or if degz{' ... 2% = deg J;fl ...xP" and for some index j we
have a; > B; and oy = 3; for all 7 < j.

A monomial 7" ... 2% has exponent vector a = (v, ..., a,), and is some-
times written x*. We denote by |a| the degree of x%, |a| = >"1" | a;.

A d-vector space is a k-vector subspace of B spanned by homogeneous poly-
nomials in degree d. A d-monomial space is a d-vector space spanned by mono-
mials. The dimension of such a space My will be denoted |My|. Let m be the
monomial space generated by the variables, m = (21, -+ ,x,)1.

A d-monomial space Ly is lex or a lex segment if, whenever x® and x” are
degree d monomials with x* lexicographically greater than x” and x° € Ly, we
have x* € Ly as well. A monomial ideal Lislex if Ly ={f: f € L and deg f =
d} is a lex segment for all d.

A d-monomial space Ny is strongly stable or Borel if, whenever i < j and
gxr; € Ng, we have gx; € Ng as well. A monomial ideal N is strongly stable or
Borel if Ny is Borel for all d.

A monomial regular sequence is a set of monomials {f1,--- , f.} satisfying

ged(fi, fj) =1 for all i # j.

3 S-compression

Compressed ideals were used heavily in [CL, MP1, MP2]. We introduce S-
compressed ideals, which are more general.

Definition 3.1. Let S be a subset of {x1,--- ,2,}, and let My be a d-monomial
vector space. Denote by @ a direct sum over exponent vectors o = (o, -+ , ozn)
such that a; = 0 whenever z; € S. Then My may be written uniquely in the
form

My = @ xVa,
S

where V, is a (d — |a|)-monomial space in the ring k[S]. We say that My is
S-compressed if each V,, is lex in k[S].

If L, is the lex monomial space in degree (d — |a|) with |L,| = |V4|, and
Lg = ®sx“L,, we say that Ly is the S-compression of My.

Remark. What [CL,MP1,MP2] called i-compressed ideals (or monomial spaces)
are {xy1, -+ ,&;, -+, Ty }-compressed in this notation. (Here the #; means that
x; is omitted.) This reversal is for simplicity in several proofs below, and so that
S-compressed spaces will remain S-compressed after new variables are added to
the ring B.



Example 3.2. If S is a one-element set, every monomial space is S-compressed.

Example 3.3. Let M = (a3, a?b,a’c,ab?, abe,abd, b3, b*c). Then M is not
{a, b}-compressed because V; = (ab) is not lex in k[a, b], but M is S-compressed
for every other two-element set S.

Lemma 3.4. Let My be S-compressed. Then mMy is S-compressed as well.

Definition 3.5. A monomial ideal M is S-compressed if it is S-compressed in
every degree d.

It is easy to prove the following two propositions:

Proposition 3.6. A lex ideal (or lex monomial space) is S-compressed for every

S.

Proposition 3.7. Suppose S D T. Then every S-compressed ideal (or S-
compressed monomial space) is T-compressed.

Example 3.8. Borel ideals are S-compressed for every two-element set S.

Due to the following lemma, S-compressed ideals are useful in the study of
Hilbert functions:

Lemma 3.9. Let My be a d-monomial vector space, and let K4 be its S-
compression. Then |mKy| < lmMy|.

Proof. Let n be the monomial space generated by the variables of S. Denote
by 3 1 «a the property that x divides x* and degx” = degx® — 1.

Write M = @gx*Ny,and K = @ x*L,. Now we have mK = P x L],
and mM = @4 x*N/,, where

N/, =nN, + Z Ng
Bla

L, =nLs+Y L.
fla

InL,| < |nN,| by Macaulay’s Theorem, and |Ng| = |Lg| for all 8 by defini-
tion, so we have:

L4 = max{max{| ol In Lo} < max{masc{|Npl}. [aNo) < N
the first equality because the Lg and nL, are lex segments, so their sum is the
longest segment. This proves the lemma. O

Using Lemma 3.9 we prove Conjecture 1.1 for ideals containing a regular
sequence of monomials:



Theorem 3.10. Let R = (f1---, fr) be a reqular sequence of monomials with
deg fi = e; and e < --- < e,.. Let N be any homogeneous ideal containing R.
Then there is a lex ideal L such that N and L + (z5*,--- ,2¢") have the same
Hilbert function.

Proof. Set P = (x7*,--- ,xt"). It suffices to show that, for any d-vector space
N4 containing Ry, there is a lex monomial space L4 such that |Lg + Py| = |Nyg|
and |de +Pd+1‘ < \mNd\

Reorder the variables so that z; divides f; for all i. By Grobner basis theory,
we may assume (after taking an initial ideal if necessary) that Ny is a monomial
space. Set N(0) = Ny. For each i < r, let S; be the set of variables dividing f;,
and let N (¢) be the S;-compression of N(¢—1). Then N (i) contains z;* if d > e,.
Furthermore, |N(r)| = |Ng4| and |mN (r)| < |mNy| by Lemma 3.9. By Clements-
Lindstrom’s theorem, there is a lex space Lg such that |Lg + Py| = [N (r)| and

lmLg + Pyi1] < I mN(r)|. O

4 Lex-Macaulay monomial regular sequences

Throughout this section, let M be a monomial ideal of B. We recall the following
definitions and results from [MP1]:

Definition 4.1. [MP1] M is Lex-Macaulay if every Hilbert function in the
quotient B/M is attained by a lex ideal. Equivalently, M is Lex-Macaulay if,
for every d and every d-monomial vector space V, there exists a lex space Ly
such that |Ld + Md| =|Vi+ Md‘ and |de + M| < |de + Mat1]-

Theorem 4.2. [MP1] If M is Lez-Macaulay as an ideal of B, then it is Lex-
Macaulay as an ideal of Bly].

