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Abstract: We prove Evans’ Lex-Plus-Powers Conjecture for ideals containing a
monomial regular sequence.

1. Introduction

Let S = k[x1, · · · , xn] be the polynomial ring in n variables over an arbitrary field.
Fix r ≤ n and a nondecreasing sequence of positive integers, 2 ≤ e1 ≤ e2 ≤ · · · ≤ er,
and let P = (xe1

1 , · · · , xer
r ) be the ideal generated by those powers of the variables.

(If r 6= n, it is sometimes convenient to set er+1 = · · · = en = ∞ and x∞
i = 0.)

The Hilbert function of a homogeneous ideal of S is a well-studied and important
invariant with applications in many areas, including Algebraic Geometry, Commu-
tative Algebra, and Combinatorics. One of the basic tools in the study of Hilbert
functions was provided by Macaulay [Ma] in 1927: every Hilbert function of a ho-
mogeneous ideal of S is attained by a lexicographic ideal. Macaulay’s insight was
that the lex ideals, which are defined combinatorially, are a useful tool in studying
the combinatorial invariants of the polynomial ring. Later, Macaulay’s theorem was
extended to many other rings, including the quotient ring S/P (due to Clements
and Lindström [CL]).

Motivated by Macaulay’s theorem and applications in Algebraic Geometry, Eisen-
bud, Green, and Harris made the following conjecture about Hilbert functions
[EGH1,EGH2]:

Conjecture 1.1 (Eisenbud, Green, Harris). Let F = (f1, · · · , fr) be a homogeneous
regular sequence, such that deg fi = ei for all i, and let I be any homogeneous ideal
containing F . Then there is a lex ideal L such that L + P and I have the same
Hilbert function.

The conjecture is well-studied but remains wide open. The largest class of ideals
where it is known is due to recent work of Caviglia and Maclagan [CM], who prove
the conjecture whenever the degrees of the regular sequence increase quickly enough
(i.e., if ek >

∑k−1
ℓ=1 eℓ for all k).

In recent decades, graded Betti numbers have become an important topic in Com-
mutative Algebra. One influential result is due to Bigatti [Bi], Hulett [Hu], and Par-
due [Pa] in the 1990s. They showed that the lex ideals of S have maximal graded
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Betti numbers among all ideals with a fixed Hilbert function, providing a sharp up-
per bound on the graded Betti numbers of a homogeneous ideal with a given Hilbert
function. Because of the importance of Bigatti, Hulett, and Pardue’s results, sim-
ilar statements are known or conjectured in many settings where Macaulay-type
theorems hold, including the exterior algebra and the ring S/P (see for example
Aramova-Herzog-Hibi [AHH1,AHH2] and Gasharov-Hibi-Peeva [GHP]).

Inspired by Bigatti, Hulett, and Pardue’s results, Evans [FR] extended the Eisenbud-
Green-Harris conjecture to include a statement about Betti numbers:

Conjecture 1.2 (Evans, The Lex-Plus-Powers Conjecture). Let F , I, and L be as
in Conjecture 1.1. Then for all i and j the graded Betti numbers of I and L + P
satisfy bi,j(L + P ) ≥ bi,j(I).

Both conjectures are open. In particular, the Lex-Plus-Powers Conjecture has
been open even if F consists of pure powers of the variables (i.e., F = P ). The main
result of this paper is that the Lex-Plus-Powers Conjecture holds if F consists of
monomials, a case in which the Eisenbud-Green-Harris Conjecture is a straightfor-
ward consequence of Clements and Lindström’s Theorem.

For a subset τ of the variables, put xτ =
∏

xi∈τ xei

i . In [MPS], Mermin, Peeva, and
Stillman use mapping cones to give a formula for the Betti numbers of a monomial-
plus-P ideal in terms of its colon ideals: If M is a monomial ideal not containing
any xei

i , then we have

(1.3) bi,j(M + P ) =
∑

τ

bi−|τ |,j−degxτ
(M : xτ ).

Using this formula and the Eliahou-Kervaire resolution [EK], Murai shows in [Mu]
that the Lex-Plus-Powers Conjecture holds for Borel-plus-P ideals:

Theorem 1.4 ([Mu]). Suppose that B is Borel, and let L be a lex ideal such that
L+P has the same Hilbert function as B+P . Then for all i, j we have bi,j(L+P ) ≥
bi,j(B + P ).

Thus, the Lex-Plus-Powers conjecture would be proved by reduction to the Borel
case:

Question 1.5. Let I and F be as in Conjecture 1.1. Does there exist a Borel ideal
B such that B +P has the same Hilbert function as, and larger Betti numbers than,
I?

In Theorems 3.1 and 8.1, we give a positive answer to Question 1.5 in the case
that F consists of monomials.

In section 2, we introduce notation which will be used throughout the paper.
In section 3, using a walk on the Hilbert scheme, we prove the Lex-Plus-Powers
Conjecture for ideals containing powers of the variables in characteristic zero. This
approach yields a short proof, but does not work in positive characteristic.

In sections 4 through 8, we give a characteristic-free proof of the same result.
While the proof is long, we introduce some new techniques to study Hilbert functions
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and Betti numbers of monomial ideals, including Theorem 4.5, a formula for the
multigraded Betti numbers of any monomial ideal. Our main tool is a generalization
of the combinatorial “shifting” operation of Erdös, Ko, and Rado [EKR].

Shifting is an operation which associates to every simplicial complex another
complex with the same face vector and certain special properties, called “shifted”.
(See [AHH2, MH].) We generalize combinatorial shifting to monomial ideals, and
show that Betti numbers are nondecreasing under this operation. We use shifting
and compression (defined in [Me2]) to compare the Betti numbers of an ideal I
containing P with those of a Borel-plus-P ideal.

We also consider some related problems. In section 9, we show that the Betti num-
bers of I are obtained from those of the lex-plus-powers ideal L + P by consecutive
cancellations. In section 10, we briefly discuss some open problems.

Acknowledgements. The authors thank Chris Francisco, Takayuki Hibi, Craig
Huneke, Irena Peeva, and the algebra group at Kansas for encouragement and helpful
discussions.

2. Background and Notation

We recall some notation and results that will be used throughout the paper.

Metadefinition 2.1. For a property (∗) of ideals, and an ideal I containing P , we

say that I is (∗)-plus-P if there exists an ideal Î satisfying (∗) such that I = Î + P .
In this paper, we will consider homogeneous-plus-P , lex-plus-P , compressed-plus-P ,
Borel-plus-P , and shifted-plus-P ideals.

Notation 2.2. The ring S is graded by setting deg xi = 1 for all i. All the S-
modules we consider will inherit a natural grading from S; if M is a graded module
we write Md for the k-vector subspace spanned by the homogeneous forms of degree
d in M . We denote shifts in the grading in the usual way; that is, M(−d) is the
module isomorphic to M but with all degrees increased by d, so that, as vector
spaces, M(−d)e = Me−d.

Definition 2.3. We will use both the graded lexicographic and reverse lexicographic
monomial orderings. Let u and v be monomials of the same degree, and write
u = xe1

1 xe2

2 · · ·xen
n and v = xf1

1 xf2

2 · · ·xfn
n . We say that u is greater than v with respect

to the lexicographic order, or u >lex v, if there exists an i such that ei > fi and
ej = fj for all j < i. We say that u is greater than v with respect to the reverse
lexicographic order, or u >rev v, if there exists an i such that ei < fi and ej = fj for
all j > i.

Definition 2.4. We say that a monomial ideal L ⊂ S is lex or lexicographic if, for all
degrees d, the vector space Ld is generated by an initial segment in the lexicographic
order. That is, if u and v are monomials of the same degree such that u <lex v and
u ∈ L, then we must have v ∈ L as well.

Definition 2.5. We can use these orderings to compare monomial ideals as well. Let
I = {u1, · · · , us} and J = {v1, · · · , vs} be sets of degree d monomials, each ordered
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reverse lexicographically (so ui >rev uj and vi >rev vj whenever i < j). Then we
say that I is reverse lexicographically greater than J , I >rev J , if there exists an i
such that ui >rev vi and uj = vj for all j < i. For monomial ideals I 6= J having the
same Hilbert function, and for a degree d, let {Id} and {Jd} be the sets of degree
d monomials in I and J , respectively. We say that I is reverse lexicographically
greater than J if, for all d, Id = Jd or {Id} is reverse lexicographically greater than
{Jd}.
Lemma 2.6. Let I = {u1, . . . , ut} and J = {v1, . . . , vt} be sets of monomials, all
with the same degree. If uk ≥rev vk for all k, then I is reverse lexicographically
greater than or equal to J .

Proof. We use induction on t. If t = 1, the statement is immediate. Otherwise, let
up and vq be the smallest elements of I and J , respectively, with respect to the
reverse lex order. Then, by assumption, we have uq ≥rev up ≥rev vp ≥rev vq, so we
can apply the inductive hypothesis to get that I r {up} is reverse lexicographically
greater than or equal to J r {vq}. Since up and vq are the smallest elements of I
and J , it follows that I is reverse lexicographically greater than or equal to J as
desired. �

Term orders allow us to associate to any ideal of S a monomial ideal, called its
initial ideal. In this paper we consider only reverse lexicographic initial ideals, but
the definition below works with any term order.

Definition 2.7. For a (homogeneous) polynomial g, write g =
∑

amm with am ∈ k
and m ranging over the monomials. The initial monomial of g, inrev(g), is the
maximal m in the reverse lexicographic order such that am is nonzero. For an
(homogeneous) ideal I, the initial ideal of I is the monomial ideal generated by the
initial monomials of every form in I, inrev(I) = (inrev(g) : g ∈ I). It is well-known
that inrev(I) has the same Hilbert function as I and larger graded Betti numbers.

Definition 2.8. For a graded module M , the Hilbert function of M assigns to each
degree d the dimension of the vector space Md. We write Hilb(M)(d) = dimk Md.

Definition 2.9. A free resolution of the graded module M is an exact sequence

F : · · · → F1 → F0 → M → 0

such that each Fi is a free S-module. We say that F is the minimal free resolution of
M if each Fi has minimum possible rank. Equivalently, F is minimal if, for all i, the
nonzero entries of the matrix associated to the map di : Fi → Fi−1 are contained in
the homogeneous maximal ideal, (x1, · · · , xn). Up to an isomorphism of complices,
every finitely generated module has a unique minimal free resolution.

