Monomial regular sequences

Jeffrey Mermin
Department of Mathematics, Cornell University, Ithaca, NY 14853, USA

March 7, 2005

Abstract

We study Hilbert functions of ideals containing a regular sequence of monomials.

1 Introduction

Let $B=k\left[x_{1}, \cdots, x_{n}\right]$ be a polynomial ring over a field k, and $I \subset B$ a homogeneous ideal. One of the most important invariants of I is its Hilbert function, $\operatorname{Hilb}_{I}^{B}(d)=\operatorname{dim}_{k} I_{d}$. We study Hilbert functions of ideals containing a regular sequence of monomials.

Macaulay [Ma] showed in 1927 that all Hilbert functions over $B=k\left[x_{1}, \cdots\right.$, $\left.x_{n}\right]$ are attained by lex ideals. Over what quotients of B is this true? Let M be a monomial ideal of B. We say that M is Lex-Macaulay if every Hilbert function over B / M is attained by a lex ideal of B / M. Clements and Lindström [CL] proved that $\left(x_{1}^{e_{1}}, \cdots, x_{n}^{e_{n}}\right)$ is Lex-Macaulay for $e_{1} \leq \cdots \leq e_{n}$. In section 4 we classify the monomial regular sequences which are Lex-Macaulay: Theorem 4.8 says that a regular sequence of monomials is Lex-Macaulay if and only if it has the form $\left(x_{1}^{e_{1}}, \cdots, x_{r-1}^{e_{r-1}}, x_{r}^{e_{r}-1} y\right)$, with $e_{1} \leq \cdots \leq e_{r}$ and $y=x_{i}$ for some $i \geq r$.

Eisenbud, Green, and Harris [EGH1, EGH2] made the following conjecture motivated by applications in algebraic geometry:

Conjecture 1.1 (Eisenbud-Green-Harris). Let N be any homogeneous ideal containing a regular sequence in degrees $e_{1} \leq \cdots \leq e_{r}$. There is a lex ideal L such that N and $L+\left(x_{1}^{e_{1}}, \cdots, x_{r}^{e_{r}}\right)$ have the same Hilbert function.

In the original conjecture, $r=n$. The conjecture is wide open. We prove it for ideals containing a regular sequence of monomials in Theorem 3.10.

The main tool in our proofs is S-compression, which we introduce in Section 3. It generalizes the notion of x_{i}-compression used in [CL, MP1, MP2].

Acknowledgements. I thank David Eisenbud for asking which monomial regular sequences are Lex-Macaulay. I thank Irena Peeva, Steve Sinnott, and Mike Stillman for helpful discussions. I am particularly grateful to Irena Peeva for considerable help in editing this paper.

2 Preliminaries

We give some definitions and notation that are used throughout.
Let k be a field and $B=k\left[x_{1}, \cdots, x_{n}\right]$ be graded by $\operatorname{deg} x_{i}=1$. We order the variables by $x_{1}>\cdots>x_{n}$, and denote by $>_{\text {Lex }}$ the graded lexicographic order on the monomials, $x_{1}^{\alpha_{1}} \ldots x_{n}^{\alpha_{n}}>_{\text {Lex }} x_{1}^{\beta_{1}} \ldots x_{n}^{\beta_{n}}$ if $\operatorname{deg} x_{1}^{\alpha_{1}} \ldots x_{n}^{\alpha_{n}}>$ $\operatorname{deg} x_{1}^{\beta_{1}} \ldots x_{n}^{\beta_{n}}$, or if $\operatorname{deg} x_{1}^{\alpha_{1}} \ldots x_{n}^{\alpha_{n}}=\operatorname{deg} x_{1}^{\beta_{1}} \ldots x_{n}^{\beta_{n}}$ and for some index j we have $\alpha_{j}>\beta_{j}$ and $\alpha_{i}=\beta_{i}$ for all $i<j$.

