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Macaulay proved in 1927 that every Hilbert function in the polynomial ring R =

k[x1, · · · , xn] is attained by a lexicographic ideal. We study the combinatorial and

homological properties of lexicographic ideals, and identify other settings in which

lexicographic ideals attain every Hilbert function, and other classes of ideals with

similar properties. We develop the theory of compression, which makes many of our

arguments possible and leads to shorter new proofs of results of Macaulay, Bigatti,

Hulett, and Pardue. Using compression, we extend results of Green and Clements-

Lindström, and prove a special case of Evans’ Lex-Plus-Powers conjecture.
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Chapter 1

Introduction

1.1 Hilbert Functions

Let k be a field, S be a quotient of the polynomial ring k[x1, · · · , xn] (where each

x1 has degree 1) by a homogeneous ideal, and M a finitely generated graded S-

module. (Usually, S will in fact be the polynomial ring S = k[x1, · · · , xn], and

M ⊂ S will be a homogeneous ideal.) Then, by definition, M is a direct sum,

M =
⊕

d∈Z

Md,

where each Md is the k-vector space of degree-d elements of M , Md = {m ∈ M :

deg(m) = d}. Since M and S are finitely generated, each Md is finite-dimensional.

The Hilbert Function of M associates to each degree d the dimension of the vector

space Md:

Definition 1.1.1. Let M be a graded module over the finitely generated graded

k-algebra S. The Hilbert Function of M is

HilbS
M : Z → Z≥0

HilbS
M(d) = dimk Md

The Hilbert function measures the size of M , and is one of the most important

combinatorial invariants. (In fact, it arises very naturally in combinatorics: if

S = k[x1, · · · , xn]/(x2
1, · · · , x2

n) and M = S/I∆ is the Stanley-Reisner ring of a

simplicial complex ∆, then the Hilbert function of M is the f -vector of ∆).

Because dimension is an additive functor on k-vector spaces, the Hilbert func-
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tion is additive. That is, if

0 → M ′ α
−→M

β
−→M ′′ → 0

is an exact sequence of graded S-modules, and the maps α and β are of degree

0 (i.e., deg(α(m′)) = deg(m′), deg(β(m)) = deg(m) for all homogeneous m′, m),

then we have HilbS
M = HilbS

M ′ + HilbS
M ′′ .

The Hilbert function is intimately related to two other invariants, the Hilbert-

Poincare Series and the Hilbert Polynomial :

Definition 1.1.2. The Hilbert-Poincare Series of M is the formal power series

defined by

HSS
M =

∑

d∈Z

HilbS
M(d)td.

Theorem 1.1.3 (Hilbert). The Hilbert-Poincare series of M is a rational function

of the form p(t)
(1−t)n , for some polynomial p(t).

Proof. The proof is by induction on the number of variables n. If n = 0, then M

is a finite-dimensional vector space and so HSS
M is a polynomial. In general, we

have the exact sequence

0 → K(−1) → M(−1)
µ

−→M → L → 0,

where µ is the map “multiplication by xn”, K and L are the kernel and cokernel

of µ, and K(−1) and M(−1) are the modules K and M shifted by one degree

(so K(−1)d = Kd−1). K and L are both annihilated by xn, and so are finitely

generated over k[x1, · · · , xn−1]. By the additivity of the Hilbert series, we have

HSS
K(−1) −HSS

M(−1) + HSS
M −HSS

L = 0. Rearranging, this becomes (1 − t) HSS
M =

HSS
L −t HSS

K; the right-hand-side is a rational function of the form p(t)
(1−t)n−1 by

induction.
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Now the td-coefficient of 1
(1−t)n is

(

n+d−1
n−1

)

, which is a polynomial in d, with

coefficients in 1
(n−1)!

Z, for positive d. Similarly, the td coefficient of tk

(1−t)n agrees

with a polynomial for d > k. Thus, there exists a polynomial agreeing with the

Hilbert function of M in sufficiently large degree:

Definition/Theorem 1.1.4 (Hilbert). There exists a polynomial HPS
M(d), with

coefficients in 1
(n−1)!

Z, called the Hilbert polynomial of M , such that, for all suffi-

ciently large d, we have HPS
M(d) = HilbS

M(d).

If S is the polynomial ring k[x1, · · · , xn] and M is the coordinate ring of a

projective variety X ⊂ Pn−1(k), then the degree of HPS
M is the dimension of X,

and (n − 1)! times the leading coefficient is its multiplicity. Proofs are found in

many texts on commutative algebra (cf. [Ei, Chapter 12]).

It is thus a problem of considerable interest to classify the Hilbert functions

of quotients of S by homogeneous ideals (or, equivalently, in view of the exact se-

quence 0 → M → S → S/M → 0, to classify the Hilbert functions of homogeneous

ideals M ⊂ S).

The first solution to this problem was given by Macaulay [Ma], who showed

that every ideal M ⊂ S = k[x1, · · · , xn] has the same Hilbert function as some

lexicographic ideal.

1.2 Lexicographic Ideals

Definition 1.2.1. Let u = xe1
1 · · ·xen

n and v = xf1

1 · · ·xfn
n be two monomials of the

same degree. We say that u is lex-before v, u >Lex v, if the following condition is

satisfied:

Let i be minimal such that ei 6= fi. Then ei > fi.
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Definition 1.2.2. Let M ⊂ S be an ideal generated by monomials. We say that

M is lex or lexicographic if the following condition is satisfied:

Suppose that u and v are monomials of the same degree, with u(1.2.3)

lex-before v and v ∈ M . Then u ∈ M as well.

Example 1.2.4. The ideal (a3, a2b, a2c, ab3, ab2c2) is lexicographic in S = k[a, b, c].

The notion of lex ideal defined above is sensible, in that an initial segment of

the lex order in any degree generates a lex ideal:

Proposition 1.2.5. Let M ⊂ Sd be a vector space spanned by monomials, satisfy-

ing (1.2.3). Then (x1, · · · , xn)M ⊂ Sd+1 is a vector space spanned by monomials,

and satisfies (1.2.3).

Proof. Let v ∈ (x1, · · · , xn)M be a monomial, so we may write v = xiv
′, with

v′ ∈ M , and suppose u is a degree-(d + 1) monomial lex-before v. Let xj be the

lex-latest monomial dividing u. Then u′ = u
xj

is lex-before v′, and so u′ ∈ M and

u ∈ (x1, · · · , xn)M as desired.

Macaulay [Ma] proved that the lex ideals attain every Hilbert function in the

polynomial ring:

Theorem 1.2.6 (Macaulay). Let I ⊂ S = k[x1, · · · , xn] be any homogeneous ideal.

Then there exists a lex ideal L such that HilbS
I = HilbS

L.

Macaulay’s original proof is ten pages long and nearly unreadable. Many other

proofs have been produced in the interim, most notably that of Green [Gr]. In

theorems 3.4.1, 4.2.13, and 6.3.1, we obtain three more.

Macaulay’s result is not limited to the polynomial ring, however. For exam-

ple, it holds in the quotient R = k[x1, · · · , xn]/(x2
1, · · · , x2

n) (where it is known as
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Kruskal-Katona’s theorem [Kr,Ka]), and in fact in any quotient by an ascending

sequence of powers R = k[x1, · · · , xn]/(xa1
1 , · · · , xan

n ), a1 ≤ · · · ≤ an ≤ ∞ (where

we use the convention that a∞
i = 0); this is known as Clements-Lindström’s theo-

rem [CL]. Chapters 3,4, and 5 are primarily concerned with identifying rings where

Macaulay’s theorem holds.

A popular characterization of Macaulay’s theorem is a combinatorial inequality

governing the growth of lex ideals known as the Macaulay representation, which

we derive in theorem 2.2.8.

One of the most interesting currently open conjectures about Hilbert functions

is the Eisenbud-Green-Harris conjecture [EGH], which posits that a generalization

of Macaulay’s theorem holds in the polynomial ring.

Conjecture 1.2.7 (Eisenbud-Green-Harris). Let f1, · · · , fr ∈ S = k[x1, · · · , xn]

be a regular sequence of homogeneous forms, with deg fi = ei and e1 ≤ · · · ≤ er.

Put P = (xe1
1 , · · · , xer

r ). Let I be any ideal containing (f1, · · · , fr). Then there

exists a lex ideal L such that HilbS
L+P = HilbS

I .

(A regular sequence is a sequence that behaves like powers of the variables: fi

must be a non-zero-divisor in the quotient S/(f1, · · · , fi−1) and (f1, · · · , fr) must

not be the unit ideal. By dimension theory, r ≤ n.)

The Eisenbud-Green-Harris conjecture is known to hold in only a very few

special cases (cf. [FR]). In section 5.2 we prove that it holds when the fi are all

monomials.
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1.3 Betti Numbers

Another important combinatorial invariant of a graded ideal is its Betti numbers,

defined below.

Definition 1.3.1. Let I ⊂ S be a homogeneous ideal. A free resolution of I is an

exact sequence

F : · · · → F2 → F1 → F0 → I → 0,

with each Fi a free S-module. F is minimal if every Fi has minimum possible rank,

and graded if each map is homogeneous of degree zero.

Finite free resolutions exist by the Hilbert syzygy theorem; the minimal free

resolution is the (unique up to an isomorphism of complexes) resolution where the

image of Fi+1 in Fi is contained in (x1, · · · , xn)Fi) for all i; any resolution may be

graded by inductively assigning a degree to the homogeneous generators of Fi.

Definition 1.3.2. Let F be the graded minimal free resolution of I, and write

Fi = ⊕S(−j)bi,j . Then the bi,j are the graded Betti numbers of I.

Lex ideals are important to the study of Betti numbers because of the following

theorem, due to Bigatti [Bi], Hulett [Hu], and Pardue [Pa], which states that lex

ideals have maximal Betti numbers:

Theorem 1.3.3 (Bigatti, Hulett, Pardue). Let I ⊂ S = k[x1, · · · , xn] be any ho-

mogeneous ideal, and let L be the lexicographic ideal with the same Hilbert function

as I. Then for all i, j, we have bi,j(L) ≥ bi,j(I).

Aramova, Herzog, and Hibi [AHH] have shown an analogous result in the case

of squarefree ideals:
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Theorem 1.3.4 (Aramova, Herzog, Hibi). Let I ⊂ S be generated by squarefree

monomials, and let I ′ ⊂ R = S/(x2
1, · · · , x2

n) be the image of I in the quotient

by the squares of the variables. By Kruskal and Katona’s theorem, there exists a

lex ideal L′of R having the same the same Hilbert function as I ′. Let L ⊂ S be

generated by the monomials of L′ (so L is the squarefree lex ideal with the same

Hilbert function as I). Then:

1. The Betti numbers of L′ over R are greater than or equal to those of I ′.

2. The Betti numbers of L over S are greater than or equal to those of I.

(1) is widely conjectured to hold in every setting where Macaulay’s theorem

is known; there are counterexamples to the natural generalization of (2), arising

from situations where L and I do not have the same Hilbert function.

One of the most interesting open problems in commutative algebra is the

lex-plus-powers conjecture of Graham Evans, which extends the Eisenbud-Green-

Harris conjecture to Betti numbers:

Conjecture 1.3.5 (Evans). Let f1, · · · , fr ∈ S = k[x1, · · · , xn] be a homogeneous

regular sequence in increasing degrees e1 ≤ · · · ≤ er, and set P = (xe1
1 , · · · , xer

r ).

Let I be any homogeneous ideal containing (f1, · · · , fr), and suppose that there

exists a lex ideal L such that the lex-plus-powers ideal L + P has the same Hilbert

function as I. Then bi,j(L + P ) ≥ bi,j(I) for all i, j.

The lex-plus-powers conjecture is known only in a few very special cases (cf.

[FR]). In chapter 7, we prove it in the case that k has characteristic at most 2 and

f1, · · · , fr = x2
1, · · · , x2

n.



Chapter 2

Preliminaries

2.1 Notation

Instead of the cumbersome notation HilbS
M(d) for the Hilbert function of a mono-

mial ideal M , we will frequently write |M |Sd , or, when the ring is understood, |Md|

or |M |d. When the degree is understood as well, we write simply |M |.

We frequently wish to consider the set of monomials appearing in an ideal M ;

this will consistently be denoted {M}.

If M ⊂ S is a monomial ideal, and R is another ring containing the variables

of S, then every monomial of S may be naturally associated to either zero or

a unique monomial of R (m ∈ S may be uniquely written in the form m =

∏

xei

i ; we associate to this the product
∏

xei

i ∈ R). We will frequently wish to

study the monomial ideal of R generated by the monomials of {M}; when we

say “M considered as an ideal of R”, this is what we mean. In particular, if

S = k[x1, · · · , xn] and R = k′[x1, · · · , xn] where k and k′ are different fields, the

Hilbert function of M does not depend on whether it is considered as an ideal of S

or of R. Since it is usually convenient to work over an infinite field of characteristic

zero, we will often change fields in this way.

The homogeneous maximal ideal of S, (x1, · · · , xn), will be referred to simply

as m.

A graded vector subspace is a k-vector subspace of S which is spanned by

homogeneous elements. It is a monomial vector space if it is spanned by monomials.

A monomial vector space is lex if it satisfies property 1.2.3. The definition of the

Hilbert function extends naturally to graded vector spaces.

8
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The two most important graded vector spaces are m1 = (x1, · · · , xn) and Md,

for a homogeneous ideal M .

A graded vector space V = ⊕Vd, with Vd = {v ∈ V homogeneous of degree d},

is an ideal if and only if we have m1Vd ⊂ Vd+1 for all d.

Many statements about Hilbert functions of ideals in S may be recast in terms

of monomial vector spaces. These restatements are always harder to read, but often

easier to prove. For example, Macaulay’s theorem may be restated as follows:

Theorem 2.1.1 (Macaulay). Let V ⊂ Sd be a vector subspace, and let L be the

vector subspace of Sd spanned by the lex-first |V | monomials in degree d (so that

L is a lex vector space). Then we have |m1L| ≤ |m1V |.

We routinely induct using the following ordering on the monomial vector spaces

with a fixed Hilbert function:

Definition 2.1.2. Let V = ⊕Vd and W = ⊕Wd be monomial vector spaces with

the same Hilbert function. We say that V is lexicographically greater than W if

the following condition holds:

Let d be minimal such that Vd 6= Wd, and order the monomials of

Vd and Wd so that vi is lex-before vj (respectively, wi lex-before wj)

whenever i < j. Let i be minimal such that vi 6= wi. Then vi is

lex-before wi.

It is a simple consequence of Macaulay’s theorem that there are only finitely

many monomial ideals with a fixed Hilbert function. Because we will need it in our

proofs, we prove the following weaker statement without reference to Macaulay’s

theorem:
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Lemma 2.1.3. “Lexicographically greater than” is a well-ordering on the set of

monomial ideals with a fixed Hilbert function.

Proof. Let M be any collection of monomial ideals all having the same Hilbert

function F . We will show that M has a lexicographically greatest element.

For every degree D, let F≤D be the truncation of F below D: F≤D(d) = F (d)

if d ≤ D and F≤D(d) = 0 if d > D. For each M ∈ M, let M≤D be the vector

space spanned by the monomials of M which have degree at most D. Then the

M≤D all have Hilbert function F≤D. There are only finitely many monomials with

degree at most d, hence there are only finitely many monomial vector spaces with

this Hilbert function, and so the M≤D have a lexicographically greatest element,

which we denote N≤D.

Let ND be the monomial ideal generated by N≤D. We have the infinite ascend-

ing chain N1 ⊂ N2 · · · ⊂ ND ⊂ ND+1 ⊂ · · · , which must stabilize, say at Np, by

the Hilbert Basis Theorem. Then Np has Hilbert function F , is in M, and is the

lexicographically greatest ideal of M.

2.2 Tools

We introduce several tools that we use frequently. With the exception of compres-

sion (section 2.2.3), these are treated in considerably more detail in many texts on

commutative algebra (cf. [Ei]).

2.2.1 Borel Ideals

Definition 2.2.1. We say that a monomial ideal M is strongly stable or 0-Borel

fixed if it satisfies the following condition:
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Let u ∈ M be a monomial, and suppose that xj divides u and i < j.

Then xi

xj
u ∈ M .

These ideals are called 0-Borel fixed (or, by abuse, simply Borel) because,

in characteristic zero, they are fixed by the action of the Borel group (of upper

triangular matrices) on S. There is also a combinatorial characterization of p-Borel

fixed ideals, describing those which are fixed by the action of the Borel group in

characteristic p, but it is considerably more complex.

Because strongly stable ideals are combinatorially very well-behaved, their

Hilbert functions are easier to work with than those of general ideals. For ex-

ample, we have the following formula, due to Bigatti [Bi]:

Proposition 2.2.2 (Bigatti). Let S = k[x1, · · · , xn], and M ⊂ S be a strongly

stable ideal. Then we have |m1Md| =

n
∑

i=1

|Md ∩ k[x1, · · · , xi]|.

Proof. Since M is strongly stable, every monomial of m1Md may be written

uniquely in the form xim, where m ∈ Md and xi is lex-later than (or equal to)

every variable dividing m, and hence m ∈ k[x1, · · · , xi]; similarly, every monomial

of this form is in m1Md.

Thus, comparing the Hilbert function growth of Lex and Borel ideals reduces

to computing intersections with these subrings; this is one of our primary activities

in chapter 4.

Given any homogeneous ideal I, it is useful to show that there is a Borel ideal

M with the same Hilbert function as I; the usual technique is to take a generic

initial ideal.
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2.2.2 Generic Initial Ideals

Definition 2.2.3. Let � be any monomial order, and I ⊂ S = k[x1, · · · , xn] any

homogeneous ideal. The ideal in(I) is the monomial ideal generated by the leading

terms (with respect to �) of all elements of I: in(I) = ({lt(f) : f ∈ I}).

By Gröbner basis theory, in(I) has the same Hilbert function as I and larger

graded Betti numbers.

Now, suppose that k is an infinite field of characteristic zero, and let f : xi 7→

∑

ai,jxj be a linear change of coordinates on S. Then f(I) has the same Hilbert

function and Betti numbers as I, and we have the following (cf. [Ei, Chapter

15.9]):

Definition/Theorem 2.2.4. There exists an ideal gin(I), called the generic ini-

tial ideal of I, such that, for generic f , we have gin(I) = in(f(I)). Furthermore,

gin(I) is strongly stable.

2.2.3 Compression

Compression is a technique for approaching the lex ideal by induction on the

dimension n of S.

Its use dates back at least to Macaulay, who used {x2, · · · , xn}-compression in

the original proof of Macaulay’s theorem [Ma]. The original proof of Clements-

Lindström’s theorem [CL] uses compression with respect to three sets of cardinality

n − 1; the name “compression” is due to Clements and Lindström.

We define compression here over the ring S = k[x1, · · · , xn], although the results

of this section hold in somewhat more generality. In particular, the same proofs

apply if we work over the ring R = S/(xe1
1 , · · · , xen

n ) (with e1 ≤ · · · ≤ en), where
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Clements-Lindström’s Theorem replaces Macaulay’s Theorem.

Fix a proper subset A of the variables, A ⊂ {x1, · · · , xn}. By k[A] and k[Ac]

we mean k[xi : xi ∈ A] and k[xi : xi /∈ A], respectively.

Construction 2.2.5. Let M be a monomial ideal. Then M decomposes as a

direct sum of vector spaces

M =
⊕

f∈k[Ac]
monomial

fMf ,

where f runs over all monomials not involving the variables of A and each Mf is

an ideal of k[A].

Definition/Construction 2.2.6. If every Mf is a lex ideal of k[A], we say that M

is A-compressed. By Macaulay’s theorem, there exist lex ideals Tf ⊂ k[A] having

the same Hilbert functions as the Mf . The vector space T = ⊕fTf is called the

A-compression of M .

Following Clements and Lindström, when A = {x1, · · · , x̂i, · · · , xn} is missing

only the variable xi, we sometimes say i-compression rather than A-compression.

We have the following:

Lemma 2.2.7. Let T be the A-compression of M . Then:

1. T is an ideal of S.

2. T has the same Hilbert function as M .

3. T is lexicographically greater than M .

Proof. (2) and (3) are immediate; we prove (1). It suffices to show that, for any

xi, we have xifTf ⊂ T . If xi ∈ A, we have xifTf ⊂ fTf because Tf is an

ideal of k[A]. If xi /∈ A, we have Mf ⊂ Mxif since M is an ideal; consequently,
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|Tf |d = |Mf |d ≤ |Mxif |d = |Txif |d for all d. Thus Tf ⊂ Txif since these are lex

ideals of k[A], and so xifTf ⊂ xifTxif ⊂ T .

The properties of compression and compressed ideals are studied in detail in

chapters 5 and 6. As a simple application, we use the decomposition of construction

2.2.5 to derive the Macaulay representation.

Theorem 2.2.8. Let L ⊂ S = k[x1, · · · , xn] be a lex ideal.

1. If |L|d =
∑n−1

j=1

(

aj

n−j

)

with the aj monotonically decreasing, then |L|d+1 ≥

∑
(

aj+1
n−j

)

, with equality if L has no generators in degree d + 1.

2. If |S/L|d =
∑d

j=0

(

aj

d−j

)

with the aj monotonically decreasing, then |S/L|d+1 ≤

∑
(

aj+1
d−j+1

)

, with equality if L has no generators in degree d + 1.

Proof. Take A = {x2, · · · , xn}, and write

Ld = L1 ⊕ x1Lx1 ⊕ · · · ⊕ xd
1Lxd

1

= 0 ⊕ xi
1Lxi

1
⊕ xi+1

1 md−i−1.

Now |xi+1
1 md+i−1| =

(

n+d−i−2
n−1

)

, and, by induction, |xi
1Lxi

1
| =

∑
(

aj

n−j

)

, with the aj

decreasing and less than n + d − j − 2. If L has no generators in degree d + 1, we

have Ld+1 = xi
1Lxi

1
(x2, · · · , xn) ⊕ xi+1

1 md−i. The second summand has dimension

(

n+d−i−1
n−1

)

; the first has dimension
∑

(

aj+1
n−j

)

by induction. This proves (1).

For (2), write Ld = x1L
′
x1
⊕· · ·⊕xnL′

xn
, with L′

xj
lex in k[xj, · · · , xn]. Then we

have (S/L)d = (k[xi, · · · , xn]/L′
i)d−1⊕(k[xi+1 · · · , xn])d. Now (k[xi+1 · · · , xn])d has

dimension
(

n+d−i−1
d

)

and (k[xi, · · · , xn]/L′
i)d−1 has dimension

∑
(

aj

d−j

)

by induction.

If L has no generators in degree d + 1, we have (S/L)d+1 = (k[xi, · · · , xn]/L′
i)d ⊕

(k[xi+1 · · · , xn])d+1. The second summand has dimension
(

n+d+i
d+1

)

; the first has

dimension
∑

(

aj+1
d−j

)

by induction.



Chapter 3

Lexifying Ideals*

3.1 Introduction

Let S = k[x1, . . . , xn] be a polynomial ring over a field k graded by deg(xi) = 1 for

all i.

Let M be a monomial ideal. We say that a graded ideal in S/M is lexifiable if

there exists a lexicographic ideal in S/M with the same Hilbert function. We call

M and S/M Macaulay-Lex if every graded ideal in S/M is lexifiable. The following

results are well known: Macaulay’s Theorem [Ma] says that 0 is a Macaulay-Lex

ideal, Kruskal-Katona’s Theorem [Ka, Kr] says that (x2
1, . . . , x

2
n) is a Macaulay-

Lex ideal, and Clements-Lindström’s Theorem [CL] says that (xe1
1 , . . . , xen

n ) is a

Macaulay-Lex ideal if e1 ≤ · · · ≤ en ≤ ∞. These theorems are well-known and

have many applications in Commutative Algebra, Combinatorics, and Algebraic

Geometry.

It is easy to construct examples like Example 3.2.8, where problems occur in

the degrees of the minimal generators of M . This motivated us to slightly weaken

the definition: Let q be the maximal degree of a minimal monomial generator of

M ; we call M and S/M pro-lex if every graded ideal generated in degrees ≥ q in

S/M is lexifiable. There exist examples of non pro-lex rings; see Example 3.3.15.

The main goal in this chapter is to open a new direction of research along the lines

* This chapter is adapted with permission from the paper “Lexifying Ideals”
by Jeff Mermin and Irena Peeva, which will appear in Mathematical Research
Letters. It has been modified to fit this dissertation in the following ways: Some
introductory material, which overlaps the introductory chapters of the thesis, has
been deleted. Some minor adjustments have been made to the notation, and some
typesetting has been changed in order to conform to the thesis guidelines.

15
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of the following problem.