Definition 2.10. If F is the minimal free resolution of M , the Betti numbers of
M are given by bi(M) = rkFi. If we decompose the Fi as graded free modules,

Fi =
⊕

j∈Z

S(−j)bi,j , then the bi,j are the graded Betti numbers of M .
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Definition 2.11. A monomial ideal I is Borel or 0-Borel-fixed if it satisfies the
property:

If fxj ∈ I and i < j, then fxi ∈ I.

Borel ideals are important because they occur (in characteristic zero) as generic
initial ideals [BS,Ga]. They are combinatorially useful because they are minimally
resolved by the Eliahou-Kervaire resolution [EK], which gives explicit formulas for
their Betti numbers. Borel ideals can also be attained via a characteristic-free tech-
nique called compression.

Definition 2.12. Fix a subset A ⊂ {x1, · · · , xn}. Any monomial ideal I decomposes
(as a k-vector space) into a direct sum over monomials f ∈ k[{x1, · · · , xn} r A],

I =
⊕

f

fVf . Each Vf is an ideal of k[A]. If the Vf are all lex ideals in k[A], we say

that I is A-compressed.
Set Wf equal to the lex ideal of k[A] having the same Hilbert function as Vf . We

say that J =
⊕

fWf is the A-compression of I.

Compression and compressed ideals have been used by Macaulay and others [CL,
Ma,Me1,Me2,MP1,MP2,MPS,MH] to study Hilbert functions and Betti numbers.
In [Me2], Mermin proves the following:

Theorem 2.13 ([Me2]). Let N be a monomial ideal, and let T be the A-compression
of N . Then:

(i) T is an ideal.
(ii) N and T have the same Hilbert function.
(iii) bi,j(T ) ≥ bi,j(N) for all i and j.
(iv) N is Borel if and only if N is {xi, xj}-compressed for all i and j.

Definition 2.14 (Polarization). For ease of notation, we define a simplified version
of polarization. For a fuller version of the theory, see e.g. [Ei2, Exercise 3.24]. Fix

a variable b = xk. For a monomial u =
∏

xfi

i , the bth polarization of u is

polb(u) =

(
∏

xi 6=b

xfi

i

)
(bc1 · · · cfk−1),

where the ci are new variables (and polb(u) = u if b does not divide u).
Let s be sufficiently large (e.g., the largest power of b occuring in any generator of

any ideal under consideration), and set Spo = k[x1, · · · , xn, c1, · · · , cs−1]. (We order
the variables so that xn >rev ck for all k.) For a monomial ideal I, set gens(I) equal
to the (unique) set of minimal monomial generators of I. Then for u ∈ gens(I), we
have polb(u) ∈ Spo. The polarization of I is the ideal Ipo of Spo generated by these
monomials,

Ipo = (polb(u) : u ∈ gens(I)) .

A monomial ideal I ∈ S is naturally associated to two ideals of Spo, namely Ipo and
ISpo. We have the following:



6 JEFF MERMIN AND SATOSHI MURAI

Proposition 2.15.

(i) For all i and j, bi,j(I) = bi,j(I
po) = bi,j(ISpo). (Here, bi,j(I

po) and bi,j(ISpo)
are taken over Spo.)

(ii) Let I and J be monomial ideals of S. Then Ipo and ISpo have the same
Hilbert function, and ISpo and JSpo have the same Hilbert function if and
only if I and J have the same Hilbert function.

(iii) Let u ∈ I be a monomial of S such that polb(u) ∈ Spo. Then polb(u) ∈ Ipo.

Proof. (i) is [BH, Lemma 4.2.16], and (ii) is immediate from (i) and the formula

Hilb(I)(d) =
∑

i,j

(
(−1)ibi,j(I) Hilb(S)(d − j)

)
.

For (iii), observe that polb(v) divides polb(u) whenever v divides u. �

3. The proof in characteristic zero

In this section we prove the following:

Theorem 3.1. Let k have characteristic zero, and let F = (f1, · · · , fr) be a regular
sequence of monomials, in degrees e1 ≤ · · · ≤ er. Set P = (xe1

1 , · · · , xer
r ). If I is any

ideal containing F , then there exists a lex-plus-P ideal L such that I and L have the
same Hilbert function and bi,j(L) ≥ bi,j(I) for all i and j.

Throughout the section, F = (f1, · · · , fr) will be a regular sequence of mono-
mials in degrees e1, · · · , er, and P will be the pure powers in these degrees, P =
(xe1

1 , · · · , xer
r ). First, we reduce to the case that I is monomial-plus-P .

Lemma 3.2. Let I be a homogeneous ideal containing F . Then there exists a
monomial ideal J containing P such that I and J have the same Hilbert function
and bi,j(J) ≥ bi,j(I) for all i and j.

Proof. For any monomial u of S, we set supp(u) = {xk : xk divides u}. Since
f1, · · · , fr is a regular sequence, we have supp(fi)∩ supp(fj) = ∅ for all i 6= j. After
reordering the variables if necessary, we may assume xi ∈ supp(fi).

Write supp(f1) = {xi1 , . . . , xit}. We may assume i1 = 1. Consider the automor-
phism φ of S given by φ(xk) = xk for xk = x1 or xk 6∈ supp(f1) and φ(xk) = x1+xk for
xk ∈ supp(f1)r{x1}. We have φ(fk) = fk for k 6= 1, and we can write φ(f1) = xe1

1 +g
for some polynomial g. Set I ′ = inrev(φ(I)). Then I ′ contains (xe1

1 , f2, · · · , fr), has
the same Hilbert function as I, and bi,j(I

′) ≥ bi,j(I). Repeating this procedure for
each fk yields an ideal J with the desired properties. �

We remark that the proof of Lemma 3.2 is characteristic-free. However, for the
rest of the section, we will assume that k has characteristic zero and that I is a
monomial-plus-P ideal. Since the resolution of a monomial ideal depends only on
the characteristic of the ground field, we may, without loss of generality, replace k
with any field of characteristic zero. Thus, we will assume that k = C.

The idea of our proof is similar to that of Pardue [Pa]. For a monomial-plus-P
ideal I which is not Borel-plus-P , we construct another ideal J satisfying:
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• J contains P .
• Hilb(J) = Hilb(I).
• bi,j(J) ≥ bi,j(I) for all i, j.
• J is reverse lexicographically greater than I.

After applying this construction repeatedly, we will obtain a Borel-plus-P ideal and
apply Theorem 1.4.

Definition 3.3. Any homogeneous polynomial f ∈ Sd may be written f =
∑

αvv,
where v ranges over the degree d monomials and αv ∈ C. The monomial support of
f is the set of monomials with nonzero coefficients, Supp(f) = {v : αv 6= 0}.

Lemma 3.4. Let d ≥ 0 be an integer and let u1 >rev · · · >rev ut be monomials of
degree d. Suppose that f1, . . . , ft are C-linearly independent polynomials of degree
d such that uk ∈ Supp(fk) for all k and uk 6∈ Supp(fℓ) whenever ℓ � k. Then{

inrev(f) : f ∈ spanC{f1, . . . , ft}
}

is reverse lexicographically greater than or equal
to {u1, . . . , ut}.

Proof. We induct on t. If t = 1 then the statement is obvious. Otherwise, let F =
{inrev(f) : f ∈ spanC{f1, . . . , ft−1}}. By induction, we have F ≥rev {u1, . . . , ut−1}.
Let

v ∈ {inrev(f) : f ∈ spanC{f1, . . . , ft}} r F.

By Lemma 2.6, it is enough to show that v ≥rev ut. By the definition of v, there
exist α1, . . . , αt ∈ C such that v = inrev(α1f1 + · · · + αtft). Since v 6∈ F we have
αt 6= 0, so ut ∈ Supp(α1f1 + · · · + αtft). Thus, v = inrev(α1f1 + · · · + αtft) ≥rev ut

as desired. �

For the remainder of the section, fix two variables a >rev b.

Proposition 3.5. Suppose that P contains no power of b, and that I is not {a, b}-
compressed-plus-P . Consider the automorphism φ of S given by φ(xk) = xk for
xk 6= b and φ(b) = a − b. Set J = inrev(φ(I)). Then:

(i) J contains P .
(ii) J has the same Hilbert function as I.
(iii) bi,j(J) ≥ bi,j(I) for all i and j.
(iv) J 6= I.
(v) J is reverse lexicographically greater than I.

Proof. (i), (ii), (iii), and (iv) are immediate; we prove (v). For any degree d, let
{Id} be the set of degree d monomials in I. Write {Id} = {u1, · · · , ut}, ordered
reverse lexicographically. Then {φ(u1), · · · , φ(ut)} is a C-basis for φ(I)d. Clearly,
uk ∈ Supp(φ(uk)) for all k and uk 6∈ Supp(φ(uℓ)) for all ℓ � k. Applying Lemma 3.4,
{Jd} is reverse lexicographically greater than or equal to {Id}. Since d was arbitrary,
it follows that J is reverse lexicographically greater than I, proving (v). �

Next, we consider the case that P contains some power of b.



8 JEFF MERMIN AND SATOSHI MURAI

Definition 3.6. Let eb be the smallest power of b appearing in P (i.e., beb is a
generator of P ), and let ζ be a primitive e th

b root of unity (e.g., ζ = cos 2π
eb

+√
−1 sin 2π

eb
). Let φ̃ be the autormorphism of Spo given by φ̃(xk) = xk for xk 6= b,

φ̃(b) = a − b, and φ̃(ck) = a − ζkb + ck for all ck. Put J̃ = inrev(φ̃(Ipo)).

We recall an arithmetic fact about roots of unity:

Lemma 3.7. Let f = (a − b)(a − ζb) · · · (a − ζkb). Then:

(i) If k = eb − 1, then f = ak − bk.
(ii) If k � eb − 1, then abk−1 ∈ Supp(f).

Lemma 3.8. Suppose that P contains some power of b, and that I is not {a, b}-
compressed-plus-P . Then:

(i) J̃ contains PSpo.

(ii) J̃ has the same Hilbert function as ISpo.

(iii) bi,j(J̃) ≥ bi,j(ISpo) for all i and j.

(iv) J̃ 6= ISpo.

(v) J̃ ∩ S is reverse lexicographically greater than I.

(vi) J̃ = (J̃ ∩ S)Spo.