Proposition 4.3. [MP1] If M is Lex-Macaulay and L is lex, then L + M is
Lex-Macaulay.

Now, we will characterize the monomial regular sequences which are Lex-
Macaulay.

Let R = (fi,--- , fr) be a monomial regular sequence (that is, ged(f;, f;) =1
for all ¢ # j), and order these monomials so that ¢ < j if deg f; < deg f;, or if
deg f; = deg f; and f; >rex fj. Set e; = deg f;, and suppose throughout that
e; > 1.

Lemma 4.4. Suppose that R is Lex-Macaulay. Then xfﬁl divides f;.
Proof. By induction we have x;rl divides f; for j <4, and by Proposition 4.3
R+ (x1,- - ,x;—1) is Lex-Macaulay, so we may assume without loss of generality
that i = 1. Let g be any monomial in degree e; —1 dividing f;. Then, since R is
Lex-Macaulay, we have |(z{' ™ )e,| < [(9)e,| <1 — 1, e, 257! divides f;. O

Lemma 4.5. Suppose that R is Lez-Macaulay, and write f; = xf"flyi. Suppose
that y; # x;. Theni=r.



Proof. We may assume as in the proof of Lemma 4.4 that ¢ = 1. Suppose
r# 1 and y; # z1. Then set ¢ = 5" "2 Then |(¢)e,1ep—1| = 1 — 2,
while |(z$*T°272),, 1, 1] = n — 1, contradicting the assumption that R is Lex-

Macaulay. O
Thus, all Lex-Macaulay monomial regular sequences may be written in the
form (z§', -+, 2., xé " 1y). We will show conversely that all such sequences

are Lex-Macaulay.

Lemma 4.6. Suppose r # n, and let R = (z(,--- 2. 7", 2¢ " tx,). Let N4
be a d-monomial vector space containing Ry. Then there exists a d-monomial
vector space Kq containing Qq, where Q = (z7*,--- 277", ¢~ 1a,_1) such that

|Kq| = |My4| and lmKy| < jmMy|.

Proof. Set S = {xn,xn—1}, and take K, to be the S-compression of M. Apply

Lemma 3.9, and note that @ is the S-compression of R. O
Lemma 4.7. Suppose r # n, and let R = (z*,--- 277, 2% 1x,) and Q =
(x5t -+ oy xer e, ). Let Ly be a lex segment in B. Then there exists a

lex d-monomial space Ty such that |Ty + Rg| = |Lq + Qq| and |/mTy + Rgq1| =
lmLg + Qat1]-

Proof. Let Ty be the smallest lex segment such that T; + Qg4 = Lg + Qq.

We claim that T, satisfies the property: If g is a monomial such that
grér~tz, 1 € Ty, then gzér~lz, € T;. We will prove this claim. Observe
that gxé 'z, ; € Qq, and that gzé ~lxz, is the successor of gz 1z, ; in
the graded lex order. By construction, if gz¢~1lx,_; € Ty, we must have a
monomial v € Ty which comes lexicographically after gzé 'z, 1 and v ¢ Qq.
Then v is lexicographically after gz ~1x,, as well, and since T} is a lex segment,
we have gz¢~1x, € Ty, proving the claim.

Set A =Ty+ (z{, -+, 2" )a and B and C such that Ty + Q4 = A® B and
Ty+ Rqg =A@ C. Then if {B} and {C} are the sets of monomials of B and C,
respectively, we have:

{B} = {92 wp_1: gxl w1 ¢ A}
{C} = {gotam s gat a0 ¢ A)

= {gzt 2, : gz¢ "', € B}.

In particular, multiplication by ;*2— is a bijection from {B} to {C}. Thus
ImB| = |mC| and |mB N mA| = |mC N mA|, so we have | m(T; + Ry)| =
Im(Ty + Qq)| = |m(Lg + Qq)|, the first equality by inclusion-exclusion, the
second by construction.

Now |mTy+Rg41| = |m(Ty+Rg)| unless R has minimal monomial generators
in degree d + 1 which are not in mTy; likewise | mLg + Qqy1| = [m(Lq + Qq)|
unless @ has minimal monomial generators in degree d + 1 which are not in
mL,; and hence not in m7y. Since xffo:n_l € mTy if and only if o:f:cn e mTy,

we obtain |mTy; + Rgy1| = |mLg 4+ Qa+1] as desired. O



Theorem 4.8. Let R be a reqular sequence of monomials. Then R is Lex-
e,—1

Macaulay if and only if R = (x4, 277" 2¢ " y), with ey < --- < e, and
y = x; for somei > r.

Proof. If R is Lex-Macaulay, apply Lemmas 4.4 and 4.5.

Conversely, suppose R has the form above. By Theorem 4.2, we may assume
Yy = xn. If n = r, thisis Clements-Lindstrom’s Theorem; otherwise, we induct on
n—r. Set Q = (z7*,--- , 2,77, 2% 12, _1). Choose a degree d, and let N, be any
d-monomial space containing Ry. By Lemma 4.6, there is a d-monomial space

K, containing Qg with |K4| = |Ng| and |mKy| < lmNy|. @ is Lex-Macaulay

by induction, so there is a monomial space Ly containing Qg with |Lg4| = | K|
and |/mL4| < |[mKy|. By Lemma 4.7, there is a monomial space T, containing
Ry with |Ty| = |Lg| and |mTy| = |mLgy|. Thus R is Lex-Macaulay. O
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