A monomial $x_{1}^{\alpha_{1}} \ldots x_{n}^{\alpha_{n}}$ has exponent vector $\alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right)$, and is sometimes written \mathbf{x}^{α}. We denote by $|\alpha|$ the degree of $\mathbf{x}^{\alpha},|\alpha|=\sum_{i=1}^{n} \alpha_{i}$.

A d-vector space is a k-vector subspace of B spanned by homogeneous polynomials in degree d. A d-monomial space is a d-vector space spanned by monomials. The dimension of such a space M_{d} will be denoted $\left|M_{d}\right|$. Let \mathbf{m} be the monomial space generated by the variables, $\mathbf{m}=\left(x_{1}, \cdots, x_{n}\right)_{1}$.

A d-monomial space L_{d} is lex or a lex segment if, whenever \mathbf{x}^{α} and \mathbf{x}^{β} are degree d monomials with \mathbf{x}^{α} lexicographically greater than \mathbf{x}^{β} and $\mathbf{x}^{\beta} \in L_{d}$, we have $\mathbf{x}^{\alpha} \in L_{d}$ as well. A monomial ideal L is lex if $L_{d}=\{f: f \in L$ and $\operatorname{deg} f=$ $d\}$ is a lex segment for all d.

A d-monomial space N_{d} is strongly stable or Borel if, whenever $i<j$ and $g x_{j} \in N_{d}$, we have $g x_{i} \in N_{d}$ as well. A monomial ideal N is strongly stable or Borel if N_{d} is Borel for all d.

A monomial regular sequence is a set of monomials $\left\{f_{1}, \cdots, f_{r}\right\}$ satisfying $\operatorname{gcd}\left(f_{i}, f_{j}\right)=1$ for all $i \neq j$.

3 S-compression

Compressed ideals were used heavily in [CL, MP1, MP2]. We introduce S compressed ideals, which are more general.

Definition 3.1. Let S be a subset of $\left\{x_{1}, \cdots, x_{n}\right\}$, and let M_{d} be a d-monomial vector space. Denote by \oplus_{S} a direct sum over exponent vectors $\alpha=\left(\alpha_{1}, \cdots, \alpha_{n}\right)$ such that $\alpha_{i}=0$ whenever $x_{i} \in S$. Then M_{d} may be written uniquely in the form

$$
M_{d}=\bigoplus_{S} \mathrm{x}^{\alpha} V_{\alpha},
$$

where V_{α} is a $(d-|\alpha|)$-monomial space in the ring $k[S]$. We say that M_{d} is S-compressed if each V_{α} is lex in $k[S]$.

If L_{α} is the lex monomial space in degree $(d-|\alpha|)$ with $\left|L_{\alpha}\right|=\left|V_{\alpha}\right|$, and $L_{d}=\oplus_{S} \mathbf{x}^{\alpha} L_{\alpha}$, we say that L_{d} is the S-compression of M_{d}.

Remark. What [CL,MP1,MP2] called i-compressed ideals (or monomial spaces) are $\left\{x_{1}, \cdots, \hat{x_{i}}, \cdots, x_{n}\right\}$-compressed in this notation. (Here the $\hat{x_{i}}$ means that x_{i} is omitted.) This reversal is for simplicity in several proofs below, and so that S-compressed spaces will remain S-compressed after new variables are added to the ring B.

Example 3.2. If S is a one-element set, every monomial space is S-compressed.
Example 3.3. Let $M=\left(a^{3}, a^{2} b, a^{2} c, a b^{2}, a b c, a b d, b^{3}, b^{2} c\right)$. Then M is not $\{a, b\}$-compressed because $V_{d}=(a b)$ is not lex in $k[a, b]$, but M is S-compressed for every other two-element set S.

Lemma 3.4. Let M_{d} be S-compressed. Then $\mathbf{m} M_{d}$ is S-compressed as well.
Definition 3.5. A monomial ideal M is S-compressed if it is S-compressed in every degree d.

It is easy to prove the following two propositions:
Proposition 3.6. A lex ideal (or lex monomial space) is S-compressed for every S.