Proof. To prove (i), it suffices to show that beb ∈ J̃ . We have

φ̃ (polb(b
eb)) = (a − b)

eb−1∏

k=1

(
(a − ζkb) + ck

)

=

eb∏

k=1

(
a − ζkb

)
+ g

= aeb − beb + g,

where every term of the polynomial g is divisible by some ck. In particular, since

aeb ∈ Ipo, we have φ̃(aeb − polb(b
eb)) = beb + g ∈ φ̃(Ipo), so beb ∈ J̃ .

(ii) and (iii) are immediate from Proposition 2.15. We will prove (iv), (v), and
(vi) simultaneously.

Let A = {a, b, c1, · · · , cs−1} be the set consisting of a, b, and all of the c-variables,
put R = C[A], and consider the decomposition I =

⊕
fIf , where f ranges over

the monomials of S which are not divisible by a or b. Since φ̃ restricts to an

automorphism of R, we get J̃ =
⊕

fJ̃f =
⊕

f
(
inrev(φ̃((If )

po))
)
. It suffices to

show that {(J̃f ∩ C[a, b])d} ≥rev {(If)d} for all d (where {(If)d} is the set of degree

d monomials in If , etc.), that J̃f 6= IfR whenever If is not lex-plus-(beb) in C[a, b],

and that J̃f = (J̃f ∩ C[a, b])R.
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Write {(If)d} = {ap1bq1 , · · · , aptbqt} in reverse lex order (so q1 < · · · < qt.) We
have

φ̃(polb(a
pkbqk)) = apk

((
qk−1∏

ℓ=0

(a − ζℓb)

)
+ gk

)
,

where every term of gk is divisible by some ct. We have apkbqk ∈ Supp(φ̃(polb(a
pkbqk)))

for all k, and apkbqk 6∈ Supp(φ̃(polb(a
pℓbqℓ))) for all ℓ � k. Set

Fd = {inrev(φ̃(polb(a
pkbqk))) : apkbqk ∈ {(If)d}}.

Then, by Lemma 3.4, it follows that Fd ≥rev {(If)d}. In particular, Fd ⊂ C[a, b].
Let Jf be the ideal of C[a, b] generated by all the Fd, d ≥ 0. Immediately we have

Hilb(Jf)(d) ≥ Hilb(If)(d) for all d, so it follows that Hilb(JfR)(d) ≥ Hilb(IfR)(d) =

Hilb(J̃f)(d) for all d. But JfR ⊂ J̃f , so it must be the case that JfR = J̃f and Jf =⊕
spanC(Fd). This proves J̃f ∩C[a, b] = Jf , so (vi) holds. Also, since Fd ≥rev {If}d,

it follows that J̃f ∩ C[a, b] =
⊕

spanC(Fd) is reverse lexicographically greater than
or equal to If .

For (iv) and (v), it remains to show that, if If is not lex-plus-(beb), then J̃f 6=
IfR. In this case, there exists a degree d and an index k such that qk � eb, and
v = apkbqk ∈ (If)d but u = apk+1bqk−1 6∈ (If)d. It follows from Lemma 3.7 that

u ∈ Supp(φ̃(polb(v))), but u 6∈ Supp(φ̃(polb(a
pℓbqℓ))) for any ℓ � k. Thus, by

Lemma 3.4, Fd is (strictly) reverse lexicographically greater than {(If)d}, and in

particular Jf 6= If and J̃f 6= IfR. �

Corollary 3.9. Suppose that P contains some power of b, and that I is not {a, b}-
compressed-plus-P . Set J = J̃ ∩ S. Then:

(i) J contains P .
(ii) J has the same Hilbert function as I.
(iii) bi,j(J) ≥ bi,j(I) for all i and j.
(iv) J 6= I.
(v) J is reverse lexicographically greater than I.

Proposition 3.10. Let I be a monomial ideal containing P . Then there exists a
Borel-plus-P ideal B such that B has the same Hilbert function as I, and bi,j(B) ≥
bi,j(I) for all i, j.

Proof. If I is not already Borel-plus-P , there exist pairs of variables a, b such that I
is not {a, b}-compressed-plus-P . Choose any such pair. Define J as in Corollary 3.9
if P contains some power of b, and as in Proposition 3.5 otherwise. By Corollary 3.9
or Proposition 3.5, J has the same Hilbert function as I and larger Betti numbers.
Replace I with J and repeat this procedure. The process must terminate since there
are finitely many monomial ideals with the same Hilbert function, and at each step
we are replacing the ideal with a reverse lexicographically greater one. Let B be the
resulting ideal. �

Theorem 1.4 completes the proof of Theorem 3.1.
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Proof of Theorem 3.1. By Lemma 3.2, we may assume without loss of generality
that F = P , that I is a monomial ideal, and that k = C. By Proposition 3.10, we
may assume that I is Borel-plus-P . Thus, the desired inequality holds by Theorem
1.4. �

4. Further notation

For the duration of the paper, k will be an arbitrary field. Frequently it will be
necessary to slice modules more finely than is possible with the standard grading.
To this end, we use the multigraded structure of S:

Notation 4.1. We write multidegrees multiplicatively. That is, we set mdeg xi = xi

for all i, so that the multidegrees are indexed by the monomials of S. We have
S =

⊕
Sm, where m ranges over all the monomials, and Sm is the one-dimensional k-

vector space spanned by {m}. The modules we consider will all inherit a multigraded
structure from S, and shifts in the grading will be written multiplicatively, so, for
monomials u and v, we will have M(u−1)v = Mu−1v as vector spaces.

Remark. Whenever we have a map φ : M → N of graded (respectively, multigraded)
modules, φ will be homogeneous of degree 0 (resp., multihomogeneous of degree 1);
that is, φ will satisfy φ(Md) ⊂ Nd for all d (resp., φ(Mm) ⊂ Nm for all m). Verifi-
cation of this property for each of the maps defined in the paper is straightforward,
and so will be omitted.

Definition 4.2. If F is the minimal free resolution of M , and we decompose the
free modules Fi as multigraded modules, Fi =

⊕
S(m−1)bi,m , we say that the bi,m

are the multigraded Betti numbers of M .

Tensoring the resolution F by k, we get bi(M) = dimk Tori(k, M), bi,j(M) =
dimk Tori(k, M)j , and bi,m(M) = dimk Tori(k, M)m.

Construction 4.3. Since Tor is balanced, we can compute Betti numbers via a
resolution of k, thus avoiding the more difficult problem of computing a resolution
of M . The minimal resolution of k is given by the Koszul complex

K : Kn → Kn−1 → · · · → K1 → S → k → 0.

Each Ki is the ith exterior power of K1; it has a free basis given by the symbols eµ,
where µ ranges over the squarefree monomials of degree i. The symbol eµ has degree
i and multidegree µ. If µ = xj1 · · ·xji

with j1 < · · · < ji, we write eµ = exj1
∧· · ·∧exji

.

The differential is given on this basis by D(exj1
∧ · · · ∧ exji

) =
∑i

c=1(−1)c+1xjc
e µ

xjc

.

Thus, the Betti numbers of M can be computed from the homology of the complex

· · · → M ⊗ Ki+1 → M ⊗ Ki → · · · .

If M = I is a monomial ideal of S, the module M ⊗ Ki is the subcomplex of K
generated (as a k-vector space) by terms of the form feµ, where f ∈ I is a monomial
and µ is a squarefree monomial of degree i. The term feµ has degree deg(fµ) and
multidegree fµ. Its differential is D(feµ) = fD(eµ).



THE LEX-PLUS-POWERS CONJECTURE HOLDS FOR PURE POWERS 11

If M = S/I is the quotient by a monomial ideal, then Tori(S/I, k) = Tori−1(I, k)
from the resolutions of I and S/I. We will, without comment, use the homology of
K ⊗ I rather than that of K ⊗ S/I in our computations.

This approach yields a formula for the multigraded Betti numbers of any monomial
ideal.

Definition 4.4. Let I be a monomial ideal, and let m =
∏

xeℓ

ℓ be a monomial. Put

supp(m) = {xℓ : eℓ 6= 0} and
√

m =
∏

eℓ 6=0

xℓ. The shadow of m in I is the squarefree

monomial ideal of k[supp(m)] given by

Shadowm(I) = sqfree

(
(I :

m√
m

) ∩ k[supp(m)]

)
.

(For a monomial ideal J , sqfree(J) is the ideal generated by the squarefree monomials
in J .)

Theorem 4.5. Let I be a monomial ideal, and fix a multidegree m. Then, for all
integers i, the following numbers are equal:

(i) bi,m(I).
(ii) bi,m(I ∩ ( m√

m
)).

(iii) bi,
√

m(I : m√
m

).

(iv) bi,
√

m(Shadowm(I)).

Note that (i), (ii), and (iii) are Betti numbers of ideals of S, while (iv) is a Betti
number of an ideal of k[supp(m)]. This ideal can, however, be treated as an ideal
of S without altering its Betti numbers. Note also that (iv) is a Betti number of a
squarefree ideal, and can be computed with Hochster’s formula [Ho].

Proof. For a monomial m, the multigraded Betti number bi,m(I) is the ith homology
of the complex of vector spaces (K ⊗ I)m, which has a k-basis given by

{feµ : f ∈ I, fµ = m, f and µ are monomials, µ is squarefree} .

Since any f appearing in this basis is contained in I∩( m√
m

), it follows that (K⊗I)m =

(K ⊗ (I ∩ ( m√
m

)))m, so (i) is equal to (ii).

On the other hand, if m is squarefree, then any f appearing in this basis is a
squarefree monomial of k[supp(m)]. Thus, the complices (K ⊗ (I : m√

m
))√m and

(K ⊗ Shadowm(I))√m are the same. Hence (iii)=(iv).

The isomorphism m√
m

· (I : m√
m

) = I ∩ ( m√
m

) gives us (ii)=(iii), completing the

proof. �

Finally, we recall “combinatorial shifting” of squarefree ideals.

Definition 4.6. Let I be a squarefree ideal (i.e., I is generated by squarefree mono-
mials). We say that I is squarefree Borel or shifted if it satisfies the following
property:
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Let f be a monomial such that fxi and fxj are squarefree, and suppose
i < j. Then fxj ∈ I ⇒ fxi ∈ I.

Shifted ideals arise as the Stanley-Reisner ideals of shifted simplicial complices, and
are well-studied in combinatorics.

Definition 4.7. Fix two variables a >lex b. The combinatorial shift of a squarefree
ideal I is the ideal Shifta,b(I) generated by:

Shifta,b(I) =




f : f ∈ I
fa : fa ∈ I or fb ∈ I
fb : fa ∈ I and fb ∈ I
fab : fab ∈ I


 ,

where f runs over all the squarefree monomials not divisible by a or b.