Problem 3.1.1. Find classes of pro-lex monomial ideals.

Theorem 3.5.1 shows that if M is Macaulay-Lex and N is lexicographic, then

M + N is Macaulay-Lex. Theorem 3.4.1 shows that if M is Macaulay-Lex, then it

stays Macaulay-Lex after we add extra variables to the ring S. In Section 3.3 we

prove:

Theorem 3.1.2. . Let P = (xe1
1 , · · · , xen

n ), with e1 ≤ e2 ≤ · · · ≤ en ≤ ∞ (here

x∞
i = 0), and M be a compressed monomial ideal in S/P generated in degrees ≤ p.

If n = 2, assume that M is (S/P )-lex. Set Υ = S/(M + P ). Then Υ is pro-lex

above p, that is, for every graded ideal Γ in Υ generated in degrees ≥ p there exists

an Υ-lex ideal Θ with the same Hilbert function.

In the case when M = P = 0, Theorem 3.1.2 is Macaulay’s Theorem [Ma]; in the

case when M = 0, Theorem 3.1.2 is Clements-Lindström’s Theorem [CL]. Exam-

ples 3.3.14 and 3.3.15 show that there are obstructions to generalizing Theorem3.1.2

We make use of ideas of Bigatti [Bi], Clements and Lindström [CL], and Green

[Gr2]. Our proofs are algebraic, and we avoid computations using generic forms

(used in [Gr2]) and combinatorial counting (used in [CL]). In Section 3.2 we intro-

duce definitions and notation used throughout the chapter.

Acknowledgments. We thank Christopher Francisco, Mike Stillman, and Steven

Sinnott for helpful discussions.

3.2 Lexification

The notation in this section will be used throughout the chapter. We introduce

several definitions.
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Let k be a field and S = k[x1, . . . , xn] be graded by deg(xi) = 1 for all i. We

denote by Sd the k-vector space spanned by all monomials of degree d. Denote m =

(x1, . . . , xn)1 the k-vector space spanned by the variables. We order the variables

lexicographically by x1 > · · · > xn, and we denote by >lex the homogeneous

lexicographic order on the monomials. We say that an ideal is p-generated if it has

a system of generators of degree p.

A monomial xa1
1 . . . xan

n has exponent vector a = (a1, . . . , an), and is sometimes

denoted by xa. An ideal is called monomial if it can be generated by monomials;

such an ideal has a unique minimal system of monomial generators.

Notation 3.2.1. Let M be a monomial ideal. Set Υ = S/M . Vector spaces in Υ

(and sometimes ideals) are denoted by greek letters. For example, we denote by

Cd a subspace of Sd, and we denote by τd a subspace of Υd.

Definition 3.2.2. The Υd-lex-segment λd,p of length p in degree d is defined as

the k-vector space spanned by the lexicographically first (greatest) p monomials in

Υd. We say that λd is a lex-segment in Υd if there exists a p such that λd = λd,p.

For a Υd-monomial space τd, we say that λd,|τd| is its Υd-lexification.

For simplicity, we sometimes say lex instead of Υ-lex if it is clear over which

ring we work.

Example 3.2.3. The ideal (a2, ab, b2) is lex in the ring k[a, b, c, d]/(ac, ad), and

its generators span a lex-segment. The k-vector space spanned by a2, ab, b2 is the

lexification of the k-vector space spanned by b2, c2, cd. However, the ideal is not

lex in k[a, b, c, d].

Proposition 3.2.4. If τd is an Υd-lex-segment, then mτd is an Υd+1-lex-segment.
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Definition 3.2.5. We say that an Υd-monomial space τd is Υd-lexifiable if its

lexification λd has the property that |mλd| ≤ |mτd|. The monomial ideal M and

the quotient ring Υ = S/M are called d-pro-lex, if every Υd-monomial space is

Υd-lexifiable.

Definition 3.2.6. We say that a graded ideal R in Υ is lexifiable if there exists

an Υ-lex ideal with the same Hilbert function as R. The monomial ideal M and

the quotient ring Υ = S/M are called Macaulay-Lex if every graded ideal in Υ is

lexifiable.

Example 3.2.7. This example shows that the order of the variables can make a

difference. The ideal (ab) is not lexifiable in the ring k[a, b]/(ab2) for the lex order

with a > b, but it is lexifiable for the lex order with b > a.

Example 3.2.8. The ideal (ab) is not lexifiable in the ring k[a, b]/(a2b, ab2) in any

lex order.

It is easy to construct many examples like Example 3.2.8. This observation

suggests that in order to obtain positive results we need to slightly relax Definition

3.2.6:

Definition 3.2.9. Let q be the maximal degree of a minimal monomial generator

of M . The monomial ideal M and the quotient ring Υ = S/M are called pro-lex if

every graded ideal generated in degrees ≥ q in Υ is lexifiable.

In the examples we usually denote the variables by a, b, c, d for simplicity.

3.3 Compression

The following definition generalizes a definition introduced by Clements and Lind-

ström [CL], who used it over a quotient of a polynomial ring modulo pure powers
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of the variables.

Definition 3.3.1. Let E be a monomial ideal in S. A (S/E)d-monomial space

τd is called i-compressed (or i-compressed in (S/E)d) if it is {x1, · · · , x̂i, · · · , xn}-

compressed in the sense of Definition 2.2.6 We say that a k-vector space τd is

(S/E)d-compressed (or compressed) if it is a (S/E)d-monomial space and is i-

compressed for all 1 ≤ i ≤ n. A monomial ideal T in S/E is called compressed if

Td is compressed for all d ≥ 0.

Example 3.3.2. The ideal

(a3, a2b, a2c, ab2, abc, b3, b2c)

is compressed in the ring k[a, b, c].

Lemma 3.3.3. If τd is i-compressed in (S/E)d, then mτd is i-compressed in

(S/E)d+1. If τd is (S/E)d-lex, then it is (S/E)d-compressed.

Definition 3.3.4. A S-monomial ideal K is called compressed-plus-powers if K =

M + P , where P = (xe1
1 , · · · , xen

n ) with e1 ≤ e2 ≤ · · · ≤ en ≤ ∞ and the monomial

ideal M is compressed in S/P . Sometimes, when we need to be more precise, we

say that K is compressed-plus-P . Furthermore, we say that K is lex-plus-P if M

is lex in S/P .

Notation 3.3.5. Throughout this section we use the following notation and make

the following assumptions:

• P = (xe1
1 , · · · , xen

n ) with e1 ≤ e2 ≤ · · · ≤ en ≤ ∞

• The ideal K = M + P is a compressed-plus-P monomial ideal in S; here M

is compressed in S/P .
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• If n = 2 we assume in addition that K is lex-plus-P .

• We assume that M is p-generated.

• Set Υ = S/K.

• d is a degree such that d ≥ p.

For a (S/P )d-monomial space Ad set

ti(Ad) =
∣

∣

∣
{m ∈ {Ad} | max(m) ≤ i }

∣

∣

∣

si(Ad) =
∣

∣

∣
{m ∈ {Ad} | max(m) = i and xei−1

i divides m }
∣

∣

∣

ri,j(Ad) =
∣

∣

∣
{m ∈ {Ad} | max(m) ≤ i and xj

i does not divide m }
∣

∣

∣
.

The formula in the following lemma is a generalization of a formula introduced

by Bigatti [Bi], who used it for S-Borel ideals.

Lemma 3.3.6. Let Ad be a (S/P )d-monomial space.

(1) If Ad is compressed and n ≥ 3, then Ad is (S/P )d-Borel.

(2) If Ad is (S/P )d-Borel, then

∣

∣

∣
{mAd}

∣

∣

∣
=

n
∑

i=1

ti(Ad) − si(Ad) =

n
∑

i=1

ri,ei−1(Ad) .

Proof. First, we prove (1). Let m ∈ {Ad} and m′ be a (S/P )d–monomial in its big

shadow. Hence m′ =
xi m

xj
for some xj dividing m and some i ≤ j. There exists

an index 1 ≤ q ≤ n such that q 6= i, j. Note that that m and m′ have the same

q-exponents. Since Ad is q-compressed and m′ >lex m, it follows that m′ ∈ {Ad}.

Therefore, Ad is (S/P )d–Borel.
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Now, we prove (2). We will show that {mAd} is equal to the set

n
∐

i=1

xi {m ∈ {Ad} |max(m) ≤ i } \

n
∐

i=1

xi {m ∈ {Ad} |max(m) = i and xei−1
i divides m }.

Denote by P the set above. Let w ∈ Ad. For j ≥ max(w) we have that xjw ∈ P.

Let j < max(w). Then v = xj
w

xmax(w)

∈ Ad. So, xjw = xmax(w)v ∈ P.

Lemma 3.3.7 is a generalization of a result by M. Green [Gr2], who proved a

particular case of it it over a polynomial ring (in the case M = 0). Green’s proof

is entirely different than ours; he makes a computation with generic linear forms.

It is not clear how to apply his computation to the case M 6= 0.

Lemma 3.3.7. Let τd be an n-compressed Borel Υd-monomial space, and let λd be

a lex-segment in Υd with |{λd}| ≤ |{τd}|. Let Ld and Td be the (S/P )d-monomial

spaces such that {Ld} = {λd}
∐

{Md} and {Td} = {τd}
∐

{Md}. For each 1 ≤ i ≤

n and each 1 ≤ j ≤ ei we have

ri,j(Ld) ≤ ri,j(Td) .

Proof. Set R = S/P . By Lemma 3.3.6, Md is Rd-Borel. Therefore, both Ld and

Td are Rd-Borel and n-compressed.

First, we consider the case i = n. Clearly, rn,en
(Ld) = |Ld| = |Td| = rn,en

(Td)

(if en = ∞, then we consider rn,d+1 here). We induct on j decreasingly. Suppose

that ri,j+1(Ld) ≤ ri,j+1(Td) holds by induction.

If {Td} contains no monomial divisible by xj
n then

ri,j(Ld) ≤ ri,j+1(Ld) ≤ ri,j+1(Td) = ri,j(Td) .

Suppose that {Td} contains a monomial divisible by xj
n. Denote by e = xb1

1 . . . xbn
n ,

with bn ≥ j, the lex-smallest monomial in Td that is divisible by xj
n. Let 0 ≤
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q ≤ j − 1. Since Td is Rd-Borel, it follows that cq = xbn−q
n−1

e

xbn−q
n

∈ Td. This is

the lex-smallest monomial that is lex-greater than e and xn divides it at power

q. Let the monomial a = xa1
1 . . . x

an−1

n−1 xq
n ∈ Rd be lex-greater than e. Since Td is

n-compressed and a is lex-greater (or equal) than cq, it follows that a ∈ Td.

For a monomial u, we denote by xn /∈ u the property that xj
n does not divide

u. By what we proved above, it follows that

(3.3.8)
∣

∣

∣
{u ∈ {Td} | xn /∈ u, u >lex e }| = |{u ∈ {Rd} | xn /∈ u, u >lex e }

∣

∣

∣
.

Therefore,

ri,j(Ld) = |{u ∈ {Ld} | xn /∈ u, u >lex e }| + |{u ∈ {Ld} | xn /∈ u, u <lex e }|

≤ |{u ∈ {Rd} | xn /∈ u, u >lex e }| + |{u ∈ {Ld} | xn /∈ u, u <lex e }|

≤ |{u ∈ {Rd} | xn /∈ u, u >lex e }| + |{u ∈ {Ld} | u <lex e }|

≤ |{u ∈ {Rd} | xn /∈ u, u >lex e }| + |{u ∈ {Td} | u <lex e }|

= |{u ∈ {Rd} | xn /∈ u, u >lex e }| + |{u ∈ {Td} | xn /∈ u, u <lex e }|

= |{u ∈ {Td} | xn /∈ u, u >lex e }| + |{u ∈ {Td} | xn /∈ u, u <lex e }|

= ri,j(Td) ;

for the third inequality we used the fact that λd is a lex-segment in Υd with

|{λd}| ≤ |{τd}|; for the equality after that we used the definition of e; for the next

equality we used (3.3.8). Thus, we have the desired inequality in the case i = n.

In particular, we proved that

(3.3.9) tn−1(Ld) = rn,1(Ld) ≤ rn,1(Td) = tn−1(Td) .

Finally, we prove the lemma for all i < n. Both {τd/xn} and {λd/xn} are lex-

segments in Υd/xn since τd is n-compressed. By (3.3.9) the inequality tn−1(Ld) ≤
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tn−1(Td) holds, and it implies the inclusion {τd/xn} ⊇ {λd/xn}. The desired

inequalities follow since

ri,j(Td) = ri,j

(

Td/(xi+1, . . . , xn)
)

= ri,j

(

{τd/(xi+1, . . . , xn)}
∐

{Md/(xi+1, . . . , xn)}
)

ri,j(Ld) = ri,j

(

Ld/(xi+1, . . . , xn)
)

= ri,j

(

{λd/(xi+1, . . . , xn)}
∐

{Md/(xi+1, . . . , xn)}
)

Lemma 3.3.10. Let υd be a Υd-monomial space. There exists a compressed mono-

mial space τd in Υd such that |τd| = |υd| and |mτd| ≤ |mυd|.

Proof. Suppose that υd is not i-compressed. Set z = xi. Since M is z-compressed

in S/P , we have the disjoint union

{Md} =
∐

0≤j≤d

zd−j{Nj} ,

where each Nj is a (S/(z, P ))j-lex-segment.

We also have the disjoint union

{υd} =
∐

0≤j≤d

zd−j{νj}

where each νj is a monomial space in S/(z, P, Nj). Let γj be the lexification of the

space νj in S/(z, P, Nj). Consider the Υd-monomial space τd defined by

{τd} =
∐

0≤j≤d

zd−j{γj} .

Clearly, |τd| = |υd|.

Consider the (S/P )d-monomial spaces Vd and Td such that

{Vd} = {υd}
∐

{Md} and {Td} = {τd}
∐

{Md} .

Set R = S/P . The short exact sequence of k-vector subspaces of (S/P )d+1

0 → mMd → mTd −→ mTd/mMd = mτd/
(

mτd ∩ mMd

)

→ 0
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shows that |mτd| = |mTd|−|mMd| (here we mean |mτd|
Υ = |mTd|

S/P −|mMd|
S/P ).

Similarly, the short exact sequence of k-vector subspaces of (S/P )d+1

0 → mMd → mVd −→ mVd/mMd = mυd/
(

mυd ∩ mMd

)

→ 0

shows that |mυd| = |mVd| − |mMd|. Therefore, the desired inequality |mτd| ≤

|mυd| is equivalent to the inequality

|mTd| ≤ |mVd| .

We will prove the latter inequality.

We have the disjoint unions

{Vd} =
∐

0≤j≤d

zd−j{Uj} and {Td} =
∐

0≤j≤d

zd−j{Fj} , where

{Uj} = {νj}
∐

{Nj} and {Fj} = {γj}
∐

{Nj} in the ring S/(z, P ) .

Note that each Fj is a (S/(z, P ))j-lex-segment. Furthermore, we have the

disjoint unions

{mVd} =
∐

0≤j≤d

zd−j+1{Uj + nUj−1}

{mTd} =
∐

0≤j≤d

zd−j+1{Fj + nFj−1} ,

where n = m/z. We will show that

|Fj + nFj−1| = max

{

|Fj|, |nFj−1|

}

≤ max

{

|Uj|, |nUj−1|

}

≤ |Uj + nUj−1| .

The first equality above holds because both Fj and nFj−1 are (S/(z, P ))j-

lex-segments, so Fj + nFj−1 is the longer of these two lex-segments. The last

inequality is obvious. It remains to prove the middle inequality. Using the short
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exact sequences of k-vector subspaces of (S/P )j

0 → nNj−1 → nFj−1 −→ nFj−1/nNj−1 = nγj−1/
(

nγj−1 ∩ nNj−1

)

→ 0

0 → nNj−1 → nUj−1 −→ nUj−1/nNj−1 = nνj−1/
(

nνj−1 ∩ nNj−1

)

→ 0

we get |nγj−1| = |nFj−1|− |nNj−1| and |nνj−1| = |nUj−1|− |nNj−1|. Therefore,

the desired inequality |nFj−1| ≤ |nUj−1| is equivalent to the inequality |nγj−1| ≤

|nνj−1|. The latter inequality holds since by construction γj−1 is the lexification of

νj−1, so |γj−1| = |νj−1| and by induction on the number of variables we can apply

Theorem 3.3.11 to the ring S/(z, P, Nj).

Thus, |Fj + nFj−1| ≤ |Uj + nUj−1|. Multiplication by zd−j+1 is injective if

d − j + 1 ≤ ei − 1 and is zero otherwise, therefore we conclude that

∣

∣

∣
zd−j+1(Fj + nFj−1)

∣

∣

∣
≤

∣

∣

∣
zd−j+1(Uj + nUj−1)

∣

∣

∣
.

This implies the desired inequality |mTd| ≤ |mVd|.

Note that {τd} is greater lexicographically than {υd}. If τd is not compressed,

we can apply the argument above. After finitely many steps in this way, the process

must terminate because at each step we construct a lex-greater monomial space.

Thus, after finitely many steps, we reach a compressed monomial space.

Theorem 3.3.11. Let υd be a Υd-monomial space and λd be its lexification in Υd.

Then |mλd | ≤ |mυd |.

Proof. The theorem clearly holds if n = 1. Suppose that n = 2. An easy calcula-

tion shows that the theorem holds, provided we do not have e2 ≤ d + 1 < e1. By

the assumption on the ordering of the exponents, this does not hold and we are

fine.



26

Suppose that n ≥ 3. First, we apply Lemma 3.3.10 to reduce to the compressed

case. We obtain a compressed Υd-monomial space τd such that |τd| = |υd| and

|mτd| ≤ |mυd|. Let Ld and Td be the (S/P )d-monomial spaces such that {Ld} =

{λd}∪{Md} and {Td} = {τd}∪{Md}, where the disjoint unions take place in S/P .

Both Ld and Td are (S/P )d-compressed. We apply Lemma 3.3.6 to conclude that

∣

∣

∣
{mTd}

∣

∣

∣
=

n
∑

i=1

ti(Td)−
n

∑

i=1

si(Td) and
∣

∣

∣
{mLd}

∣

∣

∣
=

n
∑

i=1

ti(Ld)−
n

∑

i=1

si(Ld) .

Finally, we apply Lemma 3.3.7 and conclude that
∣

∣ {mLd}
∣

∣ ≤
∣

∣ {mTd}
∣

∣. This

inequality and short exact sequences, as in the proof of Lemma 3.3.10, imply the

desired |mλd| ≤ |mυd|.

Equivalently, we obtain the following theorem, stated in the introduction:

Theorem 3.3.12. Let P = (xe1
1 , · · · , xen

n ), with e1 ≤ e2 ≤ · · · ≤ en ≤ ∞ (here

x∞
i = 0), and M be a compressed monomial ideal in S/P generated in degrees ≤ p.

If n = 2, assume that M is (S/P )-lex. Set Υ = S/(M + P ). Then Υ is pro-lex

above p, that is, for every graded ideal Γ in Υ generated in degrees ≥ p there exists

an Υ-lex ideal Θ with the same Hilbert function.

Proof. We can assume that Γ is a monomial ideal by Gröbner basis theory. For

each d ≥ p, let λd be the lexification of Γd. By Theorem 3.3.11, it follows that

Θ = ⊕d≥p λd is an ideal. By construction, it is a lex-ideal and has the same Hilbert

function as Γ in all degrees greater than or equal to p.

Remark 3.3.13. In the case when M = P = 0, Theorem 3.3.12 is the well-known

Macaulay’s Theorem [Ma]. In the case M = 0, Theorem 3.3.12 is the Clements-

Lindström’s Theorem [CL].
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Example 3.3.14. It is natural to ask if a compressed ideal is Macaulay-Lex. This

example shows that the answer is negative. Take P = 0. The ideal

M = ( a3, a2b, a2c, ab2, abc, b3, b2c )

is compressed (and Borel) in the ring k[a, b, c]. The ideal (a2, ab, b2) in k[a, b, c]/M

is not lexifiable.

Example 3.3.15. It is natural to ask if Theorem 3.3.12 holds in the case when

M is a S-Borel ideal. It does not. Take P = 0. The ideal

M = ( a3, a2b, a2c, a2d, ab2, abc, abd, b3, b2c )

is Borel in the ring k[a, b, c, d]. However it is not pro-lex because the ideal (b2d) is

not lexifiable in k[a, b, c, d]/M .

3.4 Adding new variables

Theorem 3.4.1. If S/M is Macaulay-Lex then S[y]/M is Macaulay-Lex.

In this section, W = S[y]/M , m is the k-vector space spanned by the variables

in S (as in Section 3.2), and q is the k-vector space spanned by m and y.

Lemma 3.4.2. Let Vd be a Wd-monomial space, and let Td be its y-compression.

Then |Td| = |Vd| and |qTd| ≤ |qVd|.

Proof. The proof is based on the same idea as the proof of Lemma 3.3.10. We write

{V d} =
∐

0≤j≤d yd−j{Uj} and Td =
∐

0≤j≤d yd−j{Fj}, where the Fj are S/M -lex

satisfying |Fj| = |Uj|. Then, as in the proof of Lemma 3.3.10, we have the disjoint



28

unions

{qVd} =
∐

0≤j≤d

yd−i+1{Uj + mUj−1}

{qTd} =
∐

0≤j≤d

yd−i+1{Fi + mFj−1},

and we have the inequalities

|Fi + mFj−1| = max {|Fj|, |mFj−1|} ≤ max {|Uj|, |mUj−1|} ≤ |Uj + mUj−1|,

where the middle inequality holds because S/M is Macaulay-Lex. Since multi-

plication by y is injective, we get

|yd−i+1(Fi + mFj−1)| ≤ |yd−i+1(Uj + mUj−1)|.

Lemma 3.4.3. Let Td be a y-compressed Wd-monomial space. Then either Td is

Wd-lex, or there exists a Wd-monomial space Fd, such that Fd is strictly lexico-

graphically greater than Td, |Fd| = |Td|, and |qFd| ≤ |qTd|.

Proof. Let r be as large as possible among the numbers for which we can write

Td = yd−rP ⊕

(

⊕

i>r

yd−iLi

)

with P a lex segment of Wd. Such an r always exists, as we can if necessary take

r = 0.

If r = d, then Td is Wd-lex and we are done. If not, then yP + Lr+1 is not lex

in W . Let m be the lex-greatest monomial of Wr+1 such that m /∈ yP + Lr+1. We

consider two cases depending on whether y divides m or not.

Suppose that y divides m. Let u be the lex-least monomial of yP +Lr+1. Since

P is lex and y does not divide m, it follows that y does not divide u. Let Q be the
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k-vector space spanned by {Q}, defined by

{Q} =
(

{yP} ∪ {Lr+1} ∪ {m}
)

\ {u} .

Set

Fd = yd−r−1Q ⊕

(

⊕

i>r+1

yd−iLi

)

.

Now, {Fd}\yd−r−1m = {Td}\yd−r−1u. Hence, {Fd} is strictly lexicographically

greater than Td. We will compare {qFd} and {qTd}. The set {myd−r−1m} is

contained in {qTd}, so we have qFd \ (qFd ∩ qTd) ⊆ {yd−rm}. Furthermore, we

will show that yd−ru /∈ {qFd}. Suppose the opposite. Hence, there exists a q such

that yd−ru = xq

(

yd−r u
xq

)

, where u
xq

∈ P . But y u
xq

∈ yP is lex-smaller than u; this

contradicts the choice of u. Hence {qTd} \ (qFd ∩ qTd) ⊇ {yd−ru}. Therefore, we

have the desired inequality |qFd| ≤ |qTd|. Thus, the lemma is proved in this case.

It remains to consider the case when m is not divisible by y. In this case,

m is the lex-greatest monomial not divisible by y that is lex-smaller than all the

monomials in {Lr+1}. Set z = xmax(m). In our construction we will use the set

N =
{

u ∈ yP
∣

∣

∣
u <lex m and

(z

y

)eu

u 6= 0 in B/M
}

,

where eu is the largest power of y dividing u. We will show that N 6= ∅ because

y
z
m ∈ N . Since m is the lex-greatest monomial missing in m /∈ yP +Lr+1, it follows

that there exists a monomial ym′ ∈ yP that is lex-smaller than m. Therefore, m′

is (non-strictly) lex-smaller than m
z
. As m′ ∈ P and P is lex, it follows that m

z
∈ P.

Thus, y
z
m ∈ N as desired.

We will need three of the properties of N :
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Claim.

(1) m is (non-strictly) lex-greater than all the monomials in
z

y
N .

(2)
z

y
N ∩ {Lr+1} = ∅.