Proposition 3.7. Suppose $S \supset T$. Then every S-compressed ideal (or S compressed monomial space) is T-compressed.

Example 3.8. Borel ideals are S-compressed for every two-element set S.
Due to the following lemma, S-compressed ideals are useful in the study of Hilbert functions:

Lemma 3.9. Let M_{d} be a d-monomial vector space, and let K_{d} be its S compression. Then $\left|\mathbf{m} K_{d}\right| \leq\left|\mathbf{m} M_{d}\right|$.

Proof. Let \mathbf{n} be the monomial space generated by the variables of S. Denote by $\beta \uparrow \alpha$ the property that \mathbf{x}^{β} divides \mathbf{x}^{α} and $\operatorname{deg} \mathbf{x}^{\beta}=\operatorname{deg} \mathbf{x}^{\alpha}-1$.

Write $M=\bigoplus_{S} \mathrm{x}^{\alpha} N_{\alpha}$, and $K=\bigoplus_{S} \mathrm{x}^{\alpha} L_{\alpha}$. Now we have $\mathbf{m} K=\bigoplus_{S} \mathrm{x}^{\alpha} L_{\alpha}^{\prime}$ and $\mathbf{m} M=\bigoplus_{S} \mathrm{x}^{\alpha} N_{\alpha}^{\prime}$, where

$$
\begin{aligned}
& N_{\alpha}^{\prime}=\mathbf{n} N_{\alpha}+\sum_{\beta \uparrow \alpha} N_{\beta} \\
& L_{\alpha}^{\prime}=\mathbf{n} L_{\alpha}+\sum_{\beta \uparrow \alpha} L_{\beta} .
\end{aligned}
$$

$\left|\mathbf{n} L_{\alpha}\right| \leq\left|\mathbf{n} N_{\alpha}\right|$ by Macaulay's Theorem, and $\left|N_{\beta}\right|=\left|L_{\beta}\right|$ for all β by definition, so we have:

$$
\left|L_{\alpha}^{\prime}\right|=\max \left\{\max _{\beta \uparrow \alpha}\left\{\left|L_{\beta}\right|\right\},\left|\mathbf{n} L_{\alpha}\right|\right\} \leq \max \left\{\max _{\beta \uparrow \alpha}\left\{\left|N_{\beta}\right|\right\},\left|\mathbf{n} N_{\alpha}\right|\right\} \leq\left|N_{\alpha}^{\prime}\right|,
$$

the first equality because the L_{β} and $\mathbf{n} L_{\alpha}$ are lex segments, so their sum is the longest segment. This proves the lemma.

Using Lemma 3.9 we prove Conjecture 1.1 for ideals containing a regular sequence of monomials:

Theorem 3.10. Let $R=\left(f_{1} \cdots, f_{r}\right)$ be a regular sequence of monomials with $\operatorname{deg} f_{i}=e_{i}$ and $e_{1} \leq \cdots \leq e_{r}$. Let N be any homogeneous ideal containing R. Then there is a lex ideal L such that N and $L+\left(x_{1}^{e_{1}}, \cdots, x_{r}^{e_{r}}\right)$ have the same Hilbert function.

Proof. Set $P=\left(x_{1}^{e_{1}}, \cdots, x_{r}^{e_{r}}\right)$. It suffices to show that, for any d-vector space N_{d} containing R_{d}, there is a lex monomial space L_{d} such that $\left|L_{d}+P_{d}\right|=\left|N_{d}\right|$ and $\left|\mathbf{m} L_{d}+P_{d+1}\right| \leq\left|\mathbf{m} N_{d}\right|$.