Combinatorial shifting was introduced by Erdös, Ko, and Rado [EKR] for sim-
plicial complexes. Their definition is equivalent to the one given above under the
Stanley-Reisner correspondence. The ideal Shifta,b(I) may readily be shown to be
a squarefree ideal having the same Hilbert function as I, and any squarefree ideal
can be transformed into a shifted ideal by a sequence of combinatorial shifts. A
generalization of this construction to (not necessarily squarefree) monomial ideals is
a major element in our proof of Theorem 8.1. In [MH], Murai and Hibi show that
Betti numbers increase under combinatorial shifting:

Theorem 4.8 ([MH]). Let I be a squarefree ideal, and put J = Shifta,b(I). Then
bi,j(S/J) ≥ bi,j(S/I) for all i and j.

The proof given in [MH] (which is the inspiration for section 5 of this paper) is
involved. For the convenience of the reader, and in the spirit of our proof of Theorem
3.1, we give a shorter proof here:

Proof. Let φ be the automorphism of S given by φ(b) = a − b and φ(xk) = xk for
xk 6= b. Put I ′ = inrev(φ(I)). A straightforward computation shows

I ′ ⊇




f : f ∈ Shifta,b(I)
fa : fa ∈ Shifta,b(I)
fb : fb ∈ Shifta,b(I)
fa2 : fab ∈ Shifta,b(I)


 ,

for all squarefree monomials f not divisible by a or b.

Define the automorphism φ̃ of Spo by φ̃(ck) = b − ck for all ck and φ̃(xℓ) = xℓ for

all xℓ, and set J̃ = inrev(φ̃((I ′)po)).

A straightforward computation gives us J̃ ⊇ JSpo. Since Hilb(I) = Hilb(I ′) =

Hilb(J), it follows from Proposition 2.15(ii) that JSpo and φ̃((I ′)po) have the same

Hilbert function; hence JSpo and J̃ have the same Hilbert function. Thus J̃ = JSpo.
Hence, by Proposition 2.15(i), we have

bi,j(S/J) = bi,j(S
po/Jpo) ≥ bi,j(S

po/(I ′)Spo) = bi,j(S/I ′) ≥ bi,j(S/I). �
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5. Shifted ideals

Throughout the rest of the paper, we fix two variables a and b, with a before b in
the lex order. Furthermore ℓ (“large”) and s (“small”) will always be integers with
ℓ 	 s ≥ 0, and f will be a monomial not divisible by either a or b.

We begin by generalizing “shifting” to arbitrary monomial ideals.

Definition 5.1. Let I be a monomial ideal. We say that I is (a, b)-shifted if,
whenever fasbℓ ∈ I, we have faℓbs ∈ I as well. For an integer t, we say that I is
(a, b, t)-shifted if, whenever fasbℓ+t ∈ I, we have faℓbs+t ∈ I as well. Finally, we say
that I is (a, b)-strongly shifted if I is (a, b, t)-shifted for all nonnegative t.

Remark. Suppose that I is a squarefree ideal. Then I is (a, b)-shifted if and only if
I is {a, b}-squarefree compressed (as defined in [Me2,MPS]), and shifted if and only
if it is (a, b)-shifted for all a and b.

Definition 5.2. Let I be a monomial ideal. We define the (a, b)-shift of I as the
k-vector space

J = Shifta,b(I) =

〈
fasbs : fasbs ∈ I
faℓbs : faℓbs ∈ I or fasbℓ ∈ I
fasbℓ : faℓbs ∈ I and fasbℓ ∈ I

〉

this basis taken over all f and all pairs (s, ℓ) with s � ℓ.
For nonnegative integers t, we would like to define the tth (a, b)-shift of I as

Shifta,b,t(I) = a−t Shifta,b(a
tI), but it is not obvious a priori that this even makes

sense. Instead, we define the tth (a, b)-shift of I as the k-vector space

J = Shifta,b,t(I) =

〈 fasbr : fasbr ∈ I, r � t
fasbs+t : fasbs+t ∈ I
faℓbs+t : faℓbs+t ∈ I or fasbℓ+t ∈ I
fasbℓ+t : faℓbs+t ∈ I and fasbℓ+t ∈ I

〉
,

this basis taken over all f , all r � t, and all pairs s � ℓ. In Proposition 5.4, we will
show that this is equivalent to the desired definition.

The shifting operation modifies the ideal I by replacing, wherever possible, mono-
mials of the form fasbℓ with the (lexicographically bigger) faℓbs. Where this is
impossible (because faℓbs is already present), it instead does nothing. Note that
Shifta,b(I) = Shifta,b,0(I).

Proposition 5.3. Let J = Shifta,b,t(I). Then:

(i) J is an ideal.
(ii) J is (a, b, t)-shifted.
(iii) J has the same Hilbert function as I.
(iv) J is reverse lexicographically greater than or equal to I.

Proof. (ii), (iii), and (iv) are immediate; we prove (i).
It suffices to show that, for any monomial m ∈ J , we have ma ∈ J , mb ∈ J , and

mxi ∈ J for any xi 6= a, b. We consider four cases, depending on the form of m.
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Suppose first that m = fasbr with r � t. Then m ∈ I, so we have ma ∈ I ⇒
ma ∈ J and mxi ∈ I ⇒ mxi ∈ J . Also, mb = fasbr+1 ∈ I. If r + 1 � t this implies
mb ∈ J immediately; if r + 1 = t we have mb = fasbt+0, and s ≥ 0 gives us mb ∈ J .

Now suppose that m = fasbs+t. Then mxi ∈ I ⇒ mxi ∈ J . Furthermore,
fas+1bs+t ∈ I and fasbs+1+t ∈ I, so these must both be in J as well.

Thirdly, suppose that m = faℓbs+t. Then we have faℓbs+t or fasbℓ+t in I. It
follows that mxi ∈ J because fxia

ℓbs+t ∈ I or fxia
sbℓ+t ∈ I, that ma ∈ J be-

cause faℓ+1bs+t ∈ I or fasbℓ+1+t ∈ I, and that mb ∈ J because faℓbs+1+t ∈ I or
fas+1bℓ+t ∈ I.

Finally, suppose that m = fasbℓ+t. Then we have faℓbs+t and fasbℓ+t in I. It
follows that mxi ∈ J because fxia

ℓbs+t ∈ I and fxia
sbℓ+t ∈ I, that ma ∈ J because

faℓ+1bs+t ∈ I and fasbℓ+1+t ∈ I, and that mb ∈ J because faℓbs+1+t ∈ I and
fas+1bℓ+t ∈ I. �

Remark. For simplicity, let t = 0 (or make the appropriate changes for arbitrary
t). We could attempt to define a “pseudograding” on S by setting pdeg m = m
for a monomial not of the form fasbℓ, and pdeg fasbℓ = faℓbs. (This is not an
actual grading because SmSn 6⊆ Smn.) In this pseudograding, Sm has dimension 1
or 2 for every pseudodegree m, and the lex ideals are precisely the shifted ideals.
Proposition 5.3 states that every pseudo-Hilbert function is attained by a pseudo-lex
ideal, i.e., Macaulay’s theorem [Ma] holds in this setting. The next natural question
is whether the theorem of Bigatti, Hulett, and Pardue [Bi,Hu,Pa] on Betti numbers
holds as well. Corollaries 5.9 and 5.11 will show that it does.

Proposition 5.4. Let J = Shifta,b,t(I). Then atJ = Shifta,b,0(a
tI).

Proof. As vector spaces, we have

atJ =

〈 fas+tbr : r � t, fasbr ∈ I
fas+tbs+t : fasbs+t ∈ I
faℓ+tbs+t : faℓbs+t ∈ I or fasbℓ+t ∈ I
fas+tbℓ+t : faℓbs+t ∈ I and fasbℓ+t ∈ I

〉

=

〈 fas+tbr : r � t, fas+tbr ∈ atI
fas+tbs+t : fas+tbs+t ∈ atI
faℓ+tbs+t : faℓ+tbs+t ∈ atI or fas+tbℓ+t ∈ atI
fas+tbℓ+t : faℓ+tbs+t ∈ atI and fas+tbℓ+t ∈ atI

〉

=

〈 fas+tbr : r � t, fas+tbr ∈ atI or farbs+t ∈ atI
fas+tbs+t : fas+tbs+t ∈ atI
faℓ+tbs+t : faℓ+tbs+t ∈ atI or fas+tbℓ+t ∈ atI
fas+tbℓ+t : faℓ+tbs+t ∈ atI and fas+tbℓ+t ∈ atI

〉

= Shifta,b,0(a
tI). �

We now study the effect of shifting on Betti numbers. Our main result is the
following:

Theorem 5.5. Let J = Shifta,b,t(I). Then for all i, j one has bi,j(J) ≥ bi,j(I).
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The proof involves several lemmas and sub-propositions. We begin by considering
the case t = 0. Our argument follows Murai and Hibi’s original proof of Theorem
4.8 [MH] very closely. In the case that I is squarefree, the arguments are identical.

Definition 5.6. Let σ : S → S be the k-algebra involution defined by σ(a) = b,
σ(b) = a, and σ(xi) = xi for all xi 6= a, b.

Since σ is an automorphism, it extends to resolutions, and we have, for example,
bi,j(I) = bi,j(σ(I)) for all graded ideals I. In fact, σ acts naturally on the multi-
grading, so we have bi,m(I) = bi,σ(m)(σ(I)) for all monomial ideals. Note that σ
fixes monomials of the form fasbs, and partitions the other monomials into orbits
of cardinality two, σ(faℓbs) = fasbℓ.

Proposition 5.7. Let J = Shifta,b(I). Then we have I ∩ σ(I) = J ∩ σ(J) and
I + σ(I) = J + σ(J).

Proof. Observe that, for any integers p and q, we have fapbq ∈ I and faqbp ∈ I if
and only if fapbq ∈ J and faqbp ∈ J . It follows that I ∩ σ(I) = J ∩ σ(J). Similarly,
fapbq ∈ I or faqbp ∈ I if and only if fapbq ∈ J or faqbp ∈ J . It follows that
I + σ(I) = J + σ(J). �

Lemma 5.8. Let J = Shifta,b(I), and let m be a monomial fixed by σ. Then
Shadowm(J) = Shifta,b(Shadowm(I)).