(3)
z

y
N ∩ {yP} ⊆ N .

We will prove the claim. (3) is clear. (2) follows from (1) and the fact that

in the considered case m is the lex-greatest monomial not divisible by y that is

lex-smaller than all the monomials in {Lr+1}. We will prove (1). Write

m = xa1
1 xa2

2 . . . zaz and u = xb1
1 xb2

2 . . . zbzwyby ,

where w is not divisible by x1, . . . , z or by y. Suppose that z
y
u = xb1

1 xb2
2 . . . zbz+1wyby−1

is lex-greater than m. On the other hand, m is lex-greater than u. It follows that

aj = bj for j < max(m) and bz < az ≤ bz + 1. Since the monomials have the same

degree, it follows that az = bz + 1, w = 1, and by = 1. Hence m = z
y
u. The claim

is proved.

Let Q be the k-vector space such that

{Q} =
(

{yP + Lr+1} \ N
)

∪
z

y
N .

By the claim above, it follows that we have the disjoint union {Q} = {Lr+1}
∐

yP\

N
∐ z

y
N . Clearly, |Q| = |Lr+1 ⊕ yP |.

We consider the set

Fd = yd−r−1Q ⊕

(

⊕

i>r+1

yd−iLi

)

.
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It is clear that |Fd| = |Td|. Since yd−r−1m ∈ Fd, we see that Fd is strictly lexico-

graphically greater than Td. We will show that the inequality |qFd| ≤ |qTd| holds.

Set U = Lr+1 ⊕ yP and V = ⊕i>r+1y
d−iLi.

Since

|qQ| − |qU | = −
∣

∣

∣

{

t ∈ qN \ (qN ∩ q(U \ N)
∣

∣

z

y
t = 0

}
∣

∣

∣
≤ 0)

it follows that |qQ| ≤ |qU |. Furthermore, we have

|qFd| = |q yd−r−1Q| + |qV | − |qV ∩ qyd−r−1Q|

= |q yd−r−1Q| + |qV | −
∣

∣yd−r−1
(

Lr+2 ∩ m
{

v ∈ Q
∣

∣y does not divide v
})

∣

∣

≤ |q yd−r−1U | + |qV | −
∣

∣yd−r−1
(

Lr+2 ∩ m
{

v ∈ Q
∣

∣y does not divide v
})

∣

∣

≤ |q yd−r−1U | + |qV | −
∣

∣yd−r−1
(

Lr+2 ∩ m
{

v ∈ U
∣

∣y does not divide v
})

∣

∣

= |qTd|;

the first inequality holds because multiplication by y is injective, the second holds

by set containment.

Proof of Theorem 3.4.1: Let Vd be a Wd-monomial space. If Vd is not W -lex,

apply Lemmas 3.4.2 and 3.4.3 to obtain a y-compressed Wd-monomial space Fd

which is strictly greater lexicographically than Vd and satisfies |Fd| = |Vd| and

|qFd| ≤ |qVd|. If Fd is not W -lex, we can apply the lemmas again. After finitely

many steps, the process must terminate in a lexicographic monomial space. Hence

W is d-pro-lex for all degrees d ≥ 0, and so is Macaulay-Lex.

3.5 Lexicographic quotients

Theorem 3.5.1. If M is Macaulay-Lex and N is a S/M-lex ideal, then M +N is

Macaulay-Lex.
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The theorem follows immediately from the following result:

Proposition 3.5.2. Fix a degree d ≥ 1. If M is (d − 1) -pro-lex and N is a

S/M-lex ideal, then M + N is (d − 1) -pro-lex.

Proof. Throughout this proof, for a monomial space V̄ in S/(M + N), we denote

by V the k-vector space spanned by {V̄ } in S/M .

Let W̄d−1 be a monomial space in
(

S/(M+N)
)

d−1
. Let L̄d−1 be the S/(M+N)-

lexification of W̄d−1. Set L̄d to be the k-vector space spanned by m{L̄d−1} and W̄d

be the k-vector space spanned by m{W̄d−1}. We will prove that

|L̄d|
S/(M+N) ≤ |W̄d|

S/(M+N) .

First, we assume that the ideal N has no minimal generators in degree d.

Note that Nd−1 + Ld−1 is a S/M -lex-segment. Therefore, Nd−1 + Ld−1 is the

S/M -lexification of Nd−1 + Wd−1 in the ring S/M . Since M is (d− 1)-pro-lex, the

following inequality holds:

|Nd + Ld|
S/M ≤ |Nd + Wd|

S/M .

On the other hand,

|Nd + Ld|
S/M = |Nd|

S/M + |Ld|
S/M − |Nd ∩ Ld|

S/M

|Nd + Wd|
S/M = |Nd|

S/M + |Wd|
S/M − |Nd ∩ Wd|

S/M

Therefore, we obtain the inequality

|Ld|
S/M − |Nd ∩ Ld|

S/M ≤ |Wd|
S/M − |Nd ∩ Wd|

S/M .
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Note that the left hand-side is equal to |Ld|
S/(M+N) whereas the right-hand side is

equal to |Wd|S/(M+N). Thus, we get the desired inequality

|Ld|
S/(M+N) ≤ |Wd|

S/(M+N) .

Now, suppose that N has minimal monomial generators in degree d.

If Ld ⊆ Nd, then

0 = |Ld|
S/(M+N) ≤ |Wd|

S/(M+N) .

Suppose that Ld 6⊆ Nd. Set Q = {Nd} \ {mNd−1}. Since both mNd−1 +Ld and

Nd are S/M -lex-segments, it follows that one of them contains the other. Hence

{Ld} ⊇ Q, and therefore

|Ld|
S/(M+N) = |Ld|

S/(M+(Nd−1)) − |Q| .

The argument above (for the case when the ideal is (d − 1)-generated) can be

applied to Nd−1, and it yields

|Ld|
S/(M+(Nd−1)) ≤ |Wd|

S/(M+(Nd−1)) .

Therefore we have

|Ld|
S/(M+N) = |Ld|

S/(M+(Nd−1)) − |Q|

≤ |Wd|
S/(M+(Nd−1)) − |Q| ≤ |Wd|

S/(M+(Nd−1)) − |Q ∩ {Wd}|

= |Wd|
S/(M+N) .

Macaulay’s Theorem [Ma] says that 0 is pro-lex. Hence, Theorem 3.5.1 applied

to M = 0 yields the following:

Corollary 3.5.3. If U is a S-lex ideal then it is Macaulay-Lex.
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Remark 3.5.4. Following [Sh], we say that a monomial ideal M in S is piecewise

lex if, whenever xa ∈ M , xb >lex xa, and max(xb) ≤ max(xa), we have xb ∈ M .

Shakin [Sh] proved that if M is a piecewise lex ideal in S, then it is Macaulay-

Lex. This result can be proved differently using our technique as follows: We

induct on n. Let xa1 , . . . ,xar be the minimal monomial generators of M divisible

by xn. So the lex segment Lj ending in xaj must be contained in M . Set N =

M ∩k[x1, · · · , xn−1]. Then N is piecewise lex and so by induction is Macaulay-Lex

in k[x1, · · · , xn−1]. By Theorem 3.4.1, N is Macaulay-Lex in S. By induction on

j, we conclude that (N +L1 + · · ·+Lj−1)+Lj is Macaulay-Lex by Theorem 3.5.1.

Hence, M = N + L1 + · · ·+ Lr is Macaulay-Lex as well.



Chapter 4

Hilbert Functions and Lex Ideals*

4.1 Introduction

There are many papers on Hilbert functions or using them. In many of the recent

papers and books, Hilbert functions are described using Macaulay’s representation

(which has nothing to do with Macaulay) with binomials. Thus, the arguments

consist of very clever computations with binomials. We have intentionally avoided

computations with binomials. One of our main goals is to go back to Macaulay’s

original idea in 1927 [Ma]: there exist highly structured monomial ideals - lex ideals

- that attain all possible Hilbert functions. The open problems that we discuss are

very natural questions on the role of lex ideals. It seems to us that Problems 4.3.6

and 4.3.8 are very basic and natural problems; the only reason why these problems

have not been explored is probably that it is messy to formulate them in terms of

binomials.

Throughout the chapter S = k[x1, . . . , xn] is a polynomial ring over a field k

graded by deg(xi) = 1 for all i. Let P = (xe1
1 , · · · , xen

n ), with e1 ≤ e2 ≤ · · · ≤

en ≤ ∞ (here x∞
i = 0) and set R = S/P . The Clements-Lindström Theorem [CL]

characterizes the possible Hilbert functions of graded ideals in the quotient ring R;

Macaulay’s Theorem [Ma] covers the particular case when R = S. In Section 4.2,

we present an algebraic proof of the Clements-Lindström Theorem combining ideas

of Bigatti [Bi], Clements and Lindström [CL], and Green [Gr2]. The proof is based

on the argument in Chapter 3. One of our main results is the Comparison Theorem

* This chapter is modified from the paper “Hilbert functions and lex ideals”,
which has been submitted for publication. It is joint work with Irena Peeva.
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4.2.9 which was inspired by Green’s Theorem. Note that the Comparison Theorem

4.2.9 holds in the ring R. As an immediate corollary we obtain the Generalized

Green’s Theorem 4.2.10. Green’s Theorem 4.2.11 is over the ring S and is just a

particular case of Theorem 4.2.10. Theorem 4.2.11 was first proved by Green [Gr1]

for linear forms, then it was extended to non-linear forms by Gasharov, Herzog,

and Popescu [Ga, HP].

In Section 4.3, we raise problems and conjectures which are natural extensions

of:

◦ Macaulay’s Theorem and Clements-Lindström’s Theorem

◦ Evans’ Conjecture on lex-plus-powers ideals

◦ conjectures by Gasharov, Herzog, Hibi, and Peeva.

We also very briefly discuss Eisenbud-Green-Harris’s Conjecture. All the problems

focus on the role of lex ideals.

By Macaulay’s Theorem [Ma] lex sequences of monomials have the minimal

possible growth of the Hilbert function. There exist many other monomial se-

quences with this property. The study of such sequences was started by Mermin

[Me2]; they are called lexlike sequences. In Section 4.4, we introduce lexlike ideals

and prove an extension of Macaulay’s Theorem for lexlike ideals. By Macaulay’s

Theorem, every Hilbert function is attained by a (unique up to reordering of the

variables) lex ideal. One of our main results, Theorem 4.4.11, shows that it is

also attained by (usually many) lexlike ideals; this is illustrated in Example 4.4.12.

Furthermore, we extend the result of Bigatti, Hulett, Pardue, that lex ideals have

maximal graded Betti numbers among all ideals with a fixed Hilbert function. We

show in Theorem 4.4.14 that lexlike ideals have maximal graded Betti numbers

among all ideals with a fixed Hilbert function.
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In the last section 4.5, we discuss multigraded Hilbert functions and introduce

multilex ideals.

4.2 The Clements-Lindström and Green’s Theorems

Throughout this section we use the following notation. Let S = k[x1, . . . , xn]

be a polynomial ring over a field k graded by deg(xi) = 1 for all i. Let P =

(xe1
1 , · · · , xen

n ), with e1 ≤ e2 ≤ · · · ≤ en ≤ ∞ (here x∞
i = 0) and set R = S/P .

We denote by Rd the k-vector space spanned by all monomials in R of degree d.

Denote m = (x1, . . . , xn)1 the k-vector space spanned by the variables. We order

the variables x1 > · · · > xn, and we denote by <Lex the homogeneous lexicographic

order on the monomials. For a monomial m, set max(m) = max{i| xi divides m}.

We say that Ad is a Rd-monomial space if it can be spanned by monomials of

degree d. We denote by {Ad} the set of monomials (non-zero monomials in Rd)

contained in Ad. The cardinality of this set is |Ad| = dimk Ad. By mAd we mean

the k-vector subspace
(

m (Ad)
)

d+1
of Rd+1.

Compressed ideals were introduced by Clements and Lindström [CL]. They

play an important role in the proof of the theorem.

Definition 4.2.1. We say that an Rd-monomial space Cd is i-compressed if it is

{x1, · · · , x̂i, · · · , xn}-compressed, in the sense of Definition 2.2.6. We say that a k-

vector space Cd is Rd-compressed (or compressed) if it is a Rd-monomial space and

is i-compressed for all 1 ≤ i ≤ n. A monomial ideal M in R is called compressed

if Md is compressed for all d ≥ 0.

Definition 4.2.2. We say that an Rd-monomial space Bd is Rd-Borel if it satisfies

the following condition:
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Let u ∈ Bd be a nonzero monomial, and suppose that xj divides u

and i < j. Then xi

xj
u ∈ Bd.

For a Rd-monomial space Ad set

ri,j(Ad) =
∣

∣

∣
{m ∈ {Ad} | max(m) ≤ i and xj

i does not divide m }
∣

∣

∣
.

The following lemma is a generalization of a result by Bigatti [Bi].

Lemma 4.2.3. If a monomial space Bd is Rd-Borel, then

∣

∣

∣
{mBd}

∣

∣

∣
=

n
∑

i=1

ri,ei−1(Bd) .

Proof. We will show that {mBd} is equal to the set

n
∐

i=1

xi {m ∈ {Bd} |max(m) ≤ i } \
n

∐

i=1

xi

{

m ∈ {Bd}

∣

∣

∣

∣

∣

max(m) = i and

xei−1
i divides m

}

.

Denote by P the set above. Let w ∈ Bd. For j ≥ max(w) we have that xjw ∈ P.

Let j < max(w). Then v = xj
w

xmax(w)

∈ Bd. So, xjw = xmax(w)v ∈ P.

Lemma 4.2.4. If Ld is a lex-segment, then it is Borel and Rd-compressed.

The main work for proving a generalized Green’s theorem is in the following

lemma:

Lemma 4.2.5. Let Cd be an n-compressed Borel Rd-monomial space, and let Ld

be a lex-segment in Rd with |Ld| ≤ |Cd|. For each 1 ≤ i ≤ n and each 1 ≤ j ≤ ei

we have

ri,j(Ld) ≤ ri,j(Cd) .

Proof. Note that both Ld and Cd are Rd-Borel and n-compressed.

First, we consider the case i = n. Clearly, rn,en
(Ld) = |Ld| = |Cd| = rn,en

(Cd)

(if en = ∞, then we consider rn,d+1 here). We induct on j decreasingly. Suppose

that ri,j+1(Ld) ≤ ri,j+1(Cd) holds by induction.
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If {Cd} contains no monomial divisible by xj
n then

ri,j(Ld) ≤ ri,j+1(Ld) ≤ ri,j+1(Cd) = ri,j(Cd) .

Suppose that {Cd} contains a monomial divisible by xj
n. Denote by e = xb1

1 . . . xbn
n ,

with bn ≥ j, the lex-smallest monomial in Cd that is divisible by xj
n. Let 0 ≤

q ≤ j − 1. Since Cd is Rd-Borel, it follows that cq = xbn−q
n−1

e

xbn−q
n

∈ Cd. This is

the lex-smallest monomial that is lex-greater than e and xn divides it at power

q. Let the monomial a = xa1
1 . . . x

an−1

n−1 xq
n ∈ Rd be lex-greater than e. Since Cd is

n-compressed and a is lex-greater (or equal) than cq, it follows that a ∈ Cd.

For a monomial u, we denote by xn /∈ u the property that xj
n does not divide

u. By what we proved above, it follows that

(4.2.6)
∣

∣

∣
{u ∈ {Cd} | xn /∈ u, u <Lex e }| = |{u ∈ {Rd} | xn /∈ u, u <Lex e }

∣

∣

∣
.

Therefore,

ri,j(Ld) = |{u ∈ {Ld} | xn /∈ u, u <Lex e }| + |{u ∈ {Ld} | xn /∈ u, u >Lex e }|

≤ |{u ∈ {Rd} | xn /∈ u, u <Lex e }| + |{u ∈ {Ld} | xn /∈ u, u >Lex e }|

≤ |{u ∈ {Rd} | xn /∈ u, u <Lex e }| + |{u ∈ {Ld} | u >Lex e }|

≤ |{u ∈ {Rd} | xn /∈ u, u <Lex e }| + |{u ∈ {Cd} | u >Lex e }|

= |{u ∈ {Rd} | xn /∈ u, u <Lex e }| + |{u ∈ {Cd} | xn /∈ u, u >Lex e }|

= |{u ∈ {Cd} | xn /∈ u, u <Lex e }| + |{u ∈ {Cd} | xn /∈ u, u >Lex e }|

= ri,j(Cd) ;

for the third inequality we used the fact that Ld is a lex-segment in Rd with

|Ld| ≤ |Cd|; for the equality after that we used the definition of e; for the next

equality we used (4.2.6). Thus, we have the desired inequality in the case i = n.
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In particular, we proved that

(4.2.7) rn,1(Ld) ≤ rn,1(Cd) .

Finally, we prove the lemma for all i < n. Both {Cd/xn} and {Ld/xn} are lex-

segments in Rd/xn since Cd is n-compressed. By (4.2.7) the inequality rn,1(Ld) ≤

rn,1(Cd) holds, and it implies the inclusion {Cd/xn} ⊇ {Ld/xn}. The desired

inequalities follow since

ri,j(Cd) = ri,j

(

Cd/(xi+1, . . . , xn)
)

ri,j(Ld) = ri,j

(

Ld/(xi+1, . . . , xn)
)

.

Let Bd be a Borel monomial space in Rd. Set z = xn. We have the disjoint

union

{Bd} =
∐

0≤j≤d

zd−j{Uj}

where each Uj is a monomial space in R/z. Let Fj be the lexification of the space

Uj in R/z. Consider the Rd-monomial space Td defined by

{Td} =
∐

0≤j≤d

zd−j{Fj} .

Clearly, |Td| = |Bd|. We call Td the n-compression of Bd.

Lemma 4.2.8. Let Bd be a Borel monomial space in Rd. Its n-compression Td is

Borel.

Proof. Consider the disjoint unions

{Bd} =
∐

0≤j≤d

zd−j{Uj}

{Td} =
∐

0≤j≤d

zd−j{Fj} .
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Since Bd is Borel, it follows that nUj ⊆ Uj+1. Since |Fj| = |Uj|, we can apply

Theorem 4.2.12(1) by induction on the number of the variables, and it follows that

|nFj| ≤ |nUj| ≤ |Uj+1| = |Fj+1|. As both nFj and Fj+1 are lex-segments, we

conclude that nFj ⊆ Fj+1. If xd−j
n m is a monomial in Td and m ∈ Fj, then for

each 1 ≤ i < n we have that xim ∈ nFj ⊆ Fj+1, so xd−j−1
n xim ∈ Td. If xp divides

m, then for each 1 ≤ q ≤ p we have that xqm
xp

∈ Fj ⊂ Td since Fj is lex. We proved

that Td is Borel.

Comparison Theorem 4.2.9. Let Bd be a Borel monomial space in Rd. Let Ld

be a lex-segment in Rd with |Ld| ≤ |Bd|. The following inequalities hold:

ri,j(Ld) ≤ ri,j(Bd) .

for each 1 ≤ i ≤ n and each 1 ≤ j ≤ ei.

Proof. We prove the inequalities by decreasing induction on the number of vari-

ables n. Let Td be the n-compression of Bd. Since Td is Borel and n-compressed

by Lemma 4.2.8, we can apply Lemma 3.3.6 and we get

ri,j(Ld) ≤ ri,j(Td)

for each 1 ≤ i ≤ n and each 1 ≤ j ≤ ei. It remains to compare ri,j(Td) and

ri,j(Bd). For i = n, we have equalities rn,j(Td) = rn,j(Bd). Let i < n. Then

ri,j(Td) = ri,j(Td/xn) and ri,j(Bd) = ri,j(Bd/xn), where Td/xn = Ld is a lex-segment

and Bd/xn = Ud is Borel. So, by induction the desired inequalities hold.

Generalized Green’s Theorem 4.2.10. Let Bd be a Borel monomial space in

Rd. Let Ld be a lex-segment in Rd with |Ld| ≤ |Bd|. The following inequalities

hold:

dim
(

Rd/(Ld ⊕ n(d−j)xj
n)

)

≥ dim
(

Rd/(Bd ⊕ n(d−j)xj
n)

)
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for each each 1 ≤ j ≤ en, j ≤ d.

Proof. Note that the desired inequality is equivalent to

rn,j(Ld) ≤ rn,j(Bd) .

It holds by Theorem 4.2.9.

The following result is a straightforward corollary of Theorem 4.2.10 since xj
n

is a generic form for every Borel ideal in S.

Green’s Theorem 4.2.11. Let Bd be a Borel monomial space in Sd. Let Ld be a

lex-segment in Sd with |Ld| ≤ |Bd|. Let g be a generic homogeneous form of degree

j ≥ 1. The following inequality holds:

dim
(

Sd/(Ld ⊕ m(d−j)g)
)

≥ dim
(

Sd/(Bd ⊕ m(d−j)g)
)

.

Remark 4.2.12. Theorem 4.2.11 in the case when j = 1 was proved by Green

[Gr1]. Theorem 4.2.11 in the case when j > 1 was proved by Gasharov, Herzog,

and Popescu [Ga, HP]. Theorem 4.2.10 in the case when j = 1 was proved by

Gasharov [Ga2, Theorem 2.1].

We are ready to prove Macaulay’s Theorem [Ma] which characterizes the pos-

sible Hilbert functions of graded ideals in S. There are several different proofs of

this theorem, cf. Green [Gr2].

Macaulay’s Theorem 4.2.13. The following two properties are equivalent, and

they hold:

(1) Let Ad be an Sd-monomial space and Ld be its lexification in Sd. Then |mLd | ≤

|mAd |.
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(2) For every graded ideal J in S there exists a lex ideal L with the same Hilbert

function.

Proof. First, we will prove that (1) holds. Since Ad and Ld are monomial spaces,

(1) does not depend on the field k. Thus, we can replace the field if necessary

and assume that k has characteristic zero. This makes it possible to use Gröbner

basis theory to reduce to the Borel case, cf. [Ei, Chapter 15]. We obtain a Borel

Sd-monomial space Bd such that |Bd| = |Ad| and |mBd| ≤ |mAd|. For an Sd-

monomial space Dd set ti(Dd) = ri+1,1(Dd) =
∣

∣

∣
{m ∈ {Dd} | max(m) ≤ i }

∣

∣

∣
. We

apply Lemma 4.2.3 to conclude that

∣

∣

∣
{mBd}

∣

∣

∣
=

n
∑

i=1

ti(Bd) and
∣

∣

∣
{mLd}

∣

∣

∣
=

n
∑

i=1

ti(Ld) .

Finally, we apply Theorem 4.2.10 and get the inequality
∣

∣ {mLd}
∣

∣ ≤
∣

∣ {mBd}
∣

∣.

We proved (1).

Now, we prove that (1) and (2) are equivalent. Clearly, (2) implies (1). We

assume that (1) holds and will prove (2). We can assume that J is a monomial

ideal by Gröbner basis theory. For each d ≥ 0, let Ld be the lexification of Jd. By

(1), it follows that L = ⊕d≥0 Ld is an ideal. By construction, it is a lex-ideal and

has the same Hilbert function as J in all degrees.

We continue with the proof of Clements-Lindström’s Theorem.

Lemma 4.2.14. Let Ad be an Rd-monomial space. There exists a compressed

monomial space Cd in Rd such that |Cd| = |Ad| and |mCd| ≤ |mAd|.

Proof. Suppose that Ad is not i-compressed. Set z = xi.

We have the disjoint union

{Ad} =
∐

0≤j≤d

zd−j{Uj}



44

where each Uj is a monomial space in R/z. Let Fj be the lexification of the space

Uj in R/z. Consider the Rd-monomial space Td defined by

{Td} =
∐

0≤j≤d

zd−j{Fj} .

Clearly, |Td| = |Ad|. We will prove that

|mTd| ≤ |mAd| .

We have the disjoint unions

{mAd} =
∐

0≤j≤d

zd−j+1{Uj + nUj−1}

{mTd} =
∐

0≤j≤d

zd−j+1{Fj + nFj−1} ,

where n = m/z. We will show that

|Fj + nFj−1| = max

{

|Fj|, |nFj−1|

}

≤ max

{

|Uj|, |nUj−1|

}

≤ |Uj + nUj−1| .

The first equality above holds because both Fj and nFj−1 are (R/z)j-lex-

segments, so Fj +nFj−1 is the longer of these two lex-segments. The last inequality

is obvious. The middle inequality holds since by construction Fj−1 is the lexifica-

tion of Uj−1, so |Fj−1| = |Uj−1| and by induction on the number of variables we

can apply Theorem 4.2.15(1) to the ring R/z.