Reorder the variables so that x_{i} divides f_{i} for all i. By Gröbner basis theory, we may assume (after taking an initial ideal if necessary) that N_{d} is a monomial space. Set $N(0)=N_{d}$. For each $i \leq r$, let S_{i} be the set of variables dividing f_{i}, and let $N(i)$ be the S_{i}-compression of $N(i-1)$. Then $N(i)$ contains $x_{i}^{e_{i}}$ if $d \geq e_{i}$. Furthermore, $|N(r)|=\left|N_{d}\right|$ and $|\mathbf{m} N(r)| \leq\left|\mathbf{m} N_{d}\right|$ by Lemma 3.9. By ClementsLindström's theorem, there is a lex space L_{d} such that $\left|L_{d}+P_{d}\right|=|N(r)|$ and $\left|\mathbf{m} L_{d}+P_{d+1}\right| \leq|\mathbf{m} N(r)|$.

4 Lex-Macaulay monomial regular sequences

Throughout this section, let M be a monomial ideal of B. We recall the following definitions and results from [MP1]:

Definition 4.1. [MP1] M is Lex-Macaulay if every Hilbert function in the quotient B / M is attained by a lex ideal. Equivalently, M is Lex-Macaulay if, for every d and every d-monomial vector space V_{d}, there exists a lex space L_{d} such that $\left|L_{d}+M_{d}\right|=\left|V_{d}+M_{d}\right|$ and $\left|\mathbf{m} L_{d}+M_{d+1}\right| \leq\left|\mathbf{m} V_{d}+M_{d+1}\right|$.

Theorem 4.2. [MP1] If M is Lex-Macaulay as an ideal of B, then it is LexMacaulay as an ideal of $B[y]$.

Proposition 4.3. [MP1] If M is Lex-Macaulay and L is lex, then $L+M$ is Lex-Macaulay.

Now, we will characterize the monomial regular sequences which are LexMacaulay.

Let $R=\left(f_{1}, \cdots, f_{r}\right)$ be a monomial regular sequence (that is, $\operatorname{gcd}\left(f_{i}, f_{j}\right)=1$ for all $i \neq j$), and order these monomials so that $i<j$ if $\operatorname{deg} f_{i}<\operatorname{deg} f_{j}$, or if $\operatorname{deg} f_{i}=\operatorname{deg} f_{j}$ and $f_{i}>_{\text {Lex }} f_{j}$. Set $e_{i}=\operatorname{deg} f_{i}$, and suppose throughout that $e_{i}>1$.

Lemma 4.4. Suppose that R is Lex-Macaulay. Then $x_{i}^{e_{i}-1}$ divides f_{i}.
Proof. By induction we have $x_{j}^{e_{j}-1}$ divides f_{j} for $j<i$, and by Proposition 4.3 $R+\left(x_{1}, \cdots, x_{i-1}\right)$ is Lex-Macaulay, so we may assume without loss of generality that $i=1$. Let g be any monomial in degree $e_{1}-1$ dividing f_{1}. Then, since R is Lex-Macaulay, we have $\left|\left(x_{1}^{e_{1}-1}\right)_{e_{1}}\right| \leq\left|(g)_{e_{1}}\right| \leq n-1$, i.e., $x_{1}^{e_{1}-1}$ divides f_{1}.

Lemma 4.5. Suppose that R is Lex-Macaulay, and write $f_{i}=x_{i}^{e_{i}-1} y_{i}$. Suppose that $y_{i} \neq x_{i}$. Then $i=r$.

Proof. We may assume as in the proof of Lemma 4.4 that $i=1$. Suppose $r \neq 1$ and $y_{1} \neq x_{1}$. Then set $g=x_{1}^{e_{1}-1} x_{2}^{e_{2}-1}$. Then $\left|(g)_{e_{1}+e_{2}-1}\right|=n-2$, while $\left|\left(x_{1}^{e_{1}+e_{2}-2}\right)_{e_{1}+e_{2}-1}\right|=n-1$, contradicting the assumption that R is LexMacaulay.

Thus, all Lex-Macaulay monomial regular sequences may be written in the form $\left(x_{1}^{e_{1}}, \cdots, x_{r-1}^{e_{r}-1}, x_{r}^{e_{r}-1} y\right)$. We will show conversely that all such sequences are Lex-Macaulay.