Proof. Write m = fasbs, and write f = g
√

f for some monomial g. For a square-
free monomial µ dividing

√
m, we have µ ∈ Shadowm(J) if and only if µ m√

m
=

µgas−1bs−1 ∈ J , and similarly for I. We write µ = f ′, µ = f ′a, µ = f ′b, or µ = f ′ab
with f ′ not divisible by a or b.

We consider the case µ = f ′a (the other three cases are similar). In this case, we
have µ = f ′a ∈ Shadowm(J) if and only if f ′gasbs−1 ∈ J , if and only if f ′gasbs−1 ∈ I
or f ′gas−1bs ∈ I, if and only if f ′a ∈ Shadowm(I) or f ′b ∈ Shadowm(I), if and only
if µ = f ′a ∈ Shifta,b(Shadowm(I)). �

Theorem 4.8 lets us compare the multigraded Betti numbers of I and J , in mul-
tidegrees fixed by σ:

Corollary 5.9. Let J = Shifta,b(I), and let m be a multidegree fixed by σ. Then for
all i, one has bi,m(J) ≥ bi,m(I).

Proof. Let I ′ = Shadowm(I) and J ′ = Shadowm(J). By Lemma 5.8, we have J ′ =
Shifta,b(I

′). Since I ′ and J ′ are squarefree ideals of k[supp(m)], their Betti numbers
are concentrated in squarefree multidegrees. Thus, in particular, bi,| supp(m)|(I

′) =
bi,

√
m(I ′) (and likewise for J ′) since

√
m is the only squarefree monomial of degree

| supp(m)| in this ring. By Theorem 4.8 we have bi,| supp(m)|(J
′) ≥ bi,| supp(m)|(I

′), and
by Theorem 4.5 we have bi,m(I) = bi,

√
m(I ′) and bi,m(J) = bi,

√
m(J ′). Putting all this

together, we get bi,m(J) ≥ bi,m(I) as desired. �

Now we consider multidegrees not fixed by σ. The Mayer-Vietoris sequence,

0 → I ∩ σ(I) → I
⊕

σ(I) → I + σ(I) → 0,
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gives rise to a long exact sequence in Tor:

· · · → Tori (k, I ∩ σ(I)) → Tori (k, I)
⊕

Tori (k, σ(I)) →
Tori (k, I + σ(I)) → Tori−1 (k, I ∩ σ(I)) → · · ·

We truncate and restrict to multidegree m, producing the exact sequence of vector
spaces:

0 → (ker ∆i,I)m
→ Tori (k, I ∩ σ(I))m

∆i,I−−→ Tori (k, I)m

⊕
Tori (k, σ(I))m

→ Tori (k, I + σ(I))m → (ker ∆i−1,I)m
→ 0

Proposition 5.10. Suppose that I is (a, b)-shifted and that m 6= σ(m). Then
(ker ∆i,I)m

= 0 for all i.

Proof. Suppose m has the form fasbℓ. (The case m = faℓbs is symmetric.) Let
g ∈ (ker ∆i,I)m

be given, and write g = [
∑

αjγjeµj
] for some αj ∈ k, monomials

γj ∈ I ∩ σ(I), and squarefree monomials µj of degree i such that γjµj = m for all
j. (The term

∑
αjγjeµj

is an element of Ki ⊗ (I ∩ σ(I)); the brackets denote its
class modulo the boundary in the Koszul complex.) We will show that g = 0 in
Tori(k, I ∩ σ(I)).

We have ∆i,I(g) = ([g], [g]) = (0, 0) by assumption, so, in particular,
∑

αjγjeµj

is a boundary in Ki ⊗ I. Thus, we may write
∑

αjγjeµj
= D(

∑
βjhjeνj

), for some
coefficients βj ∈ k, monomials hj ∈ I and, νj squarefree of degree i+1 with hjνj = m
for all j.

We claim that hj ∈ I ∩ σ(I). Indeed, hj has the form f ′as−εabℓ−εb, where εa = 0
if a does not divide νj and 1 if it does, and likewise for εb. Since ℓ 	 s, we have
ℓ − εb ≥ s − εa, so, since I is shifted, f ′as−εabℓ−εb ∈ I ⇒ f ′aℓ−εbbs−εa ∈ I. Thus,
hj = σ(f ′aℓ−εbbs−εa) ∈ σ(I) as claimed.

Hence,
∑

βjhjeνj
∈ Ki+1 ⊗ (I ∩ σ(I)), so we have [g] = [D(

∑
βjhjeνj

)] = 0 in
Tori(k, I ∩ σ(I)). �

Corollary 5.11. Let J = Shifta,b(I), and let m be a multidegree not fixed by σ.
Then for all i, one has bi,m(J) + bi,σ(m)(J) ≥ bi,m(I) + bi,σ(m)(I).
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Proof. From the Mayer-Vietoris sequence, we have

bi,m (I) + bi,σ(m) (I) = bi,m (I + σ(I)) + bi,m (I ∩ σ(I))

− dimk (ker ∆i,I)m
− dimk (ker ∆i−1,I)m

= bi,m (J + σ(J)) + bi,m (J ∩ σ(J))

− dimk (ker ∆i,I)m
− dimk (ker ∆i−1,I)m

≤ bi,m (J + σ(J)) + bi,m (J ∩ σ(J))

= bi,m (J + σ(J)) + bi,m (J ∩ σ(J))

− dimk (ker ∆i,J)
m
− dimk (ker ∆i−1,J)

m

= bi,m (J) + bi,σ(m) (J) ,

the second equality by Proposition 5.7, and the fourth by Proposition 5.10. �

Corollaries 5.9 and 5.11 combine to prove Theorem 5.5 in the case that t = 0:

Theorem 5.12. Let J = Shifta,b(I). Then for all i, j one has bi,j(J) ≥ bi,j(I).

Proof. We have

bi,j(I) =
∑

deg(m)=j

bi,m(I)

=
∑

deg(m)=j
m=fasbs

bi,m(I) +
∑

deg(m)=j

m=faℓbs

(
bi,m(I) + bi,σ(m)(I)

)
,

and similarly for J . By Corollary 5.9, the inequality holds for the first sum, and by
Corollary 5.11, it holds for the second. �

The proof of Theorem 5.5 is now immediate.

Proof of Theorem 5.5. Let J = Shifta,b,t(I). Then, applying Proposition 5.4, we
have bi,j(J) = bi,j+t(a

tJ) = bi,j+t(Shifta,b(a
tI)) ≥ bi,j+t(a

tI) = bi,j(I). �

In fact, this argument, combined with the proof of Theorem 5.12, proves the
sharper result:

Proposition 5.13. Let J = Shifta,b,t(I). Then, for all f , all r < t, and all s < ℓ,
one has:

• bi,fasbr(J) ≥ bi,fasbr(I).
• bi,fasbs+t(J) ≥ bi,fasbs+t(I).
• bi,fasbℓ+t(J) + bi,faℓbs+t(J) ≥ bi,fasbℓ+t(I) + bi,faℓbs+t(I).
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6. Shifted-plus-powers ideals

The ideal P = (xe1

1 , · · · , xen
n ) is (a, b)-shifted, and, furthermore, if I is any mono-

mial ideal containing P , then Shifta,b(I) contains P as well. Unfortunately, this
statement fails for (a, b, t)-shifted ideals. The goal of this section is to fix this prob-
lem.

Let I be a monomial ideal containing P , and write I = I ′ +P . We will show that,
for appropriate choices of I ′ (namely, “deleting” the pure power of b from a minimal
generating set for I) and t, the t-shifted-plus-P ideal J = Shifta,b,t(I

′) + P has the
same Hilbert function as I and satisfies bi,j(J) ≥ bi,j(I).

Notation 6.1. Throughout this section, fix integers β > 1 and t ≥ 0. We denote
by I an (a, b, t)-shifted ideal with no minimal generators divisible by bβ, and set
J = Shifta,b,t+1(I). By abuse of notation, we will often write I + bβ in place of
I + (bβ).

Our goal is to show that J +bβ has the same Hilbert function as I +bβ, and larger
graded Betti numbers.

We break down the graded Betti numbers of I + bβ and J + bβ into a sum of
multigraded Betti numbers according to the following formula. For a monomial m
of the form m = fasbℓ+t+1, set n = faℓbs+t+1. Then

(6.2)

bi,j(J + bβ) =
∑

m6=fasbℓ+t+1

m6=faℓbs+t+1

bi,m(J + bβ) +
∑

m=fasbℓ+t+1

ℓ+t+16=β

(
bi,m(J + bβ) + bi,n(J + bβ)

)

+
∑

m=fasbℓ+t+1

ℓ+t+1=β

(
bi,m(J + bβ) + bi,n(J + bβ)

)
,

and likewise for I + bβ , all sums taken over monomials m with deg m = j. We will
show that each of the summands in formula (6.2) for J is larger than or equal to
the corresponding summand for I.

We begin with a technical lemma.

Lemma 6.3. Suppose that f is a monomial not divisible by a or b, and that ℓ+t+1 ≥
β. If fasbℓ+t+1 ∈ I, then faℓbs+t+1 ∈ I as well.

Proof. Since I has no minimal generators divisible by bβ , we have fasbℓ+t ∈ I. Since
I is (a, b, t)-shifted, it follows that faℓbs+t ∈ I, so faℓbs+t+1 ∈ I as well. �

Corollary 6.4. I ∩ (bβ) = J ∩ (bβ) and (I : bβ) = (J : bβ).

Proof. Let m be any monomial divisible by bβ, and write m as fasbℓ+t+1, faℓbs+t+1,
fasbs+t+1, or fasbr with r � t + 1, as appropriate.

First, if m = fasbℓ+t+1, then m ∈ J if and only if m ∈ I and faℓbs+t+1 ∈ I, if
and only if (by Lemma 6.3) m ∈ I. Similarly, if m = faℓbs+t+1, then m ∈ J if and
only if m ∈ I or fasbℓ+t+1 ∈ I, if and only if (by Lemma 6.3) m ∈ I. Finally, if
m = fasbs+t+1 or fasbr, then m ∈ J if and only if m ∈ I.

Thus, I ∩ (bβ) = J ∩ (bβ), so (I : bβ) = (J : bβ) as desired. �
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This corollary has several important corollaries of its own.

Corollary 6.5. Hilb(I + bβ) = Hilb(J + bβ).

Corollary 6.6. None of the minimal monomial generators of J is divisible by bβ+1.