Thus, |Fj + nFj−1| ≤ |Uj + nUj−1|. Multiplication by zd−j+1 is injective if

d − j + 1 ≤ ei − 1 and is zero otherwise, therefore we conclude that

∣

∣

∣
zd−j+1(Fj + nFj−1)

∣

∣

∣
≤

∣

∣

∣
zd−j+1(Uj + nUj−1)

∣

∣

∣
.

This implies the desired inequality |mTd| ≤ |mAd|.

If Td is not compressed, we can apply the argument above. After finitely many

steps in this way, the process must terminate because at each step we construct a
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lex-greater monomial space. Thus, after finitely many steps, we reach a compressed

monomial space.

The Clements and Lindström Theorem [CL] is:

Clements and Lindström’s Theorem 4.2.15. The following two properties are

equivalent, and they hold:

(1) Let Ad be an Rd-monomial space and Ld be its lexification in Rd. Then

|mLd | ≤ |mAd |.

(2) For every graded ideal J in R there exists a lex ideal L with the same Hilbert

function.

Proof. First, we will prove that (1) holds. The theorem clearly holds if n = 1.

Suppose that n = 2. An easy calculation shows that the theorem holds, provided

we do not have e2 ≤ d + 1 < e1. By the assumption on the ordering of the

exponents, this does not hold and we are fine.

Suppose that n ≥ 3. First, we apply Lemma 4.2.14 to reduce to the compressed

case. We obtain a compressed Rd-monomial space Cd such that |Cd| = |Ad| and

|mCd| ≤ |mAd|. Both Ld and Cd are (S/P )d-compressed. We apply Lemma 4.2.3

to conclude that

∣

∣

∣
{mCd}

∣

∣

∣
=

n
∑

i=1

ri,ei−1(Cd)

∣

∣

∣
{mLd}

∣

∣

∣
=

n
∑

i=1

ri,ei−1(Ld).

Finally, we apply Lemma 4.2.5 and obtain the inequality
∣

∣ {mLd}
∣

∣ ≤
∣

∣ {mCd}
∣

∣.

We proved (1).

Now, we prove that (1) and (2) are equivalent. Clearly, (2) implies (1). We

assume that (1) holds and will prove (2). We can assume that J is a monomial
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ideal by Gröbner basis theory. For each d ≥ 0, let Ld be the lexification of Jd. By

(1), it follows that L = ⊕d≥0 Ld is an ideal. By construction, it is a lex-ideal and

has the same Hilbert function as J in all degrees.

Lexicographic ideals are highly structured and it is easy to derive the inequal-

ities characterizing their possible Hilbert functions.

4.3 Open Problems

Throughout this section, M is a monomial ideal in S.

4.3.1 Hilbert functions in quotient rings

We focus on the problem to identify rings, other than S and S/P , where Macaulay’s

and Clements-Lindström’s theorems hold. First, we recall the necessary definitions.

Definition 4.3.1. A homogeneous ideal of S/M is lexifiable if there exists a lex

ideal with the same Hilbert function. We say that M and S/M are Macaulay-Lex

if every homogeneous ideal of S/M is lexifiable.

The following problem is a natural extension of Macaulay’s and Clements-Lind-

ström’s Theorems:

Problem 4.3.2. Identify monomial ideals which are Macaulay-Lex.

Macaulay’s Theorem [Ma] says that 0 is Macaulay-Lex. Clements-Lindström’s

Theorem [CL] says that (xe1
1 , · · · , xen

n ) is Macaulay-Lex when e1 ≤ · · · ≤ en ≤ ∞.

We recall the following theorems from chapter 3.

Theorem 4.3.3. Let M be Macaulay-Lex and L be lex. Then M +L is Macaulay-

Lex.



47

Theorem 4.3.4. Let S/M be Macaulay-Lex. Then (S/M)[y] is Macaulay-Lex.

Macaulay-Lex ideals appear to be rare, however. For example, Shakin [Sh] has

recently shown that a Borel ideal M is Macaulay-Lex if and only if it is piecewise

lex, that is, if M may be written M =
∑

Li with Li generated by a lex segment

of k[x1, · · · , xi].

It is easy to construct examples like Example 3.2.8, where a given Hilbert

function is not attained by any lexicographic ideal in the degrees of the minimal

generators of M . This suggests that our definitions should be relaxed somewhat.

In chapter 3 we introduced the following definition:

Definition 4.3.5. We say that M and S/M are pro-lex above q if every homoge-

neous ideal of S/M generated in degrees ≥ q is lexifiable. Let d be the maximal

degree of a minimal generator of M . We say that M and S/M are pro-lex if they

are pro-lex above d.

We have the following variation of Problem 4.3.2:

Problem 4.3.6. Identify monomial ideals which are pro-lex.

As a first step in this direction, we show in chapter 3:

Theorem 4.3.7. Let P = (xe1
1 , · · · , xen

n ), where e1 ≤ · · · en ≤ ∞ (here x∞
i = 0).

Let K be a compressed monomial ideal of S/P , and let d be the maximal degree of

a minimal monomial generator of K. If n = 2, assume that K is lex. The ideal

K + P is pro-lex above d.

It is natural to try to extend to non-monomial ideals:
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Problem 4.3.8. Find other graded rings where the notion of lex ideal makes sense

and which are pro-lex.

Of particular interest are the coordinate rings of projective toric varieties. Toric

varieties are an important class of varieties which occur at the intersection of Alge-

braic Geometry, Commutative Algebra, and Combinatorics. They might provide

many examples of interesting rings in which all Hilbert functions are attained by

lex ideals.

Problem 4.3.9. Find projective toric rings which are pro-lex (or Macaulay-Lex).

The coordinate rings of toric varieties admit a natural multigraded structure

which refines the usual grading and which yields a multigraded Hilbert function;

this is studied in Section 4.5.

4.3.2 The Eisenbud-Green-Harris Conjecture

The most exciting currently open conjecture on Hilbert functions is given by Eisen-

bud, Green, and Harris in [EGH1, EGH2]. The conjecture is wide open.

Conjecture 4.3.10. Let N be a homogeneous ideal containing a homogeneous

regular sequence in degrees e1 ≤ · · · ≤ er. There is a monomial ideal T such that

N and T + (xe1
1 , · · · , xer

r ) have the same Hilbert function.

The original conjecture differs from 4.3.10 in the following two minor aspects:

◦ In the original conjecture r = n.

◦ The original conjecture gives a numerical characterization of the possible Hilbert

functions of N . It is well known that this numerical characterization is equivalent

to the fact that there exists a lex ideal L such that L+(xe1
1 , · · · , xer

r ) has the same



49

Hilbert function as N . By Clements-Lindström’s Theorem, this is equivalent to

Conjecture 4.3.10.

4.3.3 Betti numbers

The study of Hilbert functions is often closely related to the study of free resolu-

tions. We focus on problems based on the idea that the lex ideal has the greatest

Betti numbers among all ideals with a fixed Hilbert function.

Conjecture 4.3.11. Let k be an infinite field (possibly, one should also assume

that k has characteristic 0). Suppose that S/M is pro-lex above d, J is a homoge-

neous ideal in S/M , generated in degrees ≥ d, and L is the lex ideal with the same

Hilbert function as J . Then:

(1) The Betti numbers of J over R are less than or equal to those of L.

(2) The Betti numbers of J + M over S are less than or equal to those of L + M .

Note that the first part of the conjecture is about infinite resolutions (unless

M is generated by linear forms), whereas the second part is about finite ones.

In the case M = 0, Conjecture 4.3.11 holds by a result of Bigatti [Bi], Hulett

[Hu], and Pardue [Pa]. Also, Conjecture 4.3.11(1) holds by a result of Aramova,

Herzog, and Hibi [AHH] over an exterior algebra. Furthermore, Conjecture 4.3.11(2)

was inspired by work of Graham Evans and his conjecture, cf. [FR]:

Conjecture 4.3.12 (Evans). Suppose that a homogeneous ideal I contains a reg-

ular sequence of homogeneous elements of degrees a1, . . . , an in S. Suppose that

there exists a lex-plus-powers ideal L with the same Hilbert function as I. Then

the Betti numbers of L are greater than or equal to those of I.
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Conjecture 4.3.12 was inspired by the Eisenbud-Green-Harris Conjecture 4.3.11.

When the regular sequence in Conjecture 4.3.12 consists of powers of the vari-

ables, Conjecture 4.3.12 coincides with Conjecture 4.3.11(2). Also, in the case

when M is generated by powers of the variables, Conjecture 4.3.11(1) coincides

with a conjecture of Gasharov, Hibi, and Peeva [GHP], and in the case when

M is generated by squares of the variables Conjecture 4.3.11(2) coincides with a

conjecture of Herzog and Hibi.

Remark 4.3.13. It is natural to wonder whether Conjecture 4.3.11 should have

part (3) that states that the Betti numbers of J over S are less or equal to those

of L. There is a counterexample in [GHP]: take J = (x2, y2) in k[x, y]/(x3, y3) and

L = (x2, xy), then the graded Betti numbers of L over S are not greater or equal

to those of J over S. It should be noticed that J and L do not have the same

Hilbert function as ideals in S.

4.4 Lex-like ideals

In this section we work over the polynomial ring S = k[x1, · · · , xn]. Macaulay’s

Theorem [Ma] has the following two equivalent formulations (given in Theorem

4.2.13).

Theorem 4.4.1. Let Ad be a monomial space in degree d and Ld be the space

spanned by a lex segment in degree d such that |Ad| = |Ld|. Then |mLd | ≤ |mAd |.

Theorem 4.4.2. For every graded ideal J in S there exists a lex ideal L with the

same Hilbert function.
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The goal of this section is to show that a generalization of Macaulay’s Theorem

holds for ideals generated by initial segments of lexlike sequences. Lexlike sequences

were discovered by Mermin in [Me2]; we recall the definition.

Definition 4.4.3. A monomial sequence (of a fixed degree d) is a sequence Xd

of all the monomials of S = k[x1, · · · , xn] of degree d. We denote by Xd(i) the

monomial space generated by the first i monomials in Xd. We say that Xd is lexlike

if, for every i, and for every vector space V generated by i monomials of degree d,

we have

|mXd(i)| < |mV | .

The lex sequence in degree d consists of all the degree d monomials ordered

lexicographically; it is denoted by Lexd or simply Lex.

Lemma 4.4.4.

(1) Lexd is a lexlike sequence.

(2) Xd is a lexlike sequence of degree d if and only if, for every i we have

|mXd(i)| = |mLexd(i)| .

Proof. (1) is Macaulay’s Theorem 4.2.13. (2) follows from (1).

Thus, lexlike sequences have minimal Hilbert function growth, as lex sequences

have.

By Definition 4.4.3 it follows immediately that the first formulation 4.1 of

Macaulay’s Theorem holds for lexlike sequences:

Theorem 4.4.5. Let Ad be a monomial space in degree d and Id be the space

spanned by the initial segment of a lexlike sequence in degree d such that |Ad| = |Id|.

Then |mId | ≤ |mAd |.
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However, it is not immediately clear that the second formulation 4.4.2 of

Macaulay’s Theorem holds for lexlike sequences. The problem is that one has

to construct lexlike ideals and show that they are well defined. Here is an outline

of what we do in order to extend Theorem 4.4.2: In each degree d we have the lex

sequence Lexd. If Ld is spanned by an initial segment of Lexd, then mLd is spanned

by an initial segment of Lexd+1. This property is very easy to prove. It is very

important, because it makes it possible to define lexicographic ideals. In [Me2,

Corollary 3.18] Mermin proved that the same property holds for lexlike sequences.

This makes it possible to introduce lexlike ideals in Definition 4.4.9. We prove

in Theorem 4.4.10 that Macaulay’s Theorem 4.4.2 for lex ideals holds for lexlike

ideals as well.

First, we recall a definition in [Me2]: Let Xd be a sequence of all the monomials

of S of degree d, and let Xd−1 be a sequence of all the monomials of S of degree d−1.

We say that Xd is above Xd−1 if, for all i, there is a j such that mXd−1(i) = Xd(j).

By [Me2, Theorem 3.20], if Xd is a monomial sequence above a lexlike sequence

Xd−1, then Xd is lexlike.

Lemma 4.4.6. Let Y be a lexlike sequence in degree d. In every degree p, there

exists a lexlike sequence Xp such that Xd = Y and Xp+1 is above Xp for all p.

In particular, if a space Vp is spanned by an initial segment of Xp, then mVp is

spanned by an initial segment of Xp+1.

Proof. Repeatedly apply [Me2, Theorem 3.21] to get Xp for p < d. Repeatedly

apply [Me2, Theorem 3.20] to get Xp for p > d.

Definition 4.4.7. Let X be a collection of lexlike sequences Xd in each degree d,

such that Xd+1 is above Xd for each d. We call X a lexlike tower.
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If we multiply a monomial sequence X by a monomial m by termwise multi-

plication, then we denote the new monomial sequence by mX. If Y is another

monomial sequence, we denote concatenation with a semicolon, so X; Y . Towers

of monomial sequences are highly structured:

Theorem 4.4.8. Let X be a lexlike tower. There exists a variable xi, a lexlike

tower Y of monomials in S, and a lexlike tower Z of monomials in S/xi , such

that

X = xiY;Z .

Proof. The variable xi is the first term of X1. Each Xd begins with all the degree

d monomials divisible by xi. Writing Xd = xiYd−1; Zd for each d, we have that Y

is a lexlike tower and Z is a lexlike tower in n − 1 variables.

Remark 4.4.9. The lexicographic tower is compatible with the lexicographic order

in each degree. A lexlike tower X induces a total ordering <X on the monomials

of S which refines the partial order by degree. It is natural to ask what term

orders occur this way. We show that the lexicographic order is the only one (up

to reordering the variables): Suppose that <X is a term order. Clearly X1 is Lex

for the corresponding order of the variables. Writing X2 = x1Y1; Z1, we apply

x1xi <X x1xj whenever xi <X xj to see that Y1 is Lex and induction on n to see

that Z1 is Lex. Thus X2 is Lex. Now if Xd = x1Yd−1; Zd is Lex, induction on d

and n shows that Yd and Zd+1, and hence Xd+1, are Lex as well.

In the spirit of the definition of lex ideals, we introduce lexlike ideals as follows:
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Definition 4.4.10. Let X be a lexlike tower. We say that a d-vector space is an

X-space if it is spanned by an initial segment of Xd. We say that a homogeneous

ideal I is X-lexlike if Id is an X-space for all d. We say that an ideal I is lexlike if

there exists a lexlike tower X so that I is X-lexlike.

A lex ideal is lexlike by Lemma 4.4.4(1).

Macaulay’s Theorem for Lexlike Ideals 4.4.11. Let X be a lexlike tower. Let

J be a homogeneous ideal, and for each d let Id be the X-space spanned by the

first |Jd| monomials of Xd. Then I =
⊕

Id is an X-lexlike ideal and has the same

Hilbert function as J .

Proof. It suffices to show that I is an ideal, that is, that mId ⊂ Id+1 for each degree

d. We have |mId| ≤ |mJd| ≤ |Jd+1| = |Id+1|, and mId and Id+1 are both spanned

by initial segments of Xd+1. Since Xd+1 is above Xd, it follows that mId ⊂ Id+1.

Thus, every Hilbert function is attained not only by a lex ideal (which is unique

up to reordering of the variables) but also by (usually many) lexlike ideals. These

distinct lexlike ideals are obtained by varying the lexlike tower X. The following

example illustrates this.

Example 4.4.12. The lexlike ideals (ab, ac, a3, a2d, ad3, b2c) and (ab, ac, ad2, a2d,

a4, b4) have the same Hilbert function as the lex ideal (a2, ab, ac2, acd, ad3, b4).

Proposition 4.4.13.

(1) If I and I ′ are two lexlike ideals with the same Hilbert function, then they

have the same number of minimal monomial generators in each degree.

(2) Among all ideals with the same Hilbert function, the lexlike ideals have the

maximal number of minimal monomial generators (in each degree).
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Proof. First, we prove (1). Let L be the lexicographic ideal with the same Hilbert

function as J . By Definition 4.4.1, it follows that I and L have the same number

of minimal monomial generators (in each degree).

Now, we prove (2). Macaulay’s Theorem implies that among all ideals with the

same Hilbert function, the lex ideal has the maximal number of minimal monomial

generators (in each degree). Apply (1).

The above theorem can be extended to all graded Betti numbers as follows:

Theorem 4.4.14.

(1) Let I be a lexlike ideal and L be a lex ideal with the same Hilbert function.

The graded Betti numbers of I are equal to those of L.

(2) Among all ideals with the same Hilbert function, the lexlike ideals have the

greatest graded Betti numbers.

This is an extension of the following well-known result by [Bi,Hu,Pa]:

Theorem 4.4.15 (Bigatti, Hulett, Pardue). Among all ideals with the same Hilbert

function, the lex ideal has the greatest graded Betti numbers.

Proof of Theorem 4.4.14: (2) follows from (1) and Theorem 4.4.15. We will prove

(1).

Let p be the smallest degree in which L has a minimal monomial generator.

For d ≥ p, denote by I(d) the ideal generated by all monomials in I of degree

≤ d. Similarly, denote by L(d) the ideal generated by all monomials in L of degree

≤ d. By Lemma 4.4.4(2), for each d ≥ p the ideals I(d) and L(d) have the same

Hilbert function. Furthermore, by Theorem 4.4.15 it follows that the graded Betti

numbers of S/L(d) are greater or equal to those of S/I(d).
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The following formula (cf. [Ei]) relates the graded Betti numbers βi,j(S/T ) of

a homogeneous ideal T and its Hilbert function:

∞
∑

j=0

dimk(S/T )j tj =

∑∞
j=0

∑n
i=0 (−1)iβi,j(S/T ) tj

(1 − t)n
.

Therefore, for each d ≥ p we have that

(4.4.16)
∞

∑

j=0

n
∑

i=0

(−1)i

(

βi,j(S/I(d)) − βi,j(S/L(d))

)

tj = 0 .

By induction on d we will show that the graded Betti numbers of S/L(d) are

equal to those of S/I(d).

First, consider the case when d = p. By the Eliahou-Kervaire resolution [EK],

it follows that L(p) has a linear minimal free resolution, that is, βi,j(S/L(p)) = 0

for j 6= i + p − 1. Since the graded Betti numbers of S/L(p) are greater or equal

to those of S/I(p), it follows that βi,j(S/I(p)) = 0 for j 6= i + p− 1. By (4.4.16) it

follows that

βi,j(S/I(p)) = βi,j(S/L(p)) for all i, j .

Suppose that the claim is proved for d. Consider L(d + 1) and I(d + 1). For

j < i + d, we have that

βi,j(S/L(d + 1)) = βi,j(S/L(d)) = βi,j(S/I(d)) ,

where the first equality follows from the Eliahou-Kervaire resolution [EK] and the

second equality holds by induction hypothesis. As I(d + 1)q = I(d)q for q ≤ d and

since βi,j(S/I(d)) = 0 for j ≥ i + d, it follows that βi,j(S/I(d + 1)) = βi,j(S/I(d))

for j < i + d. Therefore,

βi,j(S/L(d + 1)) = βi,j(S/I(d + 1)) for j < i + d

βi,j(S/L(d + 1)) = 0 for j > i + d, by the Eliahou-Kervaire resolution [EK].
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Since the graded Betti numbers of S/L(d + 1) are greater or equal to those of

S/I(d + 1), we conclude that

βi,j(S/I(d + 1)) = βi,j(S/L(d + 1)) for j < i + d

βi,j(S/I(d + 1)) = βi,j(S/L(d + 1)) = 0 for j > i + d .

By (4.4.16) it follows that

βi,j(S/I(d + 1)) = βi,j(S/L(d + 1)) for all i, j ,

as desired.

Remark 4.4.17. Let I be a lexlike ideal and L a lex ideal with the same Hilbert

function. Since their graded Betti numbers are equal, one might wonder whether

the minimal free resolution FI of I is provided by Eliahou-Kervaire’s construction

[EK]. The leading terms in the differential of FI are the same as in Eliahou-

Kervaire’s construction. However, the other terms could be quite different: there

are examples in which the differential of FI has more non-zero terms than the

differential in Eliahou-Kervaire’s construction.

4.5 Multigraded Hilbert functions

In this subsection we consider the polynomial ring S with a different grading,

called multigrading. Such gradings are used for toric ideals. In this case, we have

a multigraded Hilbert function.

Let A = {a1, . . . , an} be a subset of Nc \ {0}, A be the matrix with columns

ai, and suppose that rank(A) = c. Consider the polynomial ring S = k[x1, . . . , xn]

over a field k generated by variables x1, . . . , xn in Nc-degrees a1, . . . , an respectively.
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We say that an ideal J is A-multigraded if it is homogeneous with respect to this

Nc-grading. For simplicity, we often say multigraded instead of A-multigraded.

The prime ideal IA, that is the kernel of the homomorphism

ϕ : k[x1, . . . , xn] → k[t1, . . . , tc]

xi 7→ tai = tai1
1 . . . taic

c

is called the toric ideal associated to A. For an integer vector v = (v1, . . . , vn)

we set xv = xv1
1 . . . xvn

n . Then ϕ(xv) = tAv. The toric ring associated to A is

(4.5.1) S/IA ∼= k[ta1 , . . . , tan] ∼= NA,

where the former isomorphism is given by xv 7→ tAv and the latter isomor-

phism is given by ta 7→ a.

The ideal IA is A-multigraded. By (4.5.1), it follows that we have the multi-

graded Hilbert function

(4.5.2) dimk((S/IA)α) =















1 if α ∈ NA

0 otherwise.

There exists a minimal free resolution of S/IA over S which is Nc-graded.

For α ∈ Nc, the set of all monomials in S of degree α is called the fiber of α.

We introduce multilex ideals generalizing the notion of lex ideal:

Definition 4.5.3. Order the monomials in each fiber lexicographically. An A-

multilex segment (or multilex segment) in multidegree α is a vector space spanned

by an initial segment of the monomials in the fiber of α. We say that a monomial

ideal L is A-multilex (or multilex) if for every α ∈ Nc, the vector space Lα is a

multilex segment.
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Theorem 4.5.4. There exists an A-multilex ideal LA with the same Hilbert func-

tion as the toric ideal IA. The Betti numbers of LA are greater or equal to those

of IA.

Proof. Order the monomials in each fiber lexicographically. For α ∈ Nc, denote

by mα the last monomial in the fiber of α. Let Lα be the vector space spanned

by all monomials in the fiber of α except mα. Set LA = ⊕α Lα, where we consider

LA as a vector space. By (4.5.2), it follows that LA and IA have the same Hilbert

function.

Denote by >Lex the lex order on monomials. We will show that LA is the

initial ideal of IA with respect to >Lex; in particular, LA is an ideal. Let m be a

monomial in Lα. Then m − mα ∈ IA and m <Lex mα. Hence m is in the initial

ideal of IA. Therefore, LA is contained in the initial ideal. Since the multigraded

Hilbert functions of LA and IA are the same, it follows that LA is the initial ideal.

Clearly, LA is multilex by construction. Since it is an initial ideal, it follows

that the Betti numbers of LA are greater or equal to those of IA.

Example 4.5.5. It should be noted that LA depends not only on A, but also on

the choice of lexicographic order (that is, on the order of variables). For example,

for the vanishing ideal IA = (ad−bc, b2−ac, c2−bd) of the twisted cubic curve, one

can get LA to be (ac, ad, bd) if a > b > c > d and (b2, bc, bd, c3) if b > c > a > d.

These two multilex ideals have different Betti numbers.



Chapter 5

Monomial Regular Sequences*

5.1 Introduction

We study Hilbert functions of ideals containing a regular sequence of monomials.

Macaulay [Ma] showed in 1927 that all Hilbert functions over S = k[x1, · · · ,

xn] are attained by lex ideals. Over what quotients of S is this true? Let M be

a monomial ideal of S. We say that M is Lex-Macaulay if every Hilbert func-

tion over S/M is attained by a lex ideal of S/M . Clements and Lindström [CL]

proved that (xe1
1 , · · · , xen

n ) is Lex-Macaulay for e1 ≤ · · · ≤ en. (xe1
1 , · · · , xen

n ) is

the most important example of a monomial regular sequence, a set of monomials

{f1, · · · , fr} satisfying gcd(fi, fj) = 1 for all i 6= j. In section 5.3 we classify the

monomial regular sequences which are Lex-Macaulay: Theorem 5.3.8 says that

a regular sequence of monomials is Lex-Macaulay if and only if it has the form

(xe1
1 , · · · , x

er−1

r−1 , xer−1
r y), with e1 ≤ · · · ≤ er and y = xi for some i ≥ r.