Lemma 4.6. Suppose $r \neq n$, and let $R=\left(x_{1}^{e_{1}}, \cdots, x_{r-1}^{e_{r-1}}, x_{r}^{e_{r}-1} x_{n}\right)$. Let N_{d} be a d-monomial vector space containing R_{d}. Then there exists a d-monomial vector space K_{d} containing Q_{d}, where $Q=\left(x_{1}^{e_{1}}, \cdots, x_{r-1}^{e_{r-1}}, x_{r}^{e_{r}-1} x_{n-1}\right)$ such that $\left|K_{d}\right|=\left|M_{d}\right|$ and $\left|\mathbf{m} K_{d}\right| \leq\left|\mathbf{m} M_{d}\right|$.

Proof. Set $S=\left\{x_{n}, x_{n-1}\right\}$, and take K_{d} to be the S-compression of M_{d}. Apply Lemma 3.9, and note that Q is the S-compression of R.

Lemma 4.7. Suppose $r \neq n$, and let $R=\left(x_{1}^{e_{1}}, \cdots, x_{r-1}^{e_{r-1}}, x_{r}^{e_{r}-1} x_{n}\right)$ and $Q=$ $\left(x_{1}^{e_{1}}, \cdots, x_{r-1}^{e_{r-1}}, x_{r}^{e_{r}-1} x_{n-1}\right)$. Let L_{d} be a lex segment in B. Then there exists a lex d-monomial space T_{d} such that $\left|T_{d}+R_{d}\right|=\left|L_{d}+Q_{d}\right|$ and $\left|\mathbf{m} T_{d}+R_{d+1}\right|=$ $\left|\mathbf{m} L_{d}+Q_{d+1}\right|$.

Proof. Let T_{d} be the smallest lex segment such that $T_{d}+Q_{d}=L_{d}+Q_{d}$.
We claim that T_{d} satisfies the property: If g is a monomial such that $g x_{r}^{e_{r}-1} x_{n-1} \in T_{d}$, then $g x_{r}^{e_{r}-1} x_{n} \in T_{d}$. We will prove this claim. Observe that $g x_{r}^{e_{r}-1} x_{n-1} \in Q_{d}$, and that $g x_{r}^{e_{r}-1} x_{n}$ is the successor of $g x_{r}^{e_{r}-1} x_{n-1}$ in the graded lex order. By construction, if $g x_{r}^{e_{r}-1} x_{n-1} \in T_{d}$, we must have a monomial $v \in T_{d}$ which comes lexicographically after $g x_{r}^{e_{r}-1} x_{n-1}$ and $v \notin Q_{d}$. Then v is lexicographically after $g x_{r}^{e_{r}-1} x_{n}$ as well, and since T_{d} is a lex segment, we have $g x_{r}^{e_{r}-1} x_{n} \in T_{d}$, proving the claim.

Set $A=T_{d}+\left(x_{1}^{e_{1}}, \cdots, x_{r-1}^{e_{r-1}}\right)_{d}$ and B and C such that $T_{d}+Q_{d}=A \oplus B$ and $T_{d}+R_{d}=A \oplus C$. Then if $\{B\}$ and $\{C\}$ are the sets of monomials of B and C, respectively, we have:

$$
\begin{aligned}
\{B\} & =\left\{g x_{r}^{e_{r}-1} x_{n-1}: g x_{r}^{e_{r}-1} x_{n-1} \notin A\right\} \\
\{C\} & =\left\{g x_{r}^{e_{r}-1} x_{n}: g x_{r}^{e_{r}-1} x_{n} \notin A\right\} \\
& =\left\{g x_{r}^{e_{r}-1} x_{n}: g x_{r}^{e_{r}-1} x_{n-1} \in B\right\}
\end{aligned}
$$

In particular, multiplication by $\frac{x_{n}}{x_{n-1}}$ is a bijection from $\{B\}$ to $\{C\}$. Thus $|\mathbf{m} B|=|\mathbf{m} C|$ and $|\mathbf{m} B \cap \mathbf{m} A|=|\mathbf{m} C \cap \mathbf{m} A|$, so we have $\left|\mathbf{m}\left(T_{d}+R_{d}\right)\right|=$ $\left|\mathbf{m}\left(T_{d}+Q_{d}\right)\right|=\left|\mathbf{m}\left(L_{d}+Q_{d}\right)\right|$, the first equality by inclusion-exclusion, the second by construction.