From the short exact sequence

0 → S

(I : bβ)
(b−β)

bβ

−→ S

I
→ S

I + bβ
→ 0

there arises a long exact sequence in Tor, (the “mapping cone”,)

0 → Im(bβ
∗,i,I) → Tori

(
k,

S

I

)
→ Tori

(
k,

S

I + bβ

)
→

Tori−1

(
k,

S

(I : bβ)

)
(b−β) → Im(bβ

∗,i−1,I) → 0,

and similarly for J

0 → Im(bβ
∗,i,J) → Tori

(
k,

S

J

)
→ Tori

(
k,

S

J + bβ

)
→

Tori−1

(
k,

S

(J : bβ)

)
(b−β) → Im(bβ

∗,i−1,J) → 0.

The following proposition is immediate from mapping cone theory.

Proposition 6.7. Im(bβ
∗,i,I) = 0 for all i, and (Im(bβ

∗,i,J))m = 0 for all i and all

multidegrees m not equal to fasbβ.

Proof. Observe that (I : bβ) has no minimal generators divisible by b. Thus, by the
Taylor resolution (see e.g. [Ei1, Exercise 17.11]), its Betti numbers are concentrated
in multidegrees not divisible by b, and so Tori(k, S/(I : bβ))(b−β) is nonzero only in
multidegrees of the form fasbβ. Furthermore, again by the Taylor resolution, the
Betti numbers of S/I (and so the Tori(k, S/I)) are concentrated in multidegrees not
divisible by bβ, and those of S/J are concentrated in multidegrees not divisible by

bβ+1. As the maps bβ
∗,i,I and bβ

∗,i,J are multihomogeneous, the proposition follows. �

Lemma 6.8. If m = fasbβ, with s ≥ β−t−1, then Shadowm(J+bβ) = Shadowm(I+
bβ).

Proof. Let n be a monomial dividing m, and such that m
n

is squarefree. We will show

that n ∈ I + bβ if and only if n ∈ J + bβ, from which the lemma follows. If bβ divides
n, then n ∈ I + bβ and n ∈ J + bβ. Otherwise, write n = f ′asbβ−1 (or, mutatis
mutandis, f ′as−1bβ−1). Then s ≥ (β − 1) − t − 1, so n ∈ J if n ∈ I. Conversely, if
n ∈ J , we have n ∈ I or f ′aβ−t−2bs+t+1 ∈ I. In the latter case, s + t ≥ β − 1, so by
construction f ′aβ−t−2bβ−1 ∈ I and so f ′asbβ−1 ∈ I, i.e., n ∈ I. �

The following are immediate:



20 JEFF MERMIN AND SATOSHI MURAI

Lemma 6.9. If m is not divisible by bβ, then Shadowm(I + bβ) = Shadowm(I) and
Shadowm(J + bβ) = Shadowm(J).

Lemma 6.10. If m is divisible by bβ+1, then Shadowm(I+bβ) = Shadowm(J+bβ) =
(1).

Using these shadows to compute Betti numbers via Theorem 4.5, we obtain the
following:

Lemma 6.11.

(1) Suppose m = fasbs+t+1 or fasbr with r < t+1. Then we have bi,m(J + bβ) ≥
bi,m(I + bβ).

(2) Suppose s � ℓ, and ℓ + t + 1 6= β. Put m = faℓbs+t+1 and n = fasbℓ+t+1.
Then bi,m(J + bβ) + bi,n(J + bβ) ≥ bi,m(I + bβ) + bi,n(I + bβ).

Proof.

(1) If the exponent on b is less than β, apply Lemma 6.9 and Proposition 5.13.
If it is greater than β, apply Lemma 6.10. If the exponent is equal to β,
apply Lemma 6.8.

(2) If s + t + 1 = β, we have bi,n(I + bβ) = bi,n(J + bβ) by Lemma 6.10 and
bi,m(I + bβ) = bi,m(J + bβ) by Lemma 6.8. If s+ t+1 6= β, then, applying the
mapping cone and Proposition 6.7, the left-hand side is equal to bi,m(J) +
bi,n(J)+bi−1,b−βm(J : bβ)+bi−1,b−βn(J : bβ), while the right-hand side is equal
to bi,m(I) + bi,n(I) + bi−1,b−βm(I : bβ) + bi−1,b−βn(I : bβ). Apply Proposition
5.13 and Corollary 6.4. �

Thus, the first two sums in formula (6.2) are larger for J + bβ than for I + bβ.
It remains to consider the case that m = fasbℓ+t+1, with ℓ + t + 1 = β. We fix
m = fasbβ with β = ℓ + t + 1 	 s + t + 1, multiply I by at+1, and recall the
Mayer-Vietoris sequence from the previous section:

0 → (ker ∆i,at+1I)at+1m → Tori

(
k, at+1I ∩ σ(at+1I)

)
at+1m

∆
i,at+1I−−−−−→

Tori

(
k, at+1I

)
at+1m

⊕
Tori

(
k, σ(at+1I)

)
at+1m

→
Tori

(
k, at+1I + σ(at+1I)

)
at+1m

→ (ker ∆i−1,at+1I)at+1m → 0.

Lemma 6.12. Shadowat+1m(at+1J) = Shadowat+1m(at+1I ∩ σ(at+1I)).

Proof. Let n be a monomial dividing at+1m, and such that at+1m
n

is squarefree.
We will show that n ∈ at+1J if and only if n ∈ at+1I ∩ σ(at+1I), from which
the lemma follows. We may write n = f ′as+t+1−εabℓ+t+1−εb with εa, εb = 0 or
1 (so s − εa ≤ ℓ − εb). By definition n ∈ at+1J if and only if n ∈ at+1I and
f ′aℓ+t+1−εbbs+t+1−εa ∈ at+1I, if and only if n ∈ at+1I and n ∈ σ(at+1I). �

Corollary 6.13. Tori (k, J)m
∼= Tori

(
k, at+1I ∩ σ(at+1I)

)
(at+1)m.
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Proof. From the proof of Theorem 4.5, the complex (K• ⊗ M)m depends only on
Shadowm(M) for any monomial ideal M and multidegree m.

We have (K•⊗J)m
∼= (K•⊗at+1J)(at+1)m = (K•⊗(at+1I∩σ(at+1I)))(at+1)m, the

first isomorphism given by multiplication by at+1, the second equality by applying
Lemma 6.12. This isomorphism of complices induces an isomorphism on Tor,

φi,m : Tori(k, J)m → Tori(k, at+1I ∩ σ(at+1I))(at+1)m

given by φi,m([g]) = [at+1g] for any cycle [g] ∈ Ki ⊗ J . �

We view Im(bβ
∗,i,J)m and (ker ∆i−1,at+1I)(a

t+1)m as submodules of Tori−1(k, J) (via

the natural isomorphism with Tori(k, S/J)) and of Tori−1(k, at+1I∩σ(at+1I))(at+1)m,
respectively. The isomorphism φi,m allows us to compare these two vector spaces.

Proposition 6.14. φi,m(Im(bβ
∗,i,J)m) ⊂ (ker ∆i−1,at+1I)(a

t+1)m.

Proof. An element of Im(bβ
∗,i,J)m has the form [bβg], where g is a cycle in Ki−1 ⊗ (J :

bβ). (Consider e.g. the connecting homomorphism arising from the short exact
sequence 0 → J → S → S/J → 0.) We have φi,m([bβg]) = [at+1bβg].

To show that [at+1bβg] ∈ (ker ∆i−1,at+1I)(a
t+1)m, it suffices to show that at+1bβg is

a boundary in both at+1I⊗Ki−1 and σ(at+1I)⊗Ki−1. From the Taylor resolution of
I, we know that at+1I ⊗ K• is exact in multidegree at+1m. Thus, since at+1bβg is a
cycle in at+1I ⊗Ki−1, it is a boundary as well. Hence, we may write at+1bβg = D(h)
for some h ∈ at+1I ⊗ Ki.

Write h = as+tbβ−1ea ∧ eb ∧ f1 + as+t+1bβ−1eb ∧ f2 + as+tbβea ∧ f3 + as+t+1bβf4, for
f1, f2, f3, f4 ∈ K• not involving a, b, ea, or eb. Then, write as+t+1bβf4 (and, mutatis
mutandis, as+tbβea ∧ f3) in the form

∑
αja

s+t+1bβγjeµj
for coefficients αj ∈ k and

monomials γj with as+t+1bβγj ∈ at+1I, and hence asbβγj ∈ I ∩ (bβ) = J ∩ (bβ).
Adjusting bβg in Im(bβ)∗,i,J if necessary, we may assume that f3 = f4 = 0.

Thus,

at+1bβg = D(h)

= as+t+1bβ−1eb ∧ f1 − as+tbβea ∧ f1 + as+tbβ−1ea ∧ eb ∧ D(f1)

+ as+t+1bβf2 − as+t+1bβ−1eb ∧ D(f2).

Since the left-hand side of this expression is divisible by bβ , it follows that both
as+t+1bβ−1eb ∧ f1 − as+t+1bβ−1eb ∧ D(f2) and as+tbβ−1ea ∧ eb ∧ D(f1) are equal to
zero, and, in particular, f1 = D(f2) (and D(f1) = 0). Thus,

at+1bβg = as+t+1bβf2 − as+tbβea ∧ D(f2)

= D(as+tbβea ∧ f2).

We claim that this is a boundary in σ(at+1I) ⊗ Ki−1. Indeed, we may write
f2 in the form

∑
αjγjeµj

with as+t+1bβ−1γj ∈ at+1I, i.e., asbβ−1γj = asbℓ+tγj ∈
I. Then, since I is (a, b, t)-shifted, we have aℓbs+tγj ∈ I, so aℓ+t+1bs+tγj ∈ at+1I
and as+tbℓ+t+1γj = as+tbβγj ∈ σ(at+1I). Thus, as+tbβea ∧ f2 ∈ σ(at+1I) ⊗ Ki as
desired. �
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Corollary 6.15. For m = fasbβ = fasbℓ+t+1, set n = faℓbs+t+1. Then, for all i,
one has bi,m(S/(J + bβ)) + bi,n(S/(J + bβ)) ≥ bi,m(S/(I + bβ)) + bi,n(S/(I + bβ)).

Proof. The computation below appears daunting, but it is in fact merely long. The
moral is that, by Proposition 6.14, the flexibility in the paired multidegrees m and
n (given by (ker ∆•,at+1I)at+1m) is larger than the obstruction coming from the can-

cellation in the mapping cone (given by Im bβ
∗,•,J).

Set A = bi,m(S/(J + bβ)) + bi,n(S/(J + bβ)) − bi,m(S/(I + bβ)) − bi,n(S/(I + bβ)).
We will show that A is nonnegative.