Eisenbud, Green, and Harris [EGH1, EGH2] made the following conjecture

motivated by applications in algebraic geometry:

Conjecture 5.1.1 (Eisenbud-Green-Harris). Let N be any homogeneous ideal con-

taining a regular sequence in degrees e1 ≤ · · · ≤ er. There is a lex ideal L such

that N and L + (xe1
1 , · · · , xer

r ) have the same Hilbert function.

In the original conjecture, r = n. The conjecture is wide open. We prove it for

ideals containing a regular sequence of monomials in Theorem 5.2.9.

* This chapter is modified from the paper “Monomial regular sequences”,
which has been submitted for publication.
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5.2 A-compression

We recall from section 2.2.3 the definition of compressed ideals.

Definition 5.2.1. Let A be a subset of {x1, · · · , xn}, and let M be a monomial

ideal. Then M decomposes as a direct sum of vector spaces

M =
⊕

f∈k[Ac]
monomial

fMf ,

where f runs over all monomials not involving the variables of A and each Mf is

an ideal of k[A].

If every Mf is a lex ideal of k[A], we say that M is A-compressed. By Macaulay’s

theorem, there exist lex ideals Tf ⊂ k[A] having the same Hilbert functions as the

Mf . The vector space T = ⊕fTf is called the A-compression of M .

Remark 5.2.2. What [CL,MP1,MP2] called i-compressed ideals (or monomial

spaces) are {x1, · · · , x̂i, · · · , xn}-compressed in this notation. (Here the x̂i means

that xi is omitted.) This reversal is for simplicity in several proofs below, and so

that A-compressed ideals will remain A-compressed after new variables are added

to the ring S.

Example 5.2.3. If A is a one-element set, every monomial space is A-compressed.

Example 5.2.4. Let M = (a3, a2b, a2c, ab2, abc, abd, b3, b2c). Then M is not {a, b}-

compressed because Vd = (ab) is not lex in k[a, b], but M is A-compressed for every

other two-element set A.

Definition 5.2.5. A monomial ideal M is A-compressed if it is A-compressed in

every degree d.

It is easy to prove the following two propositions:
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Proposition 5.2.6. A lex ideal (or lex monomial space) is A-compressed for every

A.

Proposition 5.2.7. Suppose A ⊃ B. Then every A-compressed ideal (or A-

compressed monomial space) is B-compressed.

Example 5.2.8. Borel ideals are A-compressed for every two-element set A.

Due to the following lemma, which is a restatement of Lemma 2.2.7, A-compressed

ideals are useful in the study of Hilbert functions:

Lemma 5.2.9. Let Md be a d-monomial vector space, and let Td be its A-compression.

Then |mTd| ≤ |mNd|.

Using Lemma 5.2.9 we prove Conjecture 5.1.1 for ideals containing a regular

sequence of monomials:

Theorem 5.2.10. Let F = (f1 · · · , fr) be a regular sequence of monomials with

deg fi = ei and e1 ≤ · · · ≤ er. Let N be any homogeneous ideal containing F .

Then there is a lex ideal L such that N and L + (xe1
1 , · · · , xer

r ) have the same

Hilbert function.

Proof. Set P = (xe1
1 , · · · , xer

r ). It suffices to show that, for any d-vector space Nd

containing Fd, there is a lex monomial space Ld such that |Ld + Pd| = |Nd| and

|mLd + Pd+1| ≤ |mNd|.

Reorder the variables so that xi divides fi for all i. By Gröbner basis theory,

we may assume (after taking an initial ideal if necessary) that Nd is a monomial

space. Set N(0) = Nd. For each i ≤ r, let Ai be the set of variables dividing

fi, and let N(i) be the Ai-compression of N(i − 1). Then N(i) contains xei

i if

d ≥ ei. Furthermore, |N(r)| = |Nd| and |mN(r)| ≤ |mNd| by Lemma 5.2.9. By
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Clements-Lindström’s theorem, there is a lex space Ld such that |Ld+Pd| = |N(r)|

and |mLd + Pd+1| ≤ |mN(r)|.

5.3 Lex-Macaulay monomial regular sequences

Throughout this section, let M be a monomial ideal of S. We recall the following

definitions and results from chapter 3:

Definition 5.3.1. M is Lex-Macaulay if every Hilbert function in the quotient

S/M is attained by a lex ideal. Equivalently, M is Lex-Macaulay if, for every

d and every d-monomial vector space Vd, there exists a lex space Ld such that

|Ld + Md| = |Vd + Md| and |mLd + Md+1| ≤ |mVd + Md+1|.

Theorem 5.3.2. If M is Lex-Macaulay as an ideal of S, then it is Lex-Macaulay

as an ideal of S[y].

Proposition 5.3.3. If M is Lex-Macaulay and L is lex, then L + M is Lex-

Macaulay.

Now, we will characterize the monomial regular sequences which are Lex-

Macaulay.

Let F = (f1, · · · , fr) be a monomial regular sequence (that is, gcd(fi, fj) = 1

for all i 6= j), and order these monomials so that i < j if deg fi < deg fj, or if

deg fi = deg fj and fi >Lex fj. Set ei = deg fi, and suppose throughout that

ei > 1.

Lemma 5.3.4. Suppose that F is Lex-Macaulay. Then xei−1
i divides fi.

Proof. By induction we have x
ej−1
j divides fj for j < i, and by Proposition 5.3.3

F + (x1, · · · , xi−1) is Lex-Macaulay, so we may assume without loss of generality
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that i = 1. Let g be any monomial in degree e1 − 1 dividing f1. Then, since F is

Lex-Macaulay, we have |(xe1−1
1 )e1 | ≤ |(g)e1| ≤ n − 1, i.e., xe1−1

1 divides f1.

Lemma 5.3.5. Suppose that F is Lex-Macaulay, and write fi = xei−1
i yi. Suppose

that yi 6= xi. Then i = r.

Proof. We may assume as in the proof of Lemma 5.3.4 that i = 1. Suppose

r 6= 1 and y1 6= x1. Set g = xe1−1
1 xe2−1

2 . Then |(g)e1+e2−1| = n − 2, while

|(xe1+e2−2
1 )e1+e2−1| = n − 1, so F is not Lex-Macaulay.

Thus, all Lex-Macaulay monomial regular sequences may be written in the

form (xe1
1 , · · · , x

er−1

r−1 , xer−1
r y). We will show conversely that all such sequences are

Lex-Macaulay.

Lemma 5.3.6. Suppose r 6= n, and let F = (xe1
1 , · · · , x

er−1

r−1 , xer−1
r xn). Let Nd be

a d-monomial vector space containing Fd. Then there exists a d-monomial vector

space Td containing Qd, where Q = (xe1
1 , · · · , x

er−1

r−1 , xer−1
r xn−1) such that |Td| = |Md|

and |mTd| ≤ |mMd|.

Proof. Set A = {xn, xn−1}, and take Td to be the A-compression of Md. Apply

Lemma 5.2.9, and note that Q is the A-compression of F .

Lemma 5.3.7. Suppose r 6= n, and let F = (xe1
1 , · · · , x

er−1

r−1 , xer−1
r xn) and Q =

(xe1
1 , · · · , x

er−1

r−1 , xer−1
r xn−1). Let Ld be a lex segment in S. Then there exists a lex d-

monomial space Td such that |Td+Fd| = |Ld+Qd| and |mTd+Fd+1| = |mLd+Qd+1|.

Proof. Let Td be the smallest lex segment such that Td + Qd = Ld + Qd.

We claim that Td satisfies the property: If g is a monomial such that gxer−1
r xn−1 ∈

Td, then gxer−1
r xn ∈ Td. We will prove this claim. Observe that gxer−1

r xn−1 ∈ Qd,

and that gxer−1
r xn is the successor of gxer−1

r xn−1 in the graded lex order. By



65

construction, if gxer−1
r xn−1 ∈ Td, we must have a monomial v ∈ Td which comes

lexicographically after gxer−1
r xn−1 and v /∈ Qd. Then v is lexicographically after

gxer−1
r xn as well, and since Td is a lex segment, we have gxer−1

r xn ∈ Td, proving

the claim.

Set A = Td + (xe1
1 , · · · , x

er−1

r−1 )d and B and C such that Td + Qd = A ⊕ B and

Td + Fd = A ⊕ C. Then if {B} and {C} are the sets of monomials of B and C,

respectively, we have:

{B} = {gxer−1
r xn−1 : gxer−1

r xn−1 /∈ A}

{C} = {gxer−1
r xn : gxer−1

r xn /∈ A}

= {gxer−1
r xn : gxer−1

r xn−1 ∈ B}.

In particular, multiplication by xn

xn−1
is a bijection from {B} to {C}. Thus

|mB| = |mC| and |mB ∩ mA| = |mC ∩ mA|, so we have |m(Td + Fd)| =

|m(Td + Qd)| = |m(Ld + Qd)|, the first equality by inclusion-exclusion, the second

by construction.

Now |mTd + Fd+1| = |m(Td + Fd)| unless F has minimal monomial generators

in degree d+1 which are not in mTd; likewise |mLd +Qd+1| = |m(Ld +Qd)| unless

Q has minimal monomial generators in degree d + 1 which are not in mLd and

hence not in mTd. Since xd
rxn−1 ∈ mTd if and only if xd

rxn ∈ mTd, we obtain

|mTd + Fd+1| = |mLd + Qd+1| as desired.

Theorem 5.3.8. Let F be a regular sequence of monomials. Then F is Lex-

Macaulay if and only if F = (xe1
1 , · · · , x

er−1

r−1 , xer−1
r y), with e1 ≤ · · · ≤ er and y = xi

for some i ≥ r.

Proof. If F is Lex-Macaulay, apply Lemmas 5.3.4 and 5.3.5.
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Conversely, suppose F has the form above. By Theorem 5.3.2, we may assume

y = xn. If n = r, this is Clements-Lindström’s Theorem; otherwise, we induct on

n − r. Set Q = (xe1
1 , · · · , x

er−1

r−1 , xer−1
r xn−1). Choose a degree d, and let Nd be any

d-monomial space containing Fd. By Lemma 5.3.6, there is a d-monomial space

Td containing Qd with |Td| = |Nd| and |mTd| ≤ |mNd|. Q is Lex-Macaulay by

induction, so there is a monomial space Ld containing Qd with |Ld| = |Td| and

|mLd| ≤ |mTd|. By Lemma 5.3.7, there is a monomial space Td containing Fd with

|Td| = |Ld| and |mTd| = |mLd|. Thus F is Lex-Macaulay.



Chapter 6

Compressed Ideals*

6.1 Introduction

Lex ideals are important in the study of a polynomial ring S = k[x1, · · · , xn] be-

cause they can be used to classify the Hilbert functions of ideals in S. An important

tool in the study of lex ideals, dating back to Macaulay [Ma], has been compres-

sion, which allows one to move carefully towards the lex ideal while controlling

the Hilbert function. Compressed ideals are combinatorially very well-behaved,

which allows us to compare their invariants to those of lex ideals in ways which are

impossible for monomial or even Borel ideals. The goal of this chapter is to codify

the theory of compression and show how it may be used to recover some classical

results on Hilbert functions and Betti numbers.

Throughout this chapter, S is the polynomial ring k[x1, · · · , xn] and R is the

quotient of S by the squares of the variables, R = S/(x2
1, · · · , x2

n).

In section 6.2, we study compressed ideals, culminating in the classification

of compressed ideals of S and R, respectively, in Theorems 6.2.11 and 6.2.12.

Theorem 6.2.9 reduces many questions about lex ideals to questions about lex

ideals of k[a, b, c] and an inductive step. This will be illustrated in sections 6.3 and

6.4.

In section 6.3, we use compressed ideals to give new proofs of the theorems

of Macaulay [Ma] and Kruskal-Katona [Kr, Ka] that every Hilbert function in S

(and, respectively, R), is attained by a lex ideal.

* This chapter is modified from the paper “Compressed Ideals”, which has
been submitted for publication.
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In section 6.4, we show that Betti numbers are nondecreasing under compres-

sion. As an application, we recover the theorem of Bigatti, Hulett, and Pardue

[Bi, Hu, Pa] that lex ideals have maximal graded Betti numbers in S.

In the short section 6.5, we make some comments about possible applications

to the Hilbert scheme.

6.2 Structure of compressed ideals

We make a number of observations about A-compressed ideals.

Proposition 6.2.1. Suppose that N ⊂ S is A-compressed. Set B = S[y]. Then

NB is A-compressed as an ideal of B.

Remark 6.2.2. Proposition 6.2.1 holds regardless of the position of y in the lexi-

cographic order.

Proposition 6.2.3. If N is lex, then N is A-compressed.

Proposition 6.2.4. If N is A-compressed and A ⊃ B, then N is B-compressed.

Proposition 6.2.5. N is {xi}-compressed for any xi.

Definition 6.2.6. Let r be a positive integer. If N is A-compressed for every

r-element set A, we say that N is r-compressed. If N is A-compressed for every

proper subset A of {x1, · · · , xn}, we simply say that N is compressed.

Proposition 6.2.7. N is 2-compressed if and only if N is strongly stable.

Remark 6.2.8. Up to this point, everything has held in somewhat more general-

ity. The ring S could have been replaced by, for example, a quotient of the form

k[x1, · · · , xn]/(xe1
1 , · · · , xen

n ) with e1 ≤ · · · ≤ en ≤ ∞ without meaningful modi-

fication to any of the statements or proofs. (Macaulay’s theorem in such a ring
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is known as Clements-Lindström’s theorem [CL].) Beginning with Theorem 6.2.9,

however, it will be essential that we work over the correct ring.

Theorem 6.2.9. Let N be a monomial ideal of S. N is 3-compressed if and only

if N is lex.

Theorem 6.2.9 is a corollary of the following sharper result:

Proposition 6.2.10. Suppose that N ⊂ S is 2-compressed and also A-compressed

for every set A of the form {xi, xi+1, xn}. Then N is lex.

Proof. Let u ∈ N be a monomial of degree d, and let v be another monomial of

degree d, lex-before u. We will show that v ∈ N .

Write u =
∏

xei

i and v =
∏

xfi

i . Let i be minimal such that ei 6= fi; we have

ei < fi. Put w =
∏i

j=1 xei

i , u′ = u
w
, and v′ = v

xiw
. Set D = deg u′, and observe that

u ∈ k[xi+1, · · · , xn], v ∈ k[xi, · · · , xn].

Since u = wu′ ∈ N and N is strongly stable, we have wxD
i+1 ∈ N .

Since N is {xi, xi+1xn}-compressed, we have wxix
D−1
n ∈ N .

Since N is strongly stable, we have wxiv
′ = v ∈ N .

Propositions 6.2.5 and 6.2.7 and Theorem 6.2.9 combine to give us the following

structure theorem for compressed ideals of S:

Theorem 6.2.11. We classify the compressed ideals of S as follows:

• If n < 3, every monomial ideal is compressed.

• If n = 3, the compressed ideals are precisely the strongly stable ideals.

• If n > 3, the compressed ideals are precisely the lex ideals.

We can also describe the compressed ideals of R, as follows:
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Theorem 6.2.12. Let N be a compressed ideal of R. Then:

• If n is odd, N is lex.

• If n = 2r is even, the vector space Nd is lex for every d 6= r.

• If n = 2r and u ∈ N , v /∈ N are degree r monomials with v lex-before u,

then u = x2x3 · · ·xr+1 and v = x1xr+2xr+3 · · ·x2r.

In particular, if N is not lex, then Nd is generated by {(x1)d} r {v} and u,

where u and v are as above and {(x1)d} denotes the monomials in (x1)d. That is,

if N is not lex, Nd is generated by the lex segment terminating at u, with a single

gap at v. Note that u is the successor of v in the lex order.

Proof. Suppose that u ∈ N and v /∈ N both have degree r, and v is lex-before u.

Write u =
∏

xei

i and v =
∏

xfi

i . Set A = {xi : ei 6= fi}.

N cannot be A-compressed, so we must have A = {x1, · · · , xn}. On the other

hand, A ⊂ supp(u) ∪ supp(v). Thus A = supp(u) ∪ supp(v) and n = 2r.

We have supp(u) ∩ supp(v) = ∅, and x1 divides v, since v is lex-before u. If

n = 2 we are done, otherwise suppose that xi divides v, for some 2 ≤ i ≤ r + 1.

Then there exists xj dividing u with j > r + 1. Since N is {xi, xj}-compressed,

we have u xi

xj
∈ N . Then, since N is ({x1, · · · , xn}r {xi, xj})-compressed, we have

v ∈ N . Thus every xi, 2 ≤ i ≤ r + 1, must divide u, so u = x2x3 · · ·xr+1 and

v = x1xr+2xr+3 · · ·x2r.

6.3 Macaulay’s Theorem

Macaulay’s theorem classifies the Hilbert functions over S in terms of lex ideals:
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Theorem 6.3.1 (Macaulay). Every Hilbert function over S is attained by a lex

ideal. That is, let I be any homogeneous ideal of S. Then there exists a lex ideal

L such that HilbS
L = HilbS

I .

Macaulay’s original proof is probably the first example of a compression argu-

ment (using A = {x2, · · · , xn}), but is sufficiently opaque that he felt it necessary

to warn his readers away, saying:

This proof of the theorem. . . is given only to place it on record. It is

too long and complicated to provide any but the most tedious reading.

A number of other proofs have appeared since, most notably that of Green

[Gr1]. In this section, we present one more.

Our proof is by induction on n, and so will make free use of Theorem 6.3.2,

which was proved using Macaulay’s theorem on the smaller ring k[A]. We begin

with some remarks on compression.

First, we recall the key result, proved in Lemma 2.2.7:

Theorem 6.3.2. Let N be a monomial ideal, and let T be its A-compression.

Then T is an ideal as well.

Lemma 6.3.3. Let N be a monomial ideal, A $ {x1, · · · , xn} any set of variables,

and T the A-compression of N . Then T has the same Hilbert function as N , and

T is lexicographically greater than N .

Proof. Every Tf has the same Hilbert function as Nf , and is lexicographically

greater than Nf .

Lemma 6.3.4. Let N be any homogeneous ideal, and let A be any collection of

proper subsets of {x1, · · · , xn}. Then there exists an ideal T , having the same

Hilbert function as N , which is A-compressed for all A ∈ A.
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Proof. Set T0 = N and proceed inductively as follows: If A ∈ A is such that Ti

is not A-compressed, let Ti+1 be the A-compression of Ti. Then all Ti have the

same Hilbert function, and Ti+1 is lexicographically greater than Ti for all i. Since

“lexicographically greater than” is a well-ordering on the (finite) sets of monomials

in S, this process must stabilize in degree less than or equal to d, say at Ts(d), for

all d. Let T be the ideal whose degree-d components are the Ts(d).

Corollary 6.3.5. Let N be any homogeneous ideal. Then there exists a compressed

ideal T having the same Hilbert function as N .

We are now ready for the proof of Macaulay’s theorem:

Proof of Macaulay’s Theorem 6.3.1. We may assume by Gröbner basis theory that

N is monomial. If n = 1 or 2, the theorem is now obvious.

Otherwise, by corollary 6.3.5, we may assume that N is compressed. If n ≥ 4,

Theorem 6.2.11 shows that N is lex.

This leaves the case that S = k[a, b, c] and N is strongly stable. It suffices to

show for every degree d that, if Ld is the vector space spanned by the lex-first |Nd|

monomials of S, we have |(a, b, c)Ld| ≤ |(a, b, c)Nd|. Since Nd is strongly stable,

we have

|(a, b, c)Nd| = |Nd| + |Nd ∩ k[a, b]| + |Nd ∩ k[a]|

and likewise

|(a, b, c)Ld| = |Ld| + |Ld ∩ k[a, b]| + |Ld ∩ k[a]|.

|Nd| = |Ld| by construction, and Nd ∩k[a] = Ld ∩k[a] = (ad), so it suffices to show

that |Nd ∩ k[a, b]| ≥ |Ld ∩ k[a, b]|.

Suppose that u, v are degree d monomials with u ∈ N , v /∈ N , and v lex-before

u. Then c divides v, as otherwise the strongly stable condition, applied to u, would
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require v = (a
b
)i( b

c
)ju ∈ N . In particular, any v ∈ Ld rNd is not in k[a, b], yielding

the desired inequality.

Macaulay’s theorem is known to hold in many quotients of S [Kr, Ka, CL, Sh,

MP1, MP2, Me1]. The first extension was due to Kruskal [Kr] and Katona [Ka],

who showed that it holds in R = S/(x2
1, · · · , x2

n):

Theorem 6.3.6 (Kruskal, Katona). Macaulay’s theorem holds in R. That is, if

N is any homogeneous ideal of R, there exists a lex ideal L such that L and N

have the same Hilbert function.

We prove Kruskal-Katona’s theorem, in the spirit of our proof of Macaulay’s

theorem:

Proof. We may assume by Gröbner basis theory that N is monomial. If n = 1 or

2, the theorem is now obvious.

Otherwise, we may assume by Corollary 6.3.5 that N is compressed. If N is

lex we are done.

If N is not lex, we have by Theorem 6.2.12 that n = 2r and that N fails to be lex

only in degree r, and only by containing u = x2 · · ·xr+1 but not v = x1xr+2 · · ·xn.

Let {N} be the set of monomials of N , and let L be the vector space spanned by

{N} r {u} ∪ {v}. Clearly, L has the same Hilbert function as N ; we claim that it

is an ideal. Indeed N (hence L) contains every multiple of v (as xiv = xn( xi

xn
v))

and no divisor of u (as u
xi

∈ N would force xn

xi
u ∈ N).

6.4 Betti numbers

Definition 6.4.1. If I is a homogeneous S-module, a free resolution of I is an exact

sequence F : · · · → F1 → F0 → I → 0, with each Fi a free module. F is minimal
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if each Fi has minimum possible rank. The Fi may be graded Fi = ⊕S(−d)bi,d

so that each map Fi+1 → Fi is homogeneous of degree zero. If a minimal free

resolution is graded in this way, the graded Betti numbers of I are the bi,d.

Bigatti [Bi], Hulett [Hu], and Pardue [Pa] showed that the graded Betti numbers

of lex ideals of S are maximal among those of all homogeneous ideals with a fixed

Hilbert function:

Theorem 6.4.2 (Bigatti, Hulett, Pardue). Let I be a homogeneous ideal of S, and

let L be the lex ideal having the same Hilbert function as I. Then, for all i, d, we

have bi,d(L) ≥ bi,d(I).

Analogous results are known in many rings which satisfy Macaulay’s theorem

[AHH, GHP, MPS], and are widely conjectured in general [FR].

In this section we show that the graded Betti numbers are nondecreasing under

A-compression, and provide a new proof of the results of Bigatti, Hulett, and

Pardue over S. Our argument is in the spirit of Hartshorne’s proof that the Hilbert

scheme is connected [Ha].

Lemma 6.4.3. Let k have characteristic zero, let S = k[a, b], and let N be a

monomial ideal of S. Let L be the lex ideal with the same Hilbert function as N .

Then there exists a change of variables f such that the initial ideal of f(N) with

respect to the lex order is L, and the initial ideal of f(N) with respect to the inverse

lex order is N .

Proof. Set f(a) = a and f(b) = a+ b. (Alternatively, a generic linear form for f(b)

will work.)

Lemma 6.4.4. Let S = k[a, b, c] (over an arbitrary infinite field k), and let N be

strongly stable but not lex. Then there exists an ideal Ñ such that:
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• N and Ñ have the same Hilbert function.

• N is the initial ideal of Ñ with respect to the grevlex order.

• The initial ideal of Ñ with respect to the lex order is strictly lexicographically

greater than N .

• N and Ñ have the same graded Betti numbers.

In particular, if N ′ is the lex initial ideal of Ñ , we have bi,j(N
′) ≥ bi,j(Ñ) = bi,j(N)

for all i, j.

Proof. Let Spo and Npo be the polarizations of S and N with respect to the variable

b. (So if N is minimally generated by {aei,1bei,2cei,3}, we have Npo generated by

{aei,1b1b2 · · · bei,2
cei,3}). Let f : Spo → S be defined by sending each bj to a generic

linear function of the form fj = f1,ja + f2,jb + f3,jc. Let Ñ be the image of Npo

under f .

That N and Ñ have the same Hilbert function and graded Betti numbers is

immediate from the theory of polarization (e.g., [Pe2]) (in particular, the operation

(̃·) extends to any graded free resolution of N : a straightforward argument in the

degree of the b-variables shows that bj −fj and bj −b are non-zero-divisors on S/N .

Then, by a well-known Tor argument, the Betti numbers of N and Ñ over S are

equal to those of Npo over Spo.)