Now $\left|\mathbf{m} T_{d}+R_{d+1}\right|=\left|\mathbf{m}\left(T_{d}+R_{d}\right)\right|$ unless R has minimal monomial generators in degree $d+1$ which are not in $\mathbf{m} T_{d}$; likewise $\left|\mathbf{m} L_{d}+Q_{d+1}\right|=\left|\mathbf{m}\left(L_{d}+Q_{d}\right)\right|$ unless Q has minimal monomial generators in degree $d+1$ which are not in $\mathbf{m} L_{d}$ and hence not in $\mathbf{m} T_{d}$. Since $x_{r}^{d} x_{n-1} \in \mathbf{m} T_{d}$ if and only if $x_{r}^{d} x_{n} \in \mathbf{m} T_{d}$, we obtain $\left|\mathbf{m} T_{d}+R_{d+1}\right|=\left|\mathbf{m} L_{d}+Q_{d+1}\right|$ as desired.

Theorem 4.8. Let R be a regular sequence of monomials. Then R is LexMacaulay if and only if $R=\left(x_{1}^{e_{1}}, \cdots, x_{r-1}^{e_{r-1}}, x_{r}^{e_{r}-1} y\right)$, with $e_{1} \leq \cdots \leq e_{r}$ and $y=x_{i}$ for some $i \geq r$.

Proof. If R is Lex-Macaulay, apply Lemmas 4.4 and 4.5.
Conversely, suppose R has the form above. By Theorem 4.2, we may assume $y=x_{n}$. If $n=r$, this is Clements-Lindström's Theorem; otherwise, we induct on $n-r$. Set $Q=\left(x_{1}^{e_{1}}, \cdots, x_{r-1}^{e_{r-1}}, x_{r}^{e_{r}-1} x_{n-1}\right)$. Choose a degree d, and let N_{d} be any d-monomial space containing R_{d}. By Lemma 4.6, there is a d-monomial space K_{d} containing Q_{d} with $\left|K_{d}\right|=\left|N_{d}\right|$ and $\left|\mathbf{m} K_{d}\right| \leq\left|\mathbf{m} N_{d}\right| . Q$ is Lex-Macaulay by induction, so there is a monomial space L_{d} containing Q_{d} with $\left|L_{d}\right|=\left|K_{d}\right|$ and $\left|\mathbf{m} L_{d}\right| \leq\left|\mathbf{m} K_{d}\right|$. By Lemma 4.7, there is a monomial space T_{d} containing R_{d} with $\left|T_{d}\right|=\left|L_{d}\right|$ and $\left|\mathbf{m} T_{d}\right|=\left|\mathbf{m} L_{d}\right|$. Thus R is Lex-Macaulay.

References

[CL] G. Clements and B. Lindström, A generalization of a combinatorial theorem of Macaulay, J. Combinatorial Theory 7 (1969), 230-238.
[EGH1] D. Eisenbud, M. Green, and J. Harris, Higher Castelnuovo theory, Astérisque 218 (1993), 187-202.
[EGH2] \qquad , Cayley-Bacharach theorems and conjectures, Bull. Amer. Math. Soc. 33 (1996), 295-324.
[Ma] F. Macaulay, Some properties of enumeration in the theory of modular systems, Proc. London Math. Soc. 26 (1927), 531-555.
[MP1] J. Mermin and I. Peeva, Lexifying ideals (submitted).
[MP2] \qquad , The Clements-Lindström theorem (submitted).