Expanding each term of A with the mapping cone, we have

A =

(
bi,m

(
S

J

)
+ bi−1,b−βm

(
S

(J : bβ)

)
− dimk

(
Im bβ

∗,J,i

)

m
− dimk

(
Im bβ

∗,J,i−1

)

m

)

+

(
bi,n

(
S

J

)
+ bi−1,b−βn

(
S

(J : bβ)

)
− dimk

(
Im bβ

∗,J,i

)
n
− dimk

(
Im bβ

∗,J,i−1

)
n

)

−
(

bi,m

(
S

I

)
+ bi−1,b−βm

(
S

(I : bβ)

)
− dimk

(
Im bβ

∗,I,i

)

m
− dimk

(
Im bβ

∗,I,i−1

)

m

)

−
(

bi,n

(
S

I

)
+ bi−1,b−βn

(
S

(I : bβ)

)
− dimk

(
Im bβ

∗,I,i

)
n
− dimk

(
Im bβ

∗,I,i−1

)
n

)
.

By Proposition 6.7, most of these images are empty, and by Corollary 6.4, the Betti
numbers of the colon ideals all cancel. We are left with

A =

(
bi,m

(
S

J

)
+ bi,n

(
S

J

))
−
(

bi,m

(
S

I

)
+ bi,n

(
S

I

))

− dimk

(
Im bβ

∗,J,i

)
m
− dimk

(
Im bβ

∗,J,i−1

)
m

.

We multiply the ideals by at+1 (replacing bi,m

(
S
J

)
with bi,at+1m

(
S

at+1J

)
, etc.), and

then expand again with the Mayer-Vietoris sequence, yielding

A =

[
bi,at+1m

(
S

at+1J ∩ σ(at+1J)

)
+ bi,at+1m

(
S

at+1J + σ(at+1J)

)

− dimk (ker ∆i−1,at+1J)
at+1m

− dimk (ker ∆i−2,at+1J)
at+1m

]

−
[
bi,at+1m

(
S

at+1I ∩ σ(at+1I)

)
+ bi,at+1m

(
S

at+1I + σ(at+1I)

)

− dimk (ker ∆i−1,at+1I)at+1m
− dimk (ker ∆i−2,at+1I)at+1m

]

− dimk

(
Im bβ

∗,J,i

)
m
− dimk

(
Im bβ

∗,J,i−1

)
m

.
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The remaining Betti numbers cancel by Propositions 5.4 and 5.7, and the first two
kernels are empty by Proposition 5.10. We are left with

A =
(
dimk (ker ∆i−1,at+1I)at+1m

− dimk

(
Im bβ

∗,J,i

)
m

)

+
(
dimk (ker ∆i−2,at+1I)at+1m

− dimk

(
Im bβ

∗,J,i−1

)
m

)
.

By Proposition 6.14, each of these summands is nonnegative. �

Proposition 6.16. For all i, j, one has bi,j(J + bβ) ≥ bi,j(I + bβ).

Proof. For a monomial m of the form m = fasbℓ+t+1, set n = faℓbs+t+1. We recall
formula (6.2),

bi,j(J + bβ) =
∑

m6=fasbℓ+t+1

m6=faℓbs+t+1

bi,m(J + bβ) +
∑

m=fasbℓ+t+1

ℓ+t+16=β

(
bi,m(J + bβ) + bi,n(J + bβ)

)

+
∑

m=fasbℓ+t+1

ℓ+t+1=β

(
bi,m(J + bβ) + bi,n(J + bβ)

)
,

and similarly for I. By Lemma 6.11, the inequality holds for the first two sums, and
by Corollary 6.15, it holds for the third. �

7. Strongly shifted ideals and compression

Let J be an (a, b)-strongly shifted ideal, none of whose generators is divisible by
bβ , and suppose further that J contains aα for some α ≤ β. Let T be the {a, b}-
compression of J . We study the Betti numbers of J and T . We continue to denote
by f a monomial not divisible by a or b.

The following observations are immediate:

Lemma 7.1.

(i) If T 6= J , then T is reverse lexicographically greater than J .
(ii) farbs ∈ T if and only if J contains at least s + 1 monomials of the form

fapbq with p + q = r + s.

Lemma 7.2. The following are equivalent:

(i) farbβ ∈ J .
(ii) farbβ−1 ∈ J .
(iii) fapbq ∈ J for all p, q such that p + q = r + β − 1 and q � β.
(iv) farbβ−1 ∈ T .
(v) farbβ ∈ T .

Proof. (iii) =⇒ (ii) =⇒ (i) is obvious, as is (iii) =⇒ (iv) =⇒ (v), and (i) =⇒ (ii) is
immediate by construction. We will show that (ii) implies (iii) and (v) implies (i).

Suppose (ii) holds. If p ≥ α, then fapbq ∈ J because aα ∈ J . Otherwise, note
that p ≥ r, since p − r = β − 1 − q ≥ 0 by assumption. Set t = β − 1 − p,
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which is nonnegative since β − 1 ≥ α − 1 ≥ p. Since J is (a, b, t)-shifted and
farbβ−1 = farbt+p ∈ J , we have fapbt+r = fapbq ∈ J . Thus (iii) holds.

Now suppose (v) holds. Then, by Lemma 7.1 (ii), J contains at least β + 1
monomials of the form fapbq, with p+q = β +r. By the pigeonhole principle, one of
these, say faP bQ, has Q ≥ β and P ≤ r. By construction, then, J contains faP bβ

and so we have farbβ ∈ J , and (i) is satisfied. �

Corollary 7.3. No minimal monomial generator of T is divisible by bβ.

Proof. Suppose that T contains a monomial m of the form farbd with d ≥ β. No
minimal monomial generator of J is divisible by bd, so Lemma 7.2 applies with d in
place of β, and we have farbd−1 ∈ T . Thus, m is not a minimal generator of T . �

Corollary 7.4. We have T ∩ (bβ) = J ∩ (bβ) and (T : bβ) = (J : bβ).

Proof. For any q ≥ β, one has fapbq ∈ J if and only if fapbβ−1 ∈ J , if and only if
fapbβ−1 ∈ T , if and only if fapbq ∈ T . �

Proposition 7.5. bi,j(T + bβ) ≥ bi,j(J + bβ) for all i, j.

Proof. Both T + bβ and J + bβ are resolved by the mapping cone of bβ , via the short
exact sequences

0 → S/(J : bβ)(b−β) → S/J → S/(J + bβ) → 0

and
0 → S/(T : bβ)(b−β) → S/T → S/(T + bβ) → 0.

By construction (for J) and Corollary 7.3 (for T ), neither J nor T has any minimal
generators divisible by bβ, so, by the Taylor resolution, their multigraded Betti
numbers are concentrated in multidegrees not divisible by bβ . Thus, there is no
cancellation in either mapping cone, and we have

bi,j(S/(J + bβ)) = bi,j(S/J) + bi−1,j−β(S/(J : bβ))

bi,j(S/(T + bβ)) = bi,j(S/T ) + bi−1,j−β(S/(T : bβ)).

By Theorem 2.13, we have bi,j(S/T ) ≥ bi,j(S/J), and by Corollary 7.4, (J : bβ) =
(T : bβ). �

8. The monomial case of the lex-plus-powers conjecture

In this section, we put everything together to prove the monomial case of the
lex-plus-powers conjecture in arbitrary characteristic:

Theorem 8.1. Suppose I is a homogeneous ideal containing a regular sequence of
monomials (f1, · · · , fr) in degrees e1 ≤ · · · ≤ er. Put P = (xe1

1 , · · · , xer
r ). Then

there exists a lex-plus-P ideal L such that L has the same Hilbert function as I and
bi,j(L) ≥ bi,j(I) for all i, j.

Throughout the section, e1 ≤ · · · ≤ en ≤ ∞. For variables a = xi, b = xj , set
ea = ei and eb = ej . For ideals containing P = (xe1

1 , · · · , xen
n ), we will frequently

want to consider the ideal obtained by “deleting” beb from a generating set:
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Notation 8.2. Let a monomial ideal I ⊃ P and variables a, b be given. We set I ′

equal to the ideal generated by all the minimal monomial generators of I except for
beb . (If beb is not a minimal monomial generator of I, set I ′ = I.)

Lemma 8.3. Let a and b be given. Then I is (a, b, t)-shifted-plus-P if and only
if I ′ is (a, b, t)-shifted, and I is {a, b}-compressed-plus-P if and only if I ′ is {a, b}-
compressed.

Proof. Suppose that I is {a, b}-compressed-plus-P . (The proof for (a, b, t)-shifted is

similar.) Then there exists an {a, b}-compressed ideal Î such that I = Î + P . We
will show that I ′ is {a, b}-compressed.

Fix a monomial f not divisible by a or b, and suppose that u = fapbq and
v = farbs are monomials of the same degree such that v >lex u (i.e., r > p) and
u ∈ I ′. We need to show that v ∈ I ′ as well. If p ≥ ea, we have v ∈ I ′ since aea ∈ I ′.
Otherwise, u is divisible by some minimal generator w of I ′; write w = f ′ap′bq′ with
q′ < eb. If q′ < s or w = xek

k , we have v ∈ I ′ immediately, otherwise w ∈ Î since

w ∈ I r P . Since Î is {a, b}-compressed, it follows that f ′ap′+q′−sbs ∈ Î. Since this
is in I but is not divisible by beb , it is in I ′, so we have v ∈ I ′ as desired. �

Proposition 8.4. Let I be a monomial ideal which is (a, b, t)-shifted-plus-P . Then
there exists an (a, b, t+1)-shifted-plus-P ideal J which has the same Hilbert function
as I, is reverse lexicographically greater than or equal to I, and satisfies bi,j(J) ≥
bi,j(I).

Proof. Set J ′ = Shifta,b,t+1(I
′) and J = J ′+P . We have I = I ′+beb and J = J ′+beb,

so, by Corollary 6.5, I and J have the same Hilbert function, by Proposition 5.3,
J is reverse lexicographically greater than or equal to I, and, by Proposition 6.16,
bi,j(J) ≥ bi,j(I). �

Proposition 8.5. Let I be a monomial ideal containing P , and fix a and b. Then
there exists an (a, b)-strongly shifted-plus-P ideal J which is reverse lexicographically
greater than or equal to I, has the same Hilbert function as I, and satisfies bi,j(J) ≥
bi,j(I) for all i, j.