To see that N is the grevlex initial ideal of Ñ , observe that, if m = ae1be2ce3 is

any monomial of N , then we have m̃ = ce3(

e2
∑

i=0

gia
e1+e2−ibi) + ce3+1(other terms) ∈

Ñ . Subtracting an appropriate linear combination of ñ, for n = ae1+ibe2−ice3 ∈ N ,

gives us m + ce3+1(other terms) ∈ Ñ , whose initial term is m.

To see that the lex initial ideal of Ñ is lexicographically greater than N , let

u ∈ N be the lex-first degree d monomial such that there exists v /∈ N lex-before
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u; choose v to be the first such. Since the f are generic, there exists a linear

combination
∑

m̃, for m ∈ N the monomials lex-before or equal to u, with leading

term v: since N is strongly stable, we have u = ae1be2 , and so v = ae1+1bice2−i−1;

we could have chosen fj(b) = αja + b for j ≤ i and fj(b) = αja + b + γjc for

j > i.

Remark 6.4.5. We believe, based on some extremely limited computer experi-

ments, that if k has characteristic zero, the functions f1(b) = a + b and fi(b) =

a + b + c, for i > 1, produce Ñ satisfying the desired conditions.

Remark 6.4.6. We believe that the functions fi may be chosen so that the lex

initial ideal of Ñ is the lexicographic ideal L. Unfortunately, we have no proof at

this time.

Remark 6.4.7. A similar argument in two variables shows that lemma 6.4.3 holds

in arbitrary characteristic.

Remark 6.4.8. The operation (̃·) defined in the proof of lemma 6.4.4 does not

depend on the dimension of S. The proof continues to hold if {a, b, c} is a subset

of {x1, · · · , xn}.

Theorem 6.4.9. Let N be any monomial ideal of S, and let A be any subset of

variables. If T is the A-compression of N , then bi,j(T ) ≥ bi,j(N) for all i, j.

Proof. By induction on the cardinality of A, we may assume that N is B-compressed

for all proper subsets B of A. If |A| ≥ 4, we have N = T , by Theorem 6.2.11. If

|A| = 2 or 3, the proof of lemma 6.4.3 or 6.4.4, respectively, gives us a monomial

ideal N ′ satisfying:

• The A-compression of N ′ is T .
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• N ′ is lexicographically greater than N

• bi,j(N
′) ≥ bi,j(N).

Since the monomial ideals with a fixed Hilbert function are well-ordered by “lexi-

cographically greater than”, we are done by induction.

In fact, combining the proof of Theorem 6.4.9 and the proof in [Pe1] we obtain

the following stronger result:

Theorem 6.4.10. Under the assumptions of Theorem 6.4.9, the Betti numbers

bi,j(N) of N can be obtained from the bi,j(T ) by a sequence of consecutive cancel-

lations.

We obtain as a corollary the result of Bigatti [Bi], Hulett [Hu], and Pardue

[Pa].

Theorem 6.4.11 (Bigatti, Hulett, Pardue). Let I be any homogeneous ideal of S,

and let L be the lex ideal with the same Hilbert function as I. Then bi,j(L) ≥ bi,j(I)

for all i, j.

Proof. Let N be the initial ideal of I in any order, so bi,j(N) ≥ bi,j(I). Now apply

Theorem 6.4.9 to the ideal N , with A = {x1, · · · , xn}.

Remark 6.4.12 (On multidegrees). Fix A, and endow S with a multigraded

structure as follows: If m = fg is a degree d monomial with f ∈ k[Ac] and

g ∈ k[A], set the coarse multidegree of m to be cmdeg(m) = (f, d). Then we may

define coarsely homogeneous ideals, coarse Hilbert functions, etc., by analogy to

the usual definitions in a graded ring. With this notation, an A-compressed ideal

is coarsely lex, and our results may be restated in more familiar terms:
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• Theorem 6.3.2 states that every coarse Hilbert function is attained by a

coarsely lex ideal.

• Theorem 6.4.9 states that, if N is coarsely homogeneous, and T is coarsely

lex with the same coarse Hilbert function, then the coarse Betti numbers of

T are greater than or equal to those of N .

• Lemmas 6.4.3 and 6.4.4, together with Theorem 6.2.11, show that the coarse

Hilbert scheme is connected.

6.5 Remarks on the Hilbert scheme

We close with some remarks about possible applications to the Hilbert scheme,

which parametrizes all ideals with a fixed Hilbert function.

It is known that the Hilbert scheme is connected. Hartshorne proves this [Ha]

by showing that there is a path to the lex ideal from any point on the Hilbert

scheme. Reeves [Re] and Pardue [Pa] have shown that there exists a path of

length at most d + 2, where d ≤ n is the degree of the Hilbert polynomial.

In section 6.4, we have shown that one can walk to lex by walking to a sequence

of compressions. These moves are much simpler than those defined in [Re], which

involved Borel fans. It is natural to ask how many of our “compression steps”

are necessary to reach the lex ideal from any monomial ideal. There might be a

nice bound in terms of (n − 2) and the radii of Hilbert schemes in k[a, b, c] (since

by proposition 6.2.10 it suffices to be simultaneously Borel and compressed with

respect to the n − 2 sets {xi, xi+1, xn}.)

In a slightly different direction, it should be possible to perform multiple such

compressions at once, as the coordinate changes involved in the compressions with
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respect to, say, {xi, xi+1, xn} and {xi+2, xi+3, xn}, might not interact harmfully.

In exploring these questions, we would like it to be the case that if N is B-

compressed and T is its A-compression, then T is B-compressed as well. Unfortu-

nately, this is not true in general; in fact it can be impossible to find A for which

this holds:

Example 6.5.1. Let N = (a2, ab, ac, b2, bc) ⊂ k[a, b, c, d]. Then N is compressed

with respect to every proper subset of {a, b, c, d} except {a, b, d}. Its {a, b, d}-

compression is T = (a2, ab, ac, ad, bc), which is not {b, c}-compressed.

In Lemma 4.2.8 we show that compression with respect to the set {x1, · · · , xn−1}

is well-behaved in the sense that it takes strongly stable ideals to strongly stable

ideals. More research in this direction might prove productive.



Chapter 7

Ideals Containing the Squares of the

Variables*

7.1 Introduction

Throughout the chapter S = k[x1, . . . , xn] is a polynomial ring over a field k graded

by deg(xi) = 1 for all i, and P = (x2
1, . . . , x

2
n) is the ideal generated by the squares

of the variables.

It is well known how the Hilbert function changes when we add P to a squarefree

monomial ideal I; this is given by the relation between the f -vector and the h-

vector, cf. [BH]. It has been an open question how the Betti numbers change. We

answer this question in Theorem 7.2.1, which provides a relation between the Betti

numbers of I and those of I + P . In Theorem 7.3.3, we describe a basis of the

minimal free resolution of I + P in the case when I is Borel.

By Kruskal-Katona’s Theorem [Kr,Ka], there exists a squarefree lex ideal L

such that L + P has the same Hilbert function as I + P . The ideal L + P is called

lex-plus-squares. It was conjectured by Herzog and Hibi that the graded Betti

numbers of L + P are greater than or equal to those of I + P . Later, Graham

Evans conjectured the more general lex-plus-powers conjecture that, among all

graded ideals with a fixed Hilbert function and containing a homogeneous regu-

lar sequence in fixed degrees, the lex-plus-powers ideal has greatest graded Betti

numbers in characteristic 0. This conjecture is very difficult and wide open. Some

* This chapter is modified from the paper “Ideals containing the squares of the
variables”, which has been submitted for publication. It is joint work with Irena
Peeva and Mike Stillman.

80
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special cases are proved by G. Evans, C. Francisco, B. Richert, and S. Sabourin

[ER,Fr1,Fr2,Ri,RS]. An expository paper describing the current status of the con-

jecture is [FR]. In 7.5.1 we prove the following:

Theorem 7.1.1. Suppose that char (k) = 0. Let F be a graded ideal containing

P = (x2
1, . . . , x

2
n). Let L be the squarefree lex ideal such that F and the lex-plus-

squares ideal L + P have the same Hilbert function. The graded Betti numbers of

the lex-plus-squares ideal L + P are greater than or equal to those of F .

The methods used in [Bi,Hu,Pa,CGP] to show that the lex ideal has greatest

Betti numbers are not applicable; see Examples 7.3.10 and 7.3.11. We use the

technique of compression. Compression was introduced by Macaulay [Ma], and

used by [Ma, CL,MP1,MP2,Me1,Me3] to study Hilbert functions. It is not known

in general how Betti numbers behave under compression, but it is reasonable to

expect that they increase. We address this in Section 7.4.

The proof of Theorem 7.1.1 consists of the following steps:

◦ In Section 7.5 (the proof of Theorem 7.5.1.), we reduce to the case of a square-

free Borel ideal (plus squares); this is not immediate because a generic change of

variables does not preserve P .

◦ In Section 7.3, we reduce to the case of a squarefree {x1, . . . , xn−1}-compressed

Borel ideal (plus squares).

◦ In Section 7.4, we deal with squarefree {x1, . . . , xn−1}-compressed Borel ideals.

Given the intricacy of the proof in the Borel case (Section 7.3 and 7.4), we think

that the following particular case of the lex-plus-powers conjecture is of interest:

Conjecture 7.1.2. The lex-plus-powers ideal has greatest graded Betti numbers

among all Borel-plus-powers monomial ideals with the same Hilbert function.
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A refinement of the lex-plus-powers conjecture is to study consecutive cancel-

lations in Betti numbers. In view of the result in [Pe1], it is natural to ask:

Problem 7.1.3. Under the assumptions of Theorem 7.1.1, is it true that the Betti

numbers of L + P and those of F differ by consecutive cancellations?

7.2 Squarefree monomial ideals plus squares

A monomial ideal is called squarefree if it is generated by squarefree monomials.

If I is squarefree, then I + P is called squarefree-plus-squares.

For a monomial m, let max(m) be the index of the lex-last variable dividing

m, that is, max(m) = max{i | xi divides m}.

The ring S is standardly graded by deg(xi) = 1 for each i. In addition, S is

Nn-graded by setting the multidegree of xi to be the i’th standard vector in Nn.

Usually we say that S is multigraded instead of Nn-graded, and we say multidegree

instead of Nn-degree. For every vector a = (a1, . . . , an) ∈ Nn there exists a unique

monomial of degree a, namely xa = xa1
1 · · ·xan

n . If an element g (say in a module)

has Nn-degree a, then we say that is has multidegree xa and denote deg(g) = xa.

Denote by S(−xa) the free S-module generated by one element in multidegree xa.

Every monomial ideal is multihomogeneous, so it has a multigraded minimal free

resolution. Thus, the minimal free resolutions of S/I and S/(I + P ) are graded

and multigraded. We will use both gradings.

For a subset σ ⊆ {1, . . . , n}, let |σ| denote the number of elements in σ. We

will abuse notation to sometimes identify a subset with the squarefree monomial

supported on it, so σ may stand for
∏

j∈σ

xj. It will always be clear from context
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what is meant. By S(−2σ) we denote the free S-module generated in multidegree
∏

i∈σ

x2
i .

Theorem 7.2.1. Let I be a squarefree monomial ideal.

(1) Set Fi =
⊕

|σ|=i

S/(I : σ)
(

−2σ
)

, where σ ⊆ {1, . . . , n}. We have the long exact

sequence

0 → Fn
ϕn

−−→· · ·
ϕ2

−−→F1
ϕ1

−−→F0 = S/I → S/(I + P ) → 0(7.2.2)

with maps ϕi the Koszul maps for the sequence x2
1, . . . , x

2
n.

(2) Each of the ideals (I : σ) in (1) is a squarefree monomial ideal.

(3) S/(I + P ) is minimally resolved by the iterated mapping cones from (7.2.2).

(4) For the graded Betti numbers of S/(I + P ) we have

bp,s(S/(I + P )) =

n
∑

i=0

(

∑

|σ|=i

bp+i,s+2i(S/(I : σ))

)

.

Proof. Since the ideal I is squarefree, it follows that (I : σ2) = (I : σ) is squarefree.

We have the exact Koszul complex K for the sequence x2
1, . . . , x

2
n:

0 →
⊕

|σ|=n

S
ϕn

−−→ . . . →
⊕

|σ|=i

S
ϕi−−→

⊕

|σ|=i−1

S → . . .

. . . →
⊕

|σ|=1

S =
n

⊕

j=1

S
ϕ1−−→

⊕

|σ|=0

S = S → S/P → 0 .

We can write K = K′ ⊕ K′′, where K′ consists of the components of K in all

multidegrees m /∈ I, and K′′ consists of the components of K in all multidegrees

m ∈ I. Both K′ and K′′ are exact. We will show that (7.2.2) coincides with

K′. Consider K as an exterior algebra on basis e1, . . . en. The multidegree of

the variable ej is x2
j . Let f = mej1 ∧ · · · ∧ eji

be an element in Ki and m be a

monomial. The multidegree of f is mx2
j1

. . . x2
ji
. We have that f ∈ K′ if and only



84

if mx2
j1 . . . x2

ji
/∈ I, if and only if mxj1 . . . xjt

/∈ I, if and only if m /∈ (I : xj1 . . . xji
).

Therefore, we have the vector space isomorphism

K′
i →

⊕

|σ|=i

S/(I : σ)

mej1 ∧ · · · ∧ eji
7→ m ∈ S/(I : xj1 . . . xji

) .

This proves (1).

We will prove (3) by induction on n − i. Denote by Ki the kernel of ϕi. We

have the short exact sequence

0 → Ki →
⊕

|σ|=i

S/(I : σ) → Ki−1 → 0 .

Each of the ideals (I : σ) is squarefree. By Taylor’s resolution, it follows that the

Betti numbers of
⊕

|σ|=i

S/(I : σ) are concentrated in squarefree multidegrees. On

the other hand, the entries in the matrix of the map ϕi are squares of the variables.

Therefore, there can be no cancellations in the mapping cone. Hence, the mapping

cone yields a minimal free resolution of Ki−1.

(4) follows from (3).

The Hilbert function of a graded finitely generated module T is

HilbT (i) = dimk (Ti).

For squarefree ideals, we consider also the squarefree Hilbert function, sHilb, that

counts only squarefree monomials. It is well-known that if I and J are squarefree

ideals, then S/I and S/J have the same Hilbert function if and only if S/(I + P )

and S/(J +P ) have the same Hilbert function; thus, I and J have the same Hilbert

function if and only if they have the same squarefree Hilbert function.
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Proposition 7.2.3. Let I and J be squarefree monomial ideals with the same

Hilbert function. Fix an integer 1 ≤ p ≤ n. The graded modules
⊕

|σ|=p

(I : σ)

and
⊕

|σ|=p

(J : σ) have the same Hilbert function and the same squarefree Hilbert

function.

Proof. We consider squarefree Hilbert functions. Set I(p) =
⊕

|σ|=p

(I : σ). Let τ be

a squarefree monomial of degree d in (I : ν). Then ντ ∈ Id+p. If |ν∩τ | = s, choose

µ so that µ = lcm(ν, τ) is a squarefree monomial in Id+p−s.

Let µ be a squarefree monomial in Id+p−s. We can choose ν in
(

d+p−s
p

)

ways so

that |ν| = p and ν divides µ. For each so chosen ν, we can choose τ in
(

p
s

)

ways so

that |ν∩ τ | = s and τ divides µ. Therefore, the monomial µ contributes
(

d+p−s
p

)(

p
s

)

monomials in
(

I(p)
)

d
. For such a monomial, we say that it is coming from Id+p−s,

or that its source is Id+p−s.

Suppose that one element in
(

I(p)
)

d
can be obtained in two different ways by

this procedure. Since we have the same element in
(

I(p)
)

d
, it follows that ν and

τ are fixed. But then, µ and s are uniquely determined. Hence, both the source

and µ are uniquely determined. Therefore, one and the same element in
(

I(p)
)

d

cannot be obtained in two different ways by the above procedure.

For a vector space Q spanned by monomials, we denote by sdim(Q) the number

of squarefree monomials in Q. We have shown that

(2.4) sdim

(

⊕

|σ|=p

(I : σ)

)

d

=

n
∑

x=0

(

d + p − s

p

)(

p

s

)

sdim(Id+p−s) .

The same formula holds for J as well. Now, the proposition follows from the well-

known fact that for each j ≥ 0 we have that sdim(Ij) = sdim(Jj) since I and J

are squarefree ideals with the same Hilbert function.

Let I be a squarefree monomial ideal, and ∆ be its Stanley-Reisner simplicial
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complex. Let σ ⊆ {1, . . . , n}. We remark that it is well-known that the Stanley-

Reisner simplicial complex of (I : σ) is star∆(σ) = {τ ∈ ∆ | τ ∪ σ ∈ ∆} .

7.3 Squarefree Borel ideals plus squares

A squarefree monomial ideal N is squarefree Borel if, whenever mxj ∈ N is a

squarefree monomial, and i < j and mxi is squarefree, we have mxi ∈ N as well.

A squarefree monomial ideal L is squarefree lex if, whenever m ∈ L is a squarefree

monomial and m′ is a squarefree monomial lexicographically greater than m, we

have m′ ∈ L as well.

If N is squarefree Borel, then by Kruskal-Katona’s Theorem [Kr,Ka], there

exists a squarefree lex ideal L with the same Hilbert function.

Lemma 7.3.1.

• (1) Let N be a squarefree Borel ideal. For any σ ⊆ {1, . . . , n}, the ideal

(N : σ) is squarefree Borel in the ring S/({xi|i ∈ σ}).

• (2) Let L be a squarefree lex ideal. For any σ ⊆ {1, . . . , n}, the ideal (L : σ)

is squarefree lex in the ring S/({xi|i ∈ σ}).

The ideals (N : σ) and (L : σ) are generated by monomials in the smaller ring

S/({xi|i ∈ σ}), so we may view them as ideals of S/({xi|i ∈ σ}).

For a monomial ideal M , we denote by gens(M) the set of monomials that

generate M minimally.

Construction 7.3.2. If N is squarefree Borel, then the minimal free resolution of

S/N is the squarefree Eliahou-Kervaire resolution [AHH] with basis denoted

{1} ∪

{

(h, α) | h ∈ gens(N), α ⊂ {1, . . . , n}, hα is squarefree, max(α) < max(h)

}

.
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The basis element (h, α) has homological degree deg(α) + 1 , degree deg(h) +

deg(α), and multidegree hα; the basis element 1 has homological degree 0 and

degree 0. In order to describe a basis of the minimal free resolution of S/(N + P )

we introduce EK-triples. For σ ⊆ {1, . . . , n}, we say that (σ, h, α) is an EK-triple

if (h, α) is a basis element in the minimal free resolution of S/(N : σ). By Lemma

7.3.1, it follows that (σ, h, α) is an EK-triple (σ, h, α) if and only if:

◦ h ∈ gens(N : σ)

◦ α = {j1, . . . , jt} is an increasing sequence of numbers in the set {i | i /∈ σ}, such

that 1 ≤ j1 < · · · < jt < max(h)

◦ σhα is squarefree.

By Theorem 7.2.1, Lemma 7.3.1, and Construction 7.3.2, it follows that:

Theorem 7.3.3. Let N be a squarefree Borel ideal. The minimal free resolution of

S/(N + P ) has basis consisting of {1} and the EK-triples. An EK-triple (σ, h, α)

has homological degree |σ|+ |α| and degree 2|σ|+ |α|+ |h|; it has multidegree σ2hα.

In particular, for all p, s ≥ 0, the graded Betti number bp,s(S/(N + P )) is equal to

the number of EK-triples such that p = |σ| + |α| and s = 2|σ| + |α| + |h|.

We will prove:

Theorem 7.3.4. Let N be a squarefree Borel and L be the squarefree lex with the

same Hilbert function, (equivalently, let N + P and L + P have the same Hilbert

function). For all p, s, the graded Betti numbers satisfy

bp,s(S/(L + P )) ≥ bp,s(S/(N + P )) .

For the proof, we need the notion of compression. Compression of ideals

was introduced by Macaulay [Ma], and was used by Clements-Lindström [CL],
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Macaulay [Ma], Mermin [Me1,Me3], Mermin-Peeva [MP1,MP2] to study Hilbert

functions.

Definition 7.3.5. Let I be a squarefree monomial ideal. We denote by Ī the

monomial ideal in S/P generated by the squarefree monomials generating I. Fix

a subset A of the variables, and let T̄ be the A-compression of Ī in S/P . Let T be

the squarefree ideal of S generated by the nonzero monomials of T̄ . We say that T

is the squarefree compression of I; by abuse of notation we will say “compression”

instead of “squarefree compression” throughout the chapter.

We need the following lemmas:

Lemma 7.3.6. Let I be a squarefree ideal. If I is (2i − 2)-compressed for some

i ≥ 1, then I is (2i − 1)-compressed.

Proof. Let v ∈ I be a squarefree monomial. Suppose that u is a squarefree mono-

mial of the same degree such that u > v. Set w = gcd(u, v), so that we can write

u = u′w, v = v′w with gcd(u′, v′) = 1. Suppose |u′v′| ≤ 2i − 1. Denote by B the

set of variables that appear in exactly one of the monomials u and v. Since u and

v have the same degree, it follows that the number of variables in B is even. Since

|B| ≤ 2i − 1, we have |B| ≤ 2i − 2. Hence, I is B-compressed. Therefore, v ∈ I

implies that u ∈ I.

Lemma 7.3.7. Let N be a squarefree Borel ideal. Its {x1, . . . , xn−1}-compression

J is a squarefree Borel ideal.

Proof. We have to show that J̄ is a squarefree Borel ideal. Consider the direct

sums

N̄ = xnV̄xn
⊕ V̄1 and J̄ = xnW̄xn

⊕ W̄1 .
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Set n = (x1, . . . , xn−1). Since N̄ is squarefree Borel, it follows that nV̄xn
⊆ V̄1.

By Kruskal-Katona’s Theorem [Kr, Ka] it follows that nW̄xn
⊆ W̄1. If xnm is a

monomial in xnW̄xn
, then for each 1 ≤ i < n we have that xim ∈ W̄1. If xj divides

a monomial m ∈ W̄1 (respectively, W̄xn
), then for each 1 ≤ i ≤ j we have that

xim
xj

∈ W̄1 (respectively, W̄xn
) since W̄1 (respectively, W̄xn

) is squarefree lex. Thus,

J̄ is squarefree Borel.

Lemma 7.3.8. Let N be a squarefree Borel ideal and J be its {x1, . . . , xn−1}-

compression. For all p, s, the graded Betti numbers satisfy

bp,s(S/(J + P )) ≥ bp,s(S/(N + P )) .

Proof. Set A = S/xn. We assume, by induction on the number of variables, that

Theorem 7.3.4 holds over the polynomial ring A.

Consider the EK-triples (σ, h, α) for N in degree (p, s). Let cp,s(N) be the

number of triples such that xn divides σ; let dp,s(N) be the number of triples such

that xn divides h; let ep,s(N) be the number of triples such that xn does not divide

σhα. Since xn cannot divide α by Construction 7.3.2, it follows by Theorem 7.3.3

that

bp,s(S/(N + P )) = cp,s(N) + dp,s(N) + ep,s(N) .

Similarly, we introduce the numbers cp,s(J), dp,s(J), ep,s(J) and get

bp,s(S/(J + P )) = cp,s(J) + dp,s(J) + ep,s(J) .

We will show that the above introduced numbers for J are greater than or equal

to the corresponding numbers for N .

As in the proof of Lemma 7.3.7, we write N̄ = V̄1⊕xnV̄xn
and J̄ = W̄1⊕xnW̄xn

.

First, we consider the number cp,s(N). Note that V̄xn
⊃ V̄1. Therefore, (N̄ :

xnτ) = (V̄xn
: τ) for xn /∈ τ . Hence, the EK-triples counted by cp,s(N) correspond
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bijectively to the EK-triples for Vxn
of degree (p− 1, s− 2) by the correspondence

(xnτ, h, α) ⇐⇒ (τ, h, α). Thus,

cp,s(N) = bp−1,s−2(A/(Vxn
+ (x2

1, . . . , x
2
n−1))) .

By Lemma 7.3.7, J is squarefree Borel, so we get the same formula for J . By

the construction of compression, the ideal Wxn
is the squarefree lex ideal in the

polynomial ring A with the same Hilbert function as Vxn
. Since Theorem 7.3.4

holds over the ring A by the induction hypothesis, we conclude that cp,s(J) ≥

cp,s(N).

Now we consider the number ep,s(N). The EK-triples counted by ep,s(N) are

exactly the EK-triples for V1. Hence, ep,s(N) = bp,s(A/(V1 + (x2
1, . . . , x

2
n−1))). The

same equality holds for ep,s(J). By the construction of compression, the ideal W1

is the squarefree lex ideal in the polynomial ring A with the same Hilbert function

as V1. Since Theorem 7.3.4 holds over the ring A by the induction hypothesis, we

conclude that ep,s(J) ≥ ep,s(N).

It remains to consider dp,s(N). Since N is squarefree Borel, it follows that

V̄1 ⊇ nV̄xn
. Therefore, for each degree j

{gens(N : σ)j that are divisible by xn} = {(x̄n(Vxn
: σ))j} \ {(xn(V̄1 : σ))j} .

Hence, for each degree j, the number of minimal monomial generators of degree

j of (N : σ) that are divisible by xn is

dimk(V̄xn
: σ)j−1 − dimk(V̄1 : σ)j−1 .

For each such minimal monomial generator h, we have that max(h) = n. Since α is

prime to σ and supp(h), by Construction 7.3.2 we see that there are

(

n − |h| − |σ|

|α|

)
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=

(

n − j − |σ|

p − |σ|

)

possibilities for α in the EK-triples. By Theorem 7.3.3, we con-

clude that

dp,s(N) =
∑

n/∈σ

(

n − j − |σ|

p − |σ|

)

(

dimk(V̄xn
: σ)s−p−|σ|−1 − dimk(V̄1 : σ)s−p−|σ|−1

)

.

As the ideal J is squarefree Borel by Lemma 7.3.6, the same formula holds for J .

By the construction of compression, V̄1 and W̄1 have the same Hilbert function, as

do V̄xn
and W̄xn

. By the displayed formula for dp,s above and Proposition 7.2.3,

the number dp,s depends only on these Hilbert functions. Therefore, dp,s(J) =

dp,s(N).

Main Lemma 7.3.9. Let N be a squarefree Borel {x1, . . . , xn−1}-compressed ideal.

Suppose that N is not squarefree lex. There exists a squarefree Borel ideal T such

that:

◦ T has the same Hilbert function as N

◦ T is lexicographically greater than N (here “lexicographically greater” means

that for each d ≥ 0 we order the monomials in Nd and Td lexicographically,

and then compare the two ordered sets lexicographically)

◦ for all p, s, the graded Betti numbers satisfy

bp,s(S/(T + P )) ≥ bp,s(S/(N + P )) .

The proof of Lemma 7.3.9 is long and very technical. We present it in the next

section.

Proof of Theorem 7.3.4: Let N be a squarefree Borel ideal. By Lemma 7.3.7, we

can assume that N is {x1, . . . , xn−1}-compressed. Lemma 7.3.9 implies that we

can replace N by a squarefree Borel ideal which is lexicographically greater.
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We proceed in this way until we reach the squarefree lex ideal L. This process

is finite since there exist only finitely many squarefree Borel ideals with a fixed

Hilbert function.

Example 7.3.10. It is natural to ask if Green’s Theorem can be used, as in [CGP],

in order to obtain a short proof of Theorem 7.3.4. Unfortunately, in the example

N = (ab, ac, bc), L = (ab, ac, ad, bcd) in k[a, b, c, d], one of the inequalities needed

for the proof does not hold. Thus, the short proof in [CGP] cannot be generalized

to cover Theorem 7.3.4.

Furthermore, the inequality

∑

|σ|=i

br,s(S/(N : σ)) ≤
∑

|σ|=i

br,s(S/(L : σ))

may not hold. For example, it fails for S = k[a, b, c, d, e] and

N = (abc, abd, acd, bcd)

and i = 2. In this case we have L = (abc, abd, abe, acd, bcde). Computer computa-

tion gives

∑

|σ|=2

b1,2(S/(N : σ)) = 12 while
∑

|σ|=2

b1,2(S/(L : σ)) = 11 ,

and
∑

|σ|=2

b2,2(S/(N : σ)) = 6 while
∑

|σ|=2

b2,2(S/(L : σ)) = 5 .

Example 7.3.11. Let N be squarefree Borel and L be squarefree lex with the

same Hilbert function (equivalently, let N + P and L + P have the same Hilbert

function). It is natural to ask:
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Question: Are the graded Betti numbers of S/
(

L + (x2
1, . . . , x

2
i )

)

greater or equal

to those of S/
(

N + (x2
1, . . . , x

2
i )

)

, for each i?

This question is closely related to a result proved by Charalambous and Evans

[CE]. Let M be a squarefree Borel ideal. Set P (i) = (x2
1, . . . , x

2
i ) and P (0) = 0.

By [CE], for each 0 ≤ i < n, the mapping cone of the short exact sequence

0 → S/
(

(M + P (i)) : xi+1

)

→ S/
(

M + P (i)
)

→ S/
(

M + P (i + 1)
)

→ 0

yields a minimal free resolution of S/
(

M + P (i + 1)
)

.

The following example gives a negative answer to the above question. Let

A = k[a, b, c, d, e, f ] and T be the ideal generated by the squarefree cubic mono-

mials. The ideal N = (ab, ac, ad, bc, bd) + T is squarefree Borel. The ideal

L = (ab, ac, ad, ae, af) + T is squarefree lex. The ideals N and L have the same

Hilbert function. The graded Betti numbers of S/
(

L + (x2
1)

)

are not greater or

equal to those of S/
(

N + (x2
1)

)

. For example,

b5,7

(

S/
(

L + (x2
1)

)

)

) = 0 and b5,7

(

S/
(

N + (x2
1)

)

)

= 1 .

7.4 Proof of the Main Lemma 7.3.9

Throughout this section, we make the following assumptions:

Assumptions 7.4.1. N is a squarefree Borel {x1, · · · , xn−1}-compressed ideal in

S = k[x1, · · · , xn]/P , and is not squarefree lex.

Construction 7.4.2. Since every squarefree Borel ideal in two variables is square-

free lex, it follows that the ideal N is B-compressed for every set B of two variables.

Let r ≥ 2 be maximal such that N is (2r − 2)-compressed. By Lemma 7.3.6, we
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have that N is (2r − 1)-compressed. There exists a set A of 2r variables such

that N is not A-compressed. Choose w lex-first such that there exist variables

w > y1 > · · · > yr > z2 > · · · > zr for which N is not {w, y1, . . . , yr, z2, . . . , zr}-

compressed. Then choose {y1 > · · · > yr} lex-last such that there exist z2, . . . , zr

with yr > z2 > · · · > zr such that N is not {w, y1, . . . , yr, z2, . . . , zr}-compressed.

Finally, choose z2 > · · · > zr lex-first such that N is not {w, y1, . . . , yr, z2, · · · , zr}-

compressed. Set A = {w, y1, . . . , yr, z2, . . . , zr}. We make this choice so that we

can show in Lemma 7.4.6 that the A-compression of N is still Borel.

If zr 6= xn, then N is A-compressed because A ⊆ {x1, . . . , xn−1}. Therefore,

zr = xn.

Following the notation of Definition 7.3.5, write

N̄ =
⊕

f

f N̄f .

Each N̄f is an ideal in k[A]. For simplicity we will write N, Nf instead of N̄ , N̄f ,

that is, we will abuse notation and regard N (resp. Nf ) as both a squarefree ideal

of S (resp. k[A]) and an ideal of S/P (resp. k[A]/(P ∩ k[A])).

Our assumptions imply the existence of a squarefree monomial f such that Nf

is not squarefree lex.

Notation 7.4.3. In this section, f stands for a squarefree monomial in k[Ac].

Set y = y1 . . . yr and z = z2 . . . zr.

We denote by a, c variables in k[Ac] (usually, these are variables dividing f).

We denote by m, u, v squarefree monomials.

The following lemma gives some properties of Nf :
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Lemma 7.4.4. Suppose that f is a squarefree monomial such that the ideal Nf is

not squarefree lex.

(1) The vector space (Nf)j is lex for every degree j 6= r.

(2) The vector space (Nf)r contains precisely the monomials {m |m ≥ y, m 6=

wz}, that is, (Nf )r is spanned by the initial squarefree lex segment ending at

y with one gap at wz.

Remark. The proof of Lemma 7.4.4 uses only that N is squarefree Borel and

(2r − 2)-compressed, and that Nf is not lex. Thus, lemma 7.4.4 holds for every

ideal Y satisfying these properties.

Proof. (1) Let u > v be two squarefree monomials of degree j in the variables in A.

Let m = gcd(u, v), and u = mu′, v = mv′. It follows that deg(u′) = deg(v′) ≤ r.

Suppose that deg(u′) < r. Denote by B the set of variables that appear in exactly

one of the two monomials. The number of variables in B is an even number < 2r.

Therefore, N is B-compressed. If fv = fmv′ ∈ N , then fu = fmu′ ∈ N . Hence,

if (Nf )j is not squarefree lex, then deg(u′) = deg(v′) = r, so m = 1 and j = r.

(2) Let u > v be two squarefree monomials of degree r in the variables in A such

that v ∈ Nf but u /∈ Nf . The above argument shows that deg(u) = deg(v) = r,

and uv = wyz. Since u > v, we conclude that w divides u.

Suppose that u is divisible by some yi. Hence v is divisible by some zj. As N

is squarefree Borel, fv ∈ N implies that f
vyi

zj

∈ N . The ideal N is (A \ {yi, zj})-

compressed. Therefore, fyim ∈ N for every squarefree monomial m ∈ k[A] such

that m >
v

zj
. We obtain the contradiction that fu ∈ N . Hence, u is not divisible

by any of the variables yi.

It follows that u = wz and v = y.



96

Construction 7.4.5. Denote by T the A-compression of N .

The following lemma gives some properties of T :

Lemma 7.4.6.

(1) (Tf)j = (Nf)j for j 6= r and every f .

(2) The sets of monomials in (Tf)r and in (Nf)r differ only in that (Tf )r contains

wz instead of y, in the case when (Nf )r is not squarefree lex. Note that

wz > y are consecutive monomials in the lexicographic order in k[A].

(3) Denote by F the set of minimal, with respect to divisibility, monomials f in

the variables Ac such that Nf is not squarefree lex. We have that

gens(N) \ gens(T ) = {fy | f ∈ F} ,

gens(T ) ⊇
{

gens(N) \ {fy|f ∈ F}
}

∪ {fwz |f ∈ F}

∪ {fyzj|f ∈ F , 2 ≤ j ≤ r, max(f) < max(zj)} .

(4) The ideal T has the same Hilbert function as N .

(5) The ideal T is lexicographically greater than N .

(6) The ideal T is squarefree Borel.

Remark. It is possible to show that F is the set of all f such that Nf is not lex.

Proof. (1) and (2) hold by Lemma 7.4.4, and (4) and (5) hold by the construction

of compression.

(3) Denote by {T} and {N} the sets of monomials in T and in N , respectively.

By (1) and (2), we have that

{N} \ {T} = {fy |Nf is not squarefree lex }.
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It follows that gens(N) \ gens(T ) ⊇ {fy | f ∈ F}.

We will show that equality holds. Suppose that m is a generator of N but

not of T , and does not have the form fy. Then, by (2), m = fwzxi where

fy ∈ N, fwz /∈ N . N is ({xi} ∪ A \ {zr})-compressed, because this set does not

contain zr = xn. Thus fy ∈ N implies that fw
z

zr

xi ∈ N , and so fwzxi /∈ gens(N).

Hence, any multiple of fwz is not a minimal monomial generator of N . The

equality follows.

Now, we will prove that

gens(T ) ⊇
{

gens(N) \ {fy|f ∈ F}
}

∪ {fwz |f ∈ F}

∪ {fyzj|f ∈ F , 2 ≤ j ≤ r, max(f) < zj} .

The inclusion gens(T ) ⊇
{

gens(N)\{fy|f ∈ F}
}

follows from gens(N)\gens(T ) =

{fy | f ∈ F}. By (1) and (2), we also have that

{T} \ {N} = {fwz |Nf is not squarefree lex}.

Therefore, gens(T ) ⊇ {fwz | f ∈ F}. The inclusion

gens(T ) ⊇ {fyzj|f ∈ F , 2 ≤ j ≤ r, max(f) < zj}

holds because if f
y

z j
a ∈ T for some variable a then, since T is squarefree Borel,

we get the contradiction fy ∈ T .

It remains to prove (6). Fix an f such that Nf is not squarefree lex. In view of

(1), we need to consider only (Tf )r. By (2), we conclude that we have to check two

properties: We have to show that, if a squarefree monomial m is obtained from

fwz by replacing a variable with a lex-greater variable, then m is in T . We also

have to show that, if a squarefree monomial u is obtained from fy by replacing a

variable with a lex-smaller variable, then u is not in T .
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There are several possibilities for m and u. First, we consider four cases for m.

Suppose m =
fc

a
wz, where a divides f and c ∈ k[Ac]. Since fy ∈ N and N is

squarefree Borel, we have that
fc

a
y ∈ N . Hence, y ∈ N fc

a

. Therefore wz ∈ T fc

a

,

and so m ∈ T .

Suppose m =
fe

a
wz, where a divides f and e ∈ k[A]. It follows that e = yj

for some j. So, m =
f

a
(wyjz). By Lemma 7.4.4, we have that (N f

a

)r+1 = (T f

a

)r+1,

so we have to prove that m ∈ N . The ideal N is ({a} ∪ A \ {yj})-compressed by

Construction 7.4.2 since a < yj. Hence, fy =
fyj

a

ay

yj

∈ N implies that
fyj

a
wz =

m ∈ N .

Suppose m = f
wzyj

e
, where e divides wz. Since Tf is squarefree lex in k[A],

we conclude that m ∈ T .

Suppose m = f
wzc

e
= (fc)

wz

e
, where e divides wz and c ∈ k[Ac]. By Lemma

7.4.4, we have that (Nfc)r−1 = (Tfc)r−1, so we have to prove that m ∈ N . First, we

consider the subcase when either e = w or c < yr. The ideal N is ({c} ∪ A \ {e})-

compressed by Construction 7.4.2 since c > e. Hence, fy ∈ N implies that

m = f(
wzc

e
) ∈ N . Now, let e = zi for some i and c > yr. Since N is squarefree

Borel, fy ∈ N implies that fc
y

yr

∈ N . As (Nfc)r−1 is squarefree lex, we get that

m ∈ N .

Recall that we also have to show that every squarefree monomial u, obtained

from fy by replacing a variable with a lex-smaller variable, is not in T . Similarly,

we consider four cases for u. We assume the opposite, that is u ∈ T , and we will

arrive at the contradiction that fwz ∈ N .

Suppose u =
fc

a
y, where a divides f and c ∈ k[Ac]. Since y ∈ T fc

a

, by Lemma

7.4.4 we conclude that (T fc

a

)r = (N fc

a

)r is squarefree lex, and so wz ∈ N fc

a

. As N

is squarefree Borel, it follows that

(

fc

a

)

a

c
wz = fwz ∈ N .
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Suppose u =
f

a
ey, where a divides f and e ∈ k[A]. By Lemma 7.4.4 we

conclude that
(

T f

a

)

r+1
=

(

N f

a

)

r+1
is squarefree lex. Hence, u ∈ N implies that

f

a
ewz ∈ N . As N is squarefree Borel, we conclude that

(

fe

a

)(

a

e

)

wz = fwz ∈ N .

Suppose u = f
y

e
yj, where e ∈ k[A]. Then e = zi. Since

ye

yj
∈ Tf , by Lemma

7.4.4 we conclude that (Tf )r = (Nf)r is squarefree lex, and so wz ∈ Nf .

Suppose u = f
yc

yj
, where c ∈ k[Ac]. By Lemma 7.4.4 we conclude that

(

Tfc

)

r−1
=

(

Nfc

)

r−1
, so u ∈ N . By Construction 7.4.2, the ideal N is ({c}∪A\yj)-

compressed since c < yj. Hence, u ∈ N implies that fwz ∈ N as wz >
yc

yj

.

Construction 7.4.7. Each of the colon ideals (N : σ) can be decomposed in the

notation of Definition 7.3.5 as follows:

(N : σ) =
⊕

f

f (N : σ)f .

Each (N : σ)f is an ideal in k[xi ∈ A | i /∈ σ]/(x2
i | i /∈ σ). Similarly, we have

(T : σ) =
⊕

f

f (T : σ)f .

Lemma 7.4.8. Let f be a squarefree monomial in k[Ac].

(1) For every σ ⊆ A we have (N : σ)f = (Nf : σ).

(2) If σ, γ ⊆ A and σ ∩ γ = ∅, then (N : σγ)f =
(

(Nf : σ) : γ
)

.

(3) If τ ⊆ Ac, then (N : τ)f = Nfτ .

Proof. First, we prove (1). Let m ∈ k[A \ σ] be a monomial. We have that

m ∈ (N : σ)f ⇔ fm ∈ (N : σ) ⇔ fmσ ∈ N ⇔ mσ ∈ Nf ⇔ m ∈ (Nf : σ) .

Applying (1), we prove (2) as follows:

(

(Nf : σ) : γ
)

=
(

(N : σ)f : γ
)

=
(

(N : σ) : γ
)

f
= (N : σγ)f .
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(3) For a monomial ideal U , we denote by {U} the set of (squarefree) monomials

in U . We have that

{(N : τ)f} = {monomials m ∈ k[A] |mf ∈ (N : τ)}

= {monomials m ∈ k[A] |mfτ ∈ N}

= {Nfτ} .

Lemma 7.4.9. Let N = (w
y

yr
, · · · , wyr

z

z2
,y) be an ideal in k[A], (where “ · · · ”

means that we take all the squarefree monomials that are lex-between w y

yr
and

wyr
z
z2

). Then

• (1) T = (w
y

yr
, · · · , wz,yz2, · · · ,yzr) is the squarefree lex ideal with the same

Hilbert function, and Nr+1 = Tr+1.

• (2) If µ ⊂ A is not a subset of supp(y) or of supp(wz), then (N : µ) = (T :

µ). All other possibilities for µ, and the corresponding ideals (N : µ) and

(T : µ), are listed in the two tables below. The first table lists the cases when

gens(N : µ) ⊂ gens(T : µ):

µ (N : µ) (T : µ)

∅ ⊂ ζ ⊂ supp(z) (((w(y1, · · · , yr))r−|ζ|),y) (((w(y1, · · · , yr))r−|ζ|), w
z
ζ
,y)

supp(w) ((y1, · · · , yr)r−1) (((y1, · · · , yr)r−1), z)

supp(w)ζ with ((y1 · · · , yr)r−1−|ζ|) (((y1 · · · , yr)r−1−|ζ|
z
ζ
)

∅ ⊂ ζ ⊂ supp(z)
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The second table lists the remaining cases:

µ (N : µ) (T : µ)

∅ (((w(y1, · · · , yr))r),y) (((w(y1, · · · , yr))r), wz,

yz2, · · · ,yzr)

∅ ⊂ ρ ⊂ supp(y) (((w)r−|ρ|),
y

ρ
) (((w)r−|ρ|),

y

ρ
z2, · · · , y

ρ
zr)

supp(y) (1) (w, z2, · · · , zr)

supp(z) (wy1, · · · , wyr,y) (w,y)

supp(wz) (y1, · · · , yr) (1)

• (3) Let Y be a (2r−2)-compressed ideal in the polynomial ring k[A]/(P∩k[A])

such that Yr = Nr, and let Z be the lex ideal of k[A]/(P ∩ k[A]) with the

same Hilbert function as Y . For every subset µ of A, we have:

gens(N : µ) \ gens(T : µ) = gens(Y : µ) \ gens(Z : µ)

gens(T : µ) \ gens(N : µ) = gens(Z : µ) \ gens(Y : µ) .

Proof. (1) The ideal T is clearly squarefree lex. We need to show that T has

the same Hilbert function as N . Obviously, dimk((N )r) = dimk((T )r). Let T ′ =

(w
y

yr
, · · · , wz). It is straightforward to verify that Nr+1 ⊃ T ′

r+1 and{Nr+1}\{T ′
r+1}

= {yz2, · · · ,yzr}. Therefore, Nr+1 = Tr+1.

(2) Recall that µ ⊆ A. A simple computation shows that (N : wyi) = (T : wyi)

and (N : yizj) = (T : yizj) for all i, j. If µ is not divisible by y or wz, it follows

that µ contains either sup(wyi) or sup(yizj), for some i, j, so (N : µ) = (T : µ).

For all other µ, straightforward computation yields the ideals (N : µ) and (T : µ)

listed in the tables.

(3) For a monomial m in k[A], we will use the notation m : µ for
m

gcd(m, µ)
.
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Observe first that Yj = Zj for all j 6= r by Lemma 7.4.4(3). Hence, {Z}\{Y } =

wz and {Y } \ {Z} = y.

Suppose that m : µ is a minimal monomial generator for (Y : µ) but not

(Z : µ). We assume that m : µ /∈ (N : µ) and will derive a contradiction. Note

that m /∈ N . Then deg(m) 6= r, because m ∈ Y and Yr = Nr. Since m ∈ Y

and Ydeg(m) = Zdeg(m) we conclude that m ∈ Z, and so m : µ ∈ (Z : µ). Since

m : µ is not a minimal monomial generator for (Z : µ), there must be a monomial

u ∈ Z \ Y such that u : µ properly divides m : µ. The only monomial of Z \ Y is

wz, so u = wz. Then µ(m : µ) is a proper multiple of wz, and so must be in N

by (1). On the other hand, since m : µ /∈ (N : µ), it follows that µ(m : µ) /∈ N ,

a contradiction. Thus we must have m : µ ∈ (N : µ). Note that Y ⊃ N . We

conclude that m : µ is a minimal monomial generator of (N : µ). We have proved

that

gens(Y : µ) \ gens(Z : µ) ⊆ gens(N : µ) .

Now, suppose further that m : µ is a minimal monomial generator of (T : µ).

We will derive a contradiction. Note that m may be chosen to be a minimal

monomial generator of N , because m : µ is a minimal monomial generator of

(N : µ).

Since m : µ is not a minimal monomial generator of (Z : µ), there must be

a monomial u ∈ Z \ T such that u : µ properly divides m : µ. As Yj = Zj and

Nj = Tj for j 6= r, and Yr = Nr, and Zr = Tr, we get {Z} \ {T } = {Y } \ {N}.

Hence u ∈ Y , so that m : µ is not a minimal monomial generator for (Y : µ), a

contradiction. This shows that

gens(Y : µ) \ gens(Z : µ) ⊆ gens(N : µ) \ gens(T : µ).
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In order to prove the equality in the first formula in (3), we need to show

that the opposite inclusion holds. To this end, suppose that m : µ is a minimal

monomial generator of (N : µ) but not (T : µ). Then, by (2), either m = y and µ

divides y, or µ = z or µ = wz.

Suppose first that m = y. As Y ⊇ N , we have that y : µ ∈ (Y : µ). If y : µ

were not a minimal monomial generator of (Y : µ), we would have a monomial

u ∈ Y \ N = Z \ T , such that u : µ properly divides y : µ. But then u must

be a proper divisor of y, and u ∈ Z implies the contradiction y ∈ Z. Hence

m : µ ∈ gens(Y ). If m : µ ∈ gens(Z), we would have y ∈ Z, a contradiction. Thus

in this case we have m : µ ∈ gens(Y : µ) \ gens(Z : µ).

Suppose now that µ = z or µ = wz. Straightforward computation using (2)

shows that one of the following two cases holds:

µ m : µ wz : µ

z wyj w

wz yj 1

where 1 ≤ j ≤ n. In particular, wz : µ is a proper divisor of m : µ in either case.

As Zr = Tr, we get wz : µ ∈ (Z : µ), so m : µ is not a minimal monomial generator

for (Z : µ). If m : µ were not a minimal monomial generator for Y : µ, there would

be a monomial u ∈ Y \ N such that u : µ is a proper divisor of m : µ. The table

above implies that one of the following two cases holds:

µ u : µ µ(u : µ) ∈ Y

z w, or yj, or 1 wz, or yjz, or z

wz 1 wz
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where 1 ≤ j ≤ n. As Yr = Nr, none of the monomials in the third column are

in Y . This is a contradiction. Thus m : µ is a minimal monomial generator for

(Y : µ). Therefore, m : µ ∈ gens(Y : µ) \ gens(Z : µ) in this case.

We have shown that the first formula in (3) holds:

gens(N : µ) \ gens(T : µ) = gens(Y : µ) \ gens(Z : µ) .

A very similar argument yields the second formula:

gens(T : µ) \ gens(N : µ) = gens(Z : µ) \ gens(Y : µ).

Notation 7.4.10. We write an EK-triple in the form (τµ, gq, α) so that τ ∈ k[Ac],

µ ∈ k[A], g ∈ k[Ac], q ∈ k[A]. By τµ we mean the union of τ and µ.

For µ ⊂ A, we set n to be the homogeneous maximal ideal of the ring k[A\µ]/P .