Proof. Clearly, Shifta,b(I) contains P . Thus, replacing I with Shifta,b(I) if necessary
(and applying Proposition 5.3 and Theorem 5.12,) we may assume that I is (a, b)-
shifted. If I is not already (a, b)-strongly shifted-plus-P , there exist integers t 	 0
such that I is not (a, b, t)-shifted-plus-P . Choose the smallest such t. Then by
Proposition 8.4 there exists an (a, b, t)-shifted-plus-P ideal with the same Hilbert
function as I and larger graded Betti numbers. Replace I with this new ideal and
repeat. This process must terminate, since there are only finitely many monomial
ideals with the same Hilbert function, and at each step we replace the ideal with a
reverse lexicographically greater one. Let J be the resulting ideal. �

Proposition 8.6. Let I be (a, b)-strongly-shifted-plus-P . Then there exists an {a, b}-
compressed-plus-P ideal T which is reverse lexicographically greater than or equal to
I, has the same Hilbert function as I, and satisfies bi,j(T ) ≥ bi,j(I).
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Proof. Let T ′ be the {a, b}-compression of I ′, and put T = T ′ + P . We have
I = I ′ + beb and T = T ′ + beb , so, by Corollary 7.4, I and T have the same Hilbert
function, and, by Proposition 7.5, bi,j(T ) ≥ bi,j(I). �

Proposition 8.7. Let I be a monomial ideal containing P . Then there exists a
Borel-plus-P ideal B such that B has the same Hilbert function as I, and bi,j(B) ≥
bi,j(I) for all i, j.

Proof. If I is not already Borel-plus-P , there exist pairs of variables a, b such that I
is not {a, b}-compressed-plus-P . Choose any such pair. By Propositions 8.5 and 8.6,
there exists an {a, b}-compressed-plus-P ideal T with the same Hilbert function as I
and larger Betti numbers. Replace I with T and repeat. This process must terminate
because there are only finitely many monomial ideals with the same Hilbert function,
and at each step we are replacing the ideal with a reverse lexicographically greater
one. Let B be the resulting ideal. �

Theorem 1.4 completes the proof of Theorem 8.1.

Proof of Theorem 8.1. By Lemma 3.2, we may assume without loss of generality
that (f1, · · · , fr) = P . By Proposition 8.7, we may assume that I is Borel-plus-P .
Thus, the desired inequality holds by Theorem 1.4. �

9. Consecutive Cancellation

A consecutive cancellation in the graded Betti numbers of a module M is the
simultaneous subtraction of 1 from consecutive Betti numbers in the same internal
degree, i.e., replacing bi,j(M) and bi−1,j(M) with (bi,j(M) − 1) and (bi−1,j(M) − 1).

We say that the graded Betti numbers of an ideal I are obtained from those of L by
consecutive cancellations if we can perform a sequence of consecutive cancellations
on the bi,j(L) to produce the Betti numbers of I. Heuristically, this happens because
the minimal resolution of L “deforms” into a (non-minimal) resolution of I, which
can be decomposed into a direct sum of the minimal resolution of I and some trivial
complices 0 → S → S → 0; the cancellations are in the degrees of these trivial
complices. We define this more formally as follows:

Definition 9.1. Let L and I be two homogeneous ideals. We say that the graded
Betti numbers of I are obtained from those of L by consecutive cancellations if
there exist nonnegative integers ci,j such that, for all i and j, we have bi,j(I) =
bi,j(L) − ci,j − ci−1,j.

Peeva shows in [Pe] that, if L is the lex ideal with the same Hilbert function
as I, the graded Betti numbers of I are obtained from those of L by consecutive
cancellations; similar results are known (often with the same proof) in many settings
where the lex ideals attain all Hilbert functions.

We will show:

Theorem 9.2. Let I, P , and L be as in the statement of Theorem 8.1. Then the
graded Betti numbers of I are obtained from those of L by consecutive cancellations.
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Proof. The proof of Theorem 8.1 consists of a series of compressions, shifts, and t-
shifts-plus-P , followed by a jump from Borel-plus-P to lex-plus-P . We will show that
at each step the graded Betti numbers are obtained by consecutive cancellations.
Thus, what we must show is that the graded Betti numbers of I are obtained from
those of J (or T ) in Theorem 1.4, Lemma 3.2, and Propositions 8.5 and 8.6.

Murai shows in [Mu, Theorem 5.1] that the Betti numbers of a Borel-plus-P
ideal are obtained from those of the lex-plus-P ideal by consecutive cancellations.
Since Lemma 3.2 and Proposition 8.6 use only coordinate changes, initial ideals,
and compressions, the statement follows from [Pe] and [Me2, Theorem 5.10] in these
cases. Lemma 9.3 below completes the proof. �

Lemma 9.3. Let I be a monomial ideal.

(1) Set J = Shifta,b(I). Then the graded Betti numbers of I are obtained from
those of J by consecutive cancellations.

(2) Suppose that I is (a, b, t)-shifted and has no generators divisible by bβ. Set
J = Shifta,b,t(I). Then the graded Betti numbers of I + bβ are obtained from
those of J + bβ by consecutive cancellations.

Proof.

(1) Let m be a multidegree. If m has the form fasbs, we have bi,m(I) =
bi,| supp(m)|(Shadowm(I)), and likewise for J . By Lemma 5.8, we can com-
pare these Betti numbers with Theorem 4.8. Applying Peeva’s proof [Pe]
to our proof of Theorem 4.8, the graded Betti numbers of Shadowm(I) and
Shadowm(J) differ by consecutive cancellations. Thus, there exist integers
ci,m such that bi,m(J) − bi,m(I) = ci,m + ci−1,m.

If m has the form faℓbs, put n = fasbℓ. Then by the Mayer-Vietoris
sequence and Proposition 5.10, we have

bi,m(J) + bi,n(J) = bi,m(I) + bi,n(I) + dimk(ker ∆i,I)m + dimk(ker ∆i−1,I)m.

Set ci,m = dimk(ker ∆i,I)m.

Finally, we put

ci,j =
∑

m=σ(m)
deg m=j

ci,m +
∑

m=faℓbs

deg m=j

ci,m.

The statement follows from the formula in the proof of Theorem 5.12.
(2) The statement follows from the proof of Proposition 6.16 in the same way

that (1) follows from the proof of Theorem 5.12. Let m be a multidegree.
If m = faℓbs+t+1 with ℓ + t + 1 = β, put ci,m = dimk(ker ∆i,at+1I′)at+1m −
dimk(Im bβ

∗,i−1,J)m. Otherwise, define ci,m as in the proof of (1) (making the
obvious changes).

Again, we put

ci,j =
∑

m=fasbs+t+1

deg m=j

ci,m +
∑

m=faℓbs+t+1

deg m=j

ci,m. �
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10. Open problems

We recall some related problems, and make some brief remarks about them.

10.1. The general Lex-Plus-Powers Conjecture. In Evans’ original conjecture,
the regular sequence was not required to consist of monomials:

Conjecture 10.1 (Evans, The Lex-Plus-Powers Conjecture). Suppose that F =
(f1, · · · , fr) is any regular sequence with deg fi = ei, and define P = (xe1

1 , · · · , xer
r ).

Let I be any homogeneous ideal containing F . Then there exists a lex-plus-P ideal
L such that I and L have the same Hilbert function. Furthermore, bi,j(L) ≥ bi,j(I)
for all i, j.

A few special cases and reductions are known, due to Francisco, Richert, and
Sabourin [Fr,FR,Ri,RS], but the conjecture appears to be wide open. Indeed, the
mere existence of the lex-plus-P ideal L is far from certain; this is the Eisenbud-
Green-Harris conjecture [EGH1,EGH2]. Some special cases are due to Caviglia and
Maclagan, Cooper, and Richert [CM,Co1,Co2,FR]. A good survey article on both
conjectures is [FR].

The problem for both conjectures is that the usual first step in proving Macaulay-
type theorems is to take an initial ideal, but doing so in this setting ruins the regular
sequence. Without a monomial ideal, most of our other techniques are useless.
Unfortunately, Theorem 8.1 does nothing to resolve this. It does, however, reduce
both conjectures to the same obstacle. The following statement is equivalent to
the Lex-Plus-Powers conjecture (and, without the last sentence, has been known for
some time to imply the Eisenbud-Green-Harris conjecture):

Conjecture 10.2. Let (f1, · · · , fr) be a regular sequence with degfi = ei, and let
P = (xe1

1 , · · · , xer
r ). Then there exists a monomial ideal M containing P such that

I and M have the same Hilbert function. Furthermore, M may be chosen so that
bi,j(M) ≥ bi,j(I) for all i, j.

Conjecture 10.2 holds if all but one of the fi are pure powers. (For example, if
(f1, · · · , fr−1) = (xe1

1 , · · · , x
er−1

r−1 ), then the monomial support of fr must contain some
term not divisible by any of x1, · · · , xr−1. Take an initial ideal in some appropriate
order, and if necessary apply Lemma 3.2.) Thus, the Lex-Plus-Powers Conjecture
holds for these regular sequences as well:

Proposition 10.3. Let F , I, and L be as in Conjecture 10.1, and suppose further
that all but one of the fi is a pure power. Then there exists a lex-plus-P ideal L with
the same Hilbert function as I, and, for all i and j, we have bi,j(L) ≥ bi,j(I).

In [CM], Caviglia and Maclagan prove that the Eisenbud-Green-Harris Conjecture

holds whenever ek >
∑k−1

ℓ=1 eℓ for all k. In light of this result, we consider the
following question potentially tractable:

Problem 10.4. Suppose that, for all k, ek >
∑k−1

ℓ=1 eℓ. Does the Lex-Plus-Powers
Conjecture hold for ideals containing a regular sequence in degrees (e1, · · · , er)?
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10.2. Betti numbers over S/P . Gasharov, Hibi, and Peeva make the following
conjecture [GHP]:

Conjecture 10.5. Let I be a homogeneous ideal containing P , and let L be the
lex-plus-P ideal with the same Hilbert function. Let Ī and L̄ be their images in
R = S/P . Then the graded Betti numbers of Ī and L̄ satisfy bR

i,j(L̄) ≥ bR
i,j(Ī) for all

i and j.

This conjecture deals with infinite resolutions. Nevertheless, our techniques may
give some indication of how to proceed. For example, after replacing the Koszul
complex with a resolution of k over R, an analog of Corollary 5.11 continues to
hold. It is less clear how the rest of the argument might translate, however.
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