The next lemma provides a list of the possible EK-triples for N :

Lemma 7.4.11.

(1) There are three types of EK-triples (τµ, gq, α) for N :

Type 1: (τµ, gq, α) is an EK-triple for T .

Type 2: (τµ, gq, α) is not an EK-triple for T and q is a minimal monomial

generator of both (N : τµ)g and (T : τµ)g.

Type 3: (τµ, gq, α) is not an EK-triple for T and q is a minimal monomial

generator of (N : τµ)g but not of (T : τµ)g.

(2) The EK-triples of Type 2 satisfy qµ = wz and max(g) > max(q). In partic-

ular, µ 6= 1, because xn = zr divides µ.

(3) Let N and T be as in Lemma 7.4.9. If (τµ, gq, α) is an EK-triple of Type

3 for N , then q is a minimal monomial generator for (N : µ) but not for

(T : µ).
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(4) Suppose that (τµ, gq, α) is an EK-triple of Type 3 for N . All possibilities for

µ, and the corresponding ideals (N : µ) and (T : µ), are listed in the second

table in Lemma 7.4.9(2).

Proof. (1) It suffices to show that q is a minimal monomial generator of the ideal

(N : τµ)g. Since gq ∈ (N : τµ), we have that q ∈ (N : τµ)g. If we had
q

a
∈

(N : τµ)g, it would follow that
gq

a
∈ (N : τµ) = (N : τµ), so that gq would not

be a minimal monomial generator of (N : τµ). Thus, q is a minimal monomial

generator of (N : τµ)g.

(2) Since gq ∈ (T : τµ) is not a minimal monomial generator, there exists a

variable c dividing gq such that
gq

c
∈ (T : τµ). Since T is Borel, we may take

c = xmax(gq). If c divides q, we have
q

c
∈ (T : τµ)g, so that q is not a minimal

monomial generator of (T : τµ)g. Therefore c divides g. Since c = xmax(gq), we

have max(g) > max(q). As gq is a minimal monomial generator of (N : τµ), we

have
g

c
q /∈ (N : τµ), so

g

c
qτµ ∈ T \N . By Lemma 7.4.6(2) it follows that qµ = wz.

(3) By Lemma 7.4.8, we have that

(N : τµ)g = ((N : τ)g : µ) and (T : τµ)g = ((T : τ)g : µ) .

We are going to apply Lemma 7.4.9(3) to the ideals Y = (N : τ)g and Z = (T : τ)g.

By Lemma 7.4.8(3), we have that Y = Ngτ and Z = Tgτ . By Lemma 7.4.6 we get

that Yr = Nr. Clearly, Z is the squarefree lex ideal with the same Hilbert function

as Y . Note that Y is (2r − 2)-compressed since N is. Therefore, Y and Z satisfy

the conditions of Lemma 7.4.9(3) and we can apply it.

We have that

q ∈ gens(Y : µ) \ gens(Z : µ)
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since we consider EK-triples of Type 3. Lemma 7.4.9(3) yields

q ∈ gens(N : µ) \ gens(T : µ).

(4) follows from (3) and Lemma 7.4.9(2).

Next, we construct a map from the set of EK-triples for N to the set of EK-

triples for T . We will use this map to prove the Main Lemma 7.3.9.

Construction 7.4.12. We will define a map φ from the set of EK-triples for N

to the EK-triples for T . First, we introduce notation.

If α = v
∏

i∈I yi

∏

j∈J zj, where v is a squarefree monomial in k[Ac] and we

use the convention w = z1, then let α̂ be the monomial

α̂ = v
∏

i∈I

zi

∏

j∈J

yj .

Let t1 > · · · > ts = zr = xn be all the variables of S not in τy, ordered

lexicographically. For a monomial m, such that mτ is squarefree, set

tm =



















































xmax(m) if xmax(m) /∈ y

the lex-last variable among the t-variables

that is lex-before xmax(m) if xmax(m) ∈ y ,

and furthermore, for a monomial m and an integer j, set

tm+j = tp+j where the integer p is defined by tp = tm .

In cases 2 and 3 below, we will set the integer d such that max(g) = max(td).

In case 2, e will be the integer such that td is between zr−e and zr−e+1. Thus,

r − e = #{zj : max(zj) < max(td)} (recall the convention z1 = w). In case 3 we

will set i such that td is between yi−1 and yi.
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Denote by α̃ the monomial

α̃ = α
∏

yj divides α

j 6=1

tgq+j−1

yj

∏

y1 divides α

w

y1

.

and denote by ᾱ the monomial

ᾱ = α

(

∏

yj divides α,

max(zj)<max(g)

zj

yj

)(

∏

yj divides α,

max(zj)>max(g)

td+j−(r−e)

yj

)

.

The map φ is defined as follows: If Γ is an EK-triple for N of the form given

in the third column in the table below, then φ(Γ) is given in the fourth column.

Case Type of Γ EK-triple Γ φ(Γ)

1) Type 1 Γ = (τµ, gq, α) Γ = (τµ, gq, α)

2) Type 2 (τµ, g wz
µ

, α), (τ µ̂, g
xmax(g)

td+e
y

µ̂
, ᾱ),

∅ ⊂ µ ⊂ sup(wz),

max(g) > max(yr)

3) Type 2 (τz, gw, α), (τ y

y1
, g

xmax(g)
td+i−1y1, α̃)

max(y1) < max(g) < max(yr)

or (τwz, g, α) or (τy, g
xmax(g)

td+i−1, α̃)

4) Type 2 (τz, gw, α), (τ y

y1y2
, g

xmax(g)
y1y2z2, αxmax(g))

max(w) < max(g) < max(y1)

5) Type 3 (τ, gy, α) (τ, gwz, α̂)

6) Type 3 (τρ, g y

ρ
, α), ∅ ⊂ ρ ⊂ sup(y), ρ 6= y

y1
(τ ρ̂, g wz

ρ̂
, α̂)

7) Type 3 (τ y

y1
, gy1, α) (τ zzr

,
gwzr, yrα̂)

8) Type 3 (τy, g, α) (τ wz
zr

, gzr, yrα̂)

9) Type 3 (τz, gwyj, α) (τ y

yj
, gyjtyj+j, α̃)

10) Type 3 (τwz, gyj, α), j 6= 1 (τy, gtyj+j, α̃)

11) Type 3 (τwz, gy1, α) (τ y

y1
, gy1ty1+1, wα̃)
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Lemma 7.4.13. The third column in the table in Construction 7.4.12 lists all the

possibilities for EK-triples for N .

Proof. Apply Lemma 7.4.11. For EK-triples of Type 3, straightforward computa-

tion yields q since we know all possibilities for(N : µ) and (T : µ) (see the second

table in Lemma 7.4.9(3)) and in view of Lemma 7.4.11(3).

Lemma 7.4.14.

(1) The map φ is well-defined (i.e., φ(Γ) is an EK-triple for T , for all Γ).

(2) The map φ preserves bidegree.

(3) The map φ is an injection.

Proof. (2) Straightforward verification shows that φ preserves bidegrees.

(3) Let Γ = (τµ, gq, α), Γ′ = (τ ′µ′, g′q′, α′), φ(Γ) = (θ, `, β), φ(Γ′) = (θ′, `′, β ′).

Write θ = τλ, θ′ = τ ′λ′, ` = uv and `′ = u′v′ with λ, λ′, u, u′ ∈ k[A], v, v′ ∈ k[Ac].

Suppose that Γ 6= Γ′.

If τ 6= τ ′, then φ(Γ) 6= φ(Γ′) and we are done. For the rest of the proof,

we assume that τ = τ ′. In this case, note that we have the same choice for the

variables tj in Construction 7.4.12 for Γ and Γ′. Also, note that if α 6= α′, then

α̂ 6= α̂′, ᾱ 6= ᾱ′, and α̃ 6= α̃′ by Construction 7.4.12.

If Γ and Γ′ fall under the same Case in Construction 7.4.12, it is immediate

that φ(Γ) 6= φ(Γ′), except in Cases 2 and 3. In Cases 2 and 3, we have to consider

the situation when
g

xmax(g)

=
g′

max(g′)
, and τ = τ ′, µ = µ′, α = α′. Let d′, e′, i′

be defined analogously to d, e, i. Without loss of generality we can assume that

max(g) > max(g′). Hence, max(td) > max(td′), and so d > d′. Therefore, we have
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the inequalities i ≥ i′ and

e′−e = #{zj : zj between td and td′} ≤ 1+#{tj : tj between td and td′} = d−d′ .

It follows that d + e > d′ + e′ and d + i − 1 > d′ + i′ − 1. Therefore, ` 6= `′ .

Thus, we may assume that Γ and Γ′ belong to different Cases.

Suppose first that Γ′ falls under Case 1. We will show that φ(Γ) is not an

EK-triple for N , for Γ in each of the Cases 2 through 11. In Cases 2, 3, and 4,

we have that `θ is properly divisible by the monomial τ
g

xmax(g)

y, which is in N by

Lemma 7.4.16; hence `θ is not a minimal monomial generator of N . In Cases 9,

10, and 11, we have that `θ is properly divisible by the monomial τgy, which is

in N because (N : τ)g 6= (T : τ)g implies y ∈ (N : τ)g; hence `θ is not a minimal

monomial generator of N . In Cases 5 through 8, λ = µ and u = q have concrete

values, and the second table in Lemma 7.4.9(3) shows that q is not a minimal

monomial generator for (N : µ); hence Lemma 7.4.11(3) implies that φ(Γ) is not

an EK-triple for N .

For the rest of the proof, we assume that that neither Γ nor Γ′ is in Case 1.

In many cases, it is clear that λ 6= λ′. These cases are listed in the following

table.
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Case Case of Γ′ Difference between λ and λ′

of Γ

2 5 µ 6= ∅, so λ = µ̂ 6= ∅. But λ′ = ∅.

2 6,7,8 µ ⊂ sup(wz) by Lemma 7.4.11(2),

so ∅ 6= λ = µ̂ ⊂ sup(y). But ∅ 6= λ′ ⊂ sup(wz).

3 4 If λ = λ′ =
y

y1y2
then µ

z

z2
, but µ is z or wz.

3 5 µ = z or µ = wz , so λ = µ̂ is y

y1
or y, but λ′ = ∅.

3 6,7,8 µ = z or µ = wz , so λ = µ̂ is y

y1
or y.

But ∅ 6= λ′ ⊂ sup(wz).

4 6 λ = y

y1y2
, but ∅ 6= λ′ = ρ̂ ⊂ sup(wz).

4 8,9,10,11 deg(λ) = r − 2, but deg(λ′) ≥ r − 1.

5 6 λ = ∅ and λ′ 6= ∅.

5 8,9,10,11 λ = ∅ and λ′ 6= ∅.

6 9,10,11 ∅ ⊂ ρ ⊂ sup(y), so ∅ 6= λ = ρ̂ ⊂ sup(wz).

But ∅ 6= λ′ ⊆ sup(y).

7 8,9,10,11 λ = z
zr

, but λ′ has a different value.

8 9,10,11 λ = wz
zr

, but λ′ has a different value.

9 10 λ = y

yj
, but λ′ = y.

10 11 λ = y, but λ′ = y

y1
.

If λ = λ′, then Γ and Γ′ must belong to one of the pairs of Cases listed in the

following table. We assume that λ = λ′ and give the differences between Γ and Γ′

in the last column of the table.
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Case Case of Γ′ Difference

of Γ

2 3 λ = λ′ = y

y1
, so u = td+ey1 and u′ = td′+i′−1y1. By

Lemma 7.4.17 (1,2), u 6= u′.

2 4 If λ = λ′ =
y

y1y2
, then µ =

z

z2
so max(g) > max(z2) by

Lemma 7.4.10(2), but max(g′) < max(z2).

2 9,10,11 max(td) = max(g) > max(yr), so

max(`) = max(td+e) > max(tyr+r) by Lemma 7.4.17(1).

But max(`′) = max( (max(g′), max(tyj+j) ) ≤ max(tyr+r),

because max(tyj+j) ≤ max(tyr+j) ≤ max(tyr+r)

and max(g′) < max(yr) < max(tyr+r) by Lemmas 7.4.15

and 7.4.17(4).

3 9,10,11 max(`) = max(td+i−1). In case 11, set j ′ = 1. Then

max(g′) < max(yj′). So max(`′) = max(tyj′+j′)

by Lemma 7.4.15. By Lemma 7.4.17(3), max(`) 6= max(`′).

4 5,7 u = y1y2z2, but wzr divides u′.

5 7 yr /∈ β, but yr ∈ β ′

6 7,8 yr ∈ supp(β ′). But zr = xn /∈ α so yr /∈ supp(β).

9 11 w ∈ supp(β ′). If w ∈ supp(β), then y1 ∈ α, so j 6= 1,

and then y1 /∈ ` but y1 ∈ `′.

It remains to prove (1). In each of the Cases in Construction 7.4.12, we will

show that φ(Γ) is an EK-triple for T . Set φ(Γ) = (θ, `, β). In all cases it is

immediate that θ`β is squarefree and that max(β) < max(`). Thus we need only

verify that ` is a minimal monomial generator for (T : θ).

Case 1 is clear.
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Case 2: We have that τµ
gq

xmax(g)

= τ
g

xmax(g)

wz ∈ T \N . Hence τ
g

xmax(g)

y ∈ N ,

so τ
g

xmax(g)

yzr ∈ N . Thus τ
g

xmax(g)

yzr ∈ T . Since T is squarefree Borel, we have

τ
g

xmax(g)

ytd+e ∈ T , and hence
g

xmax(g)

td+e
y

µ̂
∈ (T : τ µ̂). Suppose that this is not

a minimal monomial generator. Then τ µ̂
gq̂

xmax(g)c
td+e ∈ T . Since T is squarefree

Borel and td+e is lex-after xmax(g)yn, it follows that τ µ̂
g

xmax(g)

q̂ = τ
g

xmax(g)

y ∈ T .

Hence τ
g

xmax(g)

wz ∈ N . So we get the contradiction
g

xmax(g)q
∈ (N : τµ).

Case 3: Note that max(q) < max(g) < max(yr) < max(z2) implies that either

q = w or q = 1. If max(g) > y1 or q = 1, we have that td+i−1 is lex-after xmax(gq̂)

and the proof of Case 2 holds, mutatis mutandis. If not, we are in Case 4.

Case 4: We have τ
g

xmax(g)

wz ∈ T \N , so τ
g

xmax(g)

y ∈ N\T . Thus τ
g

xmax(g)

yz2 ∈

N and also T . This yields
g

xmax(g)

y1y2z2 ∈ (T : τ
y

y1y2

). If this were not a minimal

monomial generator, we would have
g

xmax(g)
y1y2 ∈

(

T : τ
y

y1y2

)

, so τ
g

xmax(g)
y ∈ T .

In all of the remaining cases, Γ is of Type 3, so it is immediate from the table

in Lemma 7.4.9(2) that ` ∈ (T : θ).

Case 5: If gwz were not a minimal monomial generator for (T : τ), we would

have
g

c
wz ∈ (T : τ) which implies

g

c
y ∈ (N : τ), contradicting the assumption

that gy is a minimal monomial generator of (N : τ).

Case 6: If g
wz

ρ̂
were not a minimal monomial generator for (T : τ ρ̂), we would

have
g

c
wz ∈ (T : τ).

Case 7: If gwzr were not a minimal monomial generator for
(

T : τ
z

zr

)

, we

would have
g

c
wz ∈ (T : τ).

Case 8: If gzr were not a minimal monomial generator for
(

T :
wz

zr

)

, we would

have
g

c
wz ∈ (T : τ).

Case 9: If gyityi+i were not a minimal monomial generator for
(

T : τ
y

yj

)

, we

would have
g

c
ytyj+j ∈ (T : τ). Since T is squarefree Borel and xmax(g) is lex-before
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yj and hence lex-before tyj+j by Lemma 7.4.15, it would follow that gy ∈ (T : τ).

Case 10: If gtyj+j were not a minimal monomial generator for (T : τy), we

would have
g

c
tyj+j ∈ (T : τ). Since T is squarefree Borel and xmax(g) is lex-before

yj and hence lex-before tyj+j by Lemma 7.4.15, it would follow that gy ∈ (T : τ).

Case 11: If gy1ty1+1 were not a minimal monomial generator for (T : τy),

we would have
g

c
y1ty1+1 ∈ (T : τ). Since T is squarefree Borel and xmax(g) is

lex-before yi and hence lex-before tyi+i by Lemma 7.4.15, it would follow that

gy ∈ (T : τ).

In the proof of the above Lemma 7.4.14 we used the following supplementary

lemmas:

Lemma 7.4.15. Let τ ∈ k[Ac] and g be a squarefree monomial in k[Ac] such that

gτy ∈ N . Suppose that either gyj is a minimal monomial generator of (N : τwz) or

that gwyj is a minimal monomial generator of (N : τz). Then max(g) < max(yj).

Proof. Suppose the opposite. Let c = xmax(g) < yj, and
g

c
cτy ∈ N . By Construc-

tion 7.4.2, it follows that the ideal N is ({c} ∪ A \ {yj})-compressed. Therefore,

g

c
yj(τwz) ∈ N . Hence, we have that

g

c
yj ∈ (N : τwz) and

g

c
yjw ∈ (N : τz). This

is a contradiction.

Lemma 7.4.16. Let (τµ, gq, α) be an EK-triple of Type 2 for N . Then τ
g

xmax(g)

y ∈

N .

Proof. Applying Lemma 7.4.11(2), we have that µq = wz. Thus gq ∈ Tτµ, so, since

(τµ, gq, α) is an EK-triple of Type 2, it must be the case that gq
xmax(gq)

= g
xmax(g)

q ∈

Tτµ \ Nτµ. Hence, g
xmax(g)

τqµ = g
xmax(g)

τwz ∈ T \ N , so g
xmax(g)

τy ∈ N \ T .

Lemma 7.4.17. Let everything be as in the proof of Lemma 7.4.14(3). Then:
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(1) If max(g) > max(yr), then max(td+e) > max(tyr+r).

(2) If max(g) < max(yr), then max(td+i−1) < max(tyr+r).

(3) td+i−1 6= tyj+j for any j ≥ 1.

(4) max(yj) < max(tyj+j) for any j ≥ 1.

Proof. (1) We have max(td) > max(tyr+r−e), as r−e = #{zj : max(zj) < max(td)}.

(2) We have max(td) < max(yr) and i − 1 < r.

(3) If max(td) ≤ max(tyj
), then i < j. If max(td) > max(tyj

), then i ≥ j.

(4) tyj
is the lex-last t-variable that is lex-before yj. Hence, tyj+1 is lex-after yj.

The variable tyj+j comes lex-later still. Thus, yj > tyj+j.

We are ready for the proof of the Main Lemma 7.3.9.

Proof of the Main Lemma 7.3.9. Let T be the ideal constructed in Construction 4.5.

By Lemma 7.4.6, T is a squarefree Borel ideal lexicographically greater than N ,

and it has the same Hilbert function as N .

By Theorem 7.3.3, the graded Betti numbers of S/(N + P ) and of S/(T + P )

can be counted using EK-triples. By Lemma 7.4.14, there exists an injection φ

from the set of EK-triples for N to the EK-triples for T which preserves bidegree.

Therefore, there are at least as many EK-triples for T as for N in every bidegree.

It follows that for all p, s, the graded Betti numbers satisfy

bp,s(S/(T + P )) ≥ bp,s(S/(N + P )) .

7.5 Ideals plus squares

Let F be a graded ideal containing P = (x2
1, . . . , x

2
n); we say that F is an ideal-plus-

squares. If F = I + P for some ideal I which is squarefree Borel or squarefree lex,
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we say that F is Borel-plus-squares or lex-plus-squares respectively. By Kruskal-

Katona’s Theorem [Kr,Ka], there exists a squarefree lex ideal L such that F and

the lex-plus-squares ideal L + P have the same Hilbert function.

Theorem 7.5.1. Suppose that char (k) = 0. Let F be a graded ideal containing

P = (x2
1, . . . , x

2
n). Let L be the squarefree lex ideal such that F and the lex-plus-

squares ideal L + P have the same Hilbert function. The graded Betti numbers of

L + P are greater than or equal to those of F .

Proof. The proof has 5 steps. In each of the first four steps, we replace the original

(non-lex) ideal by an ideal with the same Hilbert function and greater graded Betti

numbers.

Step 1: Let F ′ be the initial ideal of F (with respect to any fixed monomial

order). It has the following properties:

◦ F ′ ⊇ P .

◦ F ′ is a monomial ideal with the same Hilbert function as F .

◦ The graded Betti numbers of F ′ are greater than or equal to those of F .

We will prove the theorem by showing that the graded Betti numbers of the lex-

plus-squares ideal L + P are greater than or equal to those of F ′.

Step 2: Now, we change the ground field k to an infinite field k̃ of characteristic

2. We denote by F̃ ⊂ k̃[x1, · · · , xn] the monomial ideal generated by the monomials

in F ′. It has the following properties:

◦ F̃ ⊇ P .

◦ F̃ is a monomial ideal with the same Hilbert function as F ′.

◦ The graded Betti numbers of F̃ are greater than or equal to those of F ′.
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We will prove the theorem by showing that the graded Betti numbers of the lex-

plus-squares ideal L + P are greater than or equal to those of F̃ .

Step 3: Now, let M̃ be a generic initial ideal of F̃ (with respect to any monomial

order). It has the following properties:

◦ M̃ ⊇ P because the characteristic of k̃ is 2.

◦ M̃ is a Borel-plus-squares ideal with the same Hilbert function as F̃ .

◦ The graded Betti numbers of M̃ are greater than or equal to those of F̃ .

We will prove the theorem by showing that the graded Betti numbers of the lex-

plus-squares ideal L + P are greater than or equal to those of M̃ .

Step 4: The Eliahou-Kervaire resolution [EK] shows that the graded Betti num-

bers of a squarefree Borel ideal do not depend on the characteristic. By Theorem

7.2.1(4) and Lemma 7.3.1(1), it follows that the graded Betti numbers of a Borel-

plus-squares ideal do not depend on the characteristic. So now, we return to the

ground field k. We denote by M ⊂ k[x1, · · · , xn] the monomial ideal generated by

the monomials in M̃ . It has the following properties:

◦ M ⊇ P .

◦ M is a Borel-plus-squares ideal with the same Hilbert function as M̃ .

◦ The graded Betti numbers of M are equal to those of M̃ .

We will prove the theorem by showing that the graded Betti numbers of the lex-

plus-squares ideal L + P are greater than or equal to those of M .

Step 5: Let N be the squarefree Borel ideal such that M = N +P . Since N +P

and L + P have the same Hilbert function, we can apply Theorem 7.3.4. It yields

that the graded Betti numbers of the lex-plus-squares ideal L+P are greater than

or equal to those of M = N + P .
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7.6 Ideals plus powers

Let a = {a1 ≤ a2 ≤ · · · ≤ an} be a sequence of integers or ∞. Set U =

(xa1
1 , . . . , xan

n ), where x∞
i = 0. We say that a monomial m ∈ S is an a-monomial

if the image of m in S/U is non-zero. Following [GHP], an ideal in S is called an

a-ideal if it is generated by a-monomials.

Set σa =
∏

i∈σ

xai

i , and for a monomial a-ideal I set Fσ = S/(I : σa)(−2σa).

Note that Fσ = 0 if, for any i ∈ σ, ai = ∞. Note also that (I : σa) = (I :
∏

i∈σ

xai−1
i )

is the ideal formed by “erasing” all the variables in σ from a generating set for I.

The argument in the proof of Theorem 7.2.1 yields:

Theorem 7.6.1. Let I be a monomial a-ideal.

(1) We have the long exact sequence

0 →
⊕

|σ|=n

Fσ
ϕn

−−→ . . . →
⊕

|σ|=i

Fσ
ϕi−−→

⊕

|σ|=i−1

Fσ →

· · · →
⊕

|σ|=1

Fσ
ϕ1−−→

⊕

|σ|=0

Fσ = S/I → S/(I + U) → 0(7.6.2)

with maps ϕi the Koszul maps for the sequence xa1
1 , . . . , xan

n .

(2) Each of the ideals (I : σa) in (1) is an a-ideal monomial ideal.

(3) S/(I + U) is minimally resolved by the iterated mapping cones from (7.6.2).

Remark 7.6.3. The other results in the previous sections cannot be generalized

to this situation. The first problem is that if I and J are a-ideals, then it is not

true that I and J have the same Hilbert function if and only if I + U and J + U

have the same Hilbert function. The following example from [GHP] illustrates this:

the ideals I = (x2, y2) and J = (x2, xy) have different Hilbert functions, but the

ideals I + (x3, y3) and J + (x3, y3) have the same Hilbert function.
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