
LECTURE 15

Identities of Vector Analysis

1. Differential Operator Notation

Let ∇ denote the formal symbol (
∂

∂x
,
∂

∂y
,
∂

∂z

)

thought of as a 3-dimensional vector. Of course, the components of ∇ really don’t make any sense until
they act of a function. But if we permit ourselves this notational absurdity, we can better understand the
notation used for the gradient, divergence and curl:

∇f =

(
∂

∂x
,
∂

∂y
,
∂

∂z

)
f =

(
∂f

∂x
,
∂f

∂y
,
∂f

∂z

)

∇ · F =

(
∂

∂x
,
∂

∂y
,
∂

∂z

)
· (Fx, Fy, Fz) =

∂Fx

∂x
+

∂Fy

∂y
+

∂Fz

∂z

∇×F =

(
∂

∂x
,
∂

∂y
,
∂

∂z

)
× (Fx, Fy, Fz)

=

(
∂Fz

∂y
−

∂Fy

∂z
,
∂Fx

∂z
−

∂Fx

∂z
,
∂Fy

∂x
−

∂Fx

∂y

)

Along these same lines we now introduce a second order differential operator, the Laplacian that is defined
by

∇
2f ≡ (∇ · ∇)f = ∇ · (∇f) =

(
∂

∂x
,
∂

∂y
,
∂

∂z

)
·

(
∂f

∂x
,
∂f

∂y
,
∂f

∂z

)
=

∂2f

∂x2
+

∂2f

∂y2
+

∂2f

∂z2

Theorem 15.1. (Fundamental Identities of Vector Analysis). Let f and g be real-valued functions on R3

and let F and G be vector fields on R3. Then

1. ∇(f + g) = ∇f +∇g

2. ∇(cf) = c(∇f) for any constant c

3. ∇(fg) = g(∇f) + f(∇g)

4. ∇ (f/g) = (g∇f − f∇g) /g2

5. ∇ · (F +G) = ∇ · F+∇ ·G

6. ∇× (F+G) = ∇×F +∇×G

7. ∇ · (fF) = f(∇ ·F) +∇f · F

8. ∇ · (F ×G) =G · (∇×F) −F · (∇×G)

9. ∇ · (∇× F) = 0

10. ∇× (fF) = f (∇× F) +∇f × F

11. ∇× (∇f) = 0

12. ∇2 (fg) = f
(
∇
2g

)
+ 2 (∇f · ∇g) + g

(
∇
2f

)

13. ∇ · (∇f ×∇g) = 0

14. ∇ · (f∇g − g∇f) = f
(
∇
2g

)
− g

(
∇
2f

)

15. ∇× (∇× F) = ∇ (∇ ·F) −∇2
F
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2. APPLICATION: MAXWELL’S EQUATIONS 2

Since we shall use Identity 15 below, let me give a brief indication as to why it should be true. Both sides

of this equation are vector fields (in the end); we shall look only at the x component

(∇× (∇×F))
x

=
(
∇ (∇ · F)−∇2

F
)
x

Now the x-component of the right hand side is

(RHS)
x

=
(
∇ (∇ · F)−∇2

F
)
x

= ∇x (∇ · F)−∇2
Fx

=
∂

∂x

(
∂F

x

∂x
+
∂F

y

∂y
+
∂F

z

∂z

)
−

(
∂
2

∂x2
+

∂
2

∂y2
+

∂
2

∂z2

)
F
x

=
∂
2
F
x

∂x2
+
∂
2
F
y

∂x∂y
+

∂F
z

∂x∂z
−
∂
2
F
x

∂x2
−
∂
2
F
x

∂y2
−
∂
2
F
x

∂z2

=
∂
2
F
y

∂x∂y
+

∂F
z

∂x∂z
−
∂
2
F
x

∂y2
−
∂
2
F
x

∂z2

The x-component of the left hand side is

(LHS)x = (∇× (∇× F))
x

=

[(
∂

∂x
,
∂

∂y
,
∂

∂z

)
×

(
∂Fz

∂y
−
∂Fy

∂z
,
∂Fx

∂z
−
∂Fz

∂x
,
∂Fy

∂x
−
∂Fx

∂y

)]

x

=
∂

∂y

(
∂Fy

∂x
−
∂Fx

∂y

)
−

∂

∂z

(
∂Fx

∂z
−
∂Fz

∂x

)

=
∂
2
Fy

∂y∂x
−
∂
2
Fx

∂y2
−
∂
2
Fx

∂z2
+
∂
2
Fx

∂z∂x

=
∂
2
Fy

∂x∂y
+

∂Fz

∂x∂z
−
∂
2
Fx

∂y2
−
∂
2
Fx

∂z2

= (RHS)x

So weve now confirmed the x-component of Identity 15.

2. Application: Maxwell’s Equations

As an example of the utility of the identities listed in the preceding section, let us consider the equations

governing the behavior of electric and magnetic fields. These are Maxwell’s equation:

∇ ·E = 1

4πεo
ρ(x) (Gauss’ Law)

∇ ·B = 0 (Gauss’ Law for Magnetic Field)

∇×E = −
∂B

∂t
(Faraday’s Law)

∇×B = µoεo
∂E

∂t
+ µoj(x) (Ampere’s Law)

Here E = E(x, t) is the electric field strength at the point x at time t, B = B(x, t) is the magnetic field

strength at the point x at time t, ρ(x) is the charge density at the point x. εo is a constant called the electric

permitivity of the vacuum, it is determined experimentally by measuring the force of attraction between

electric charges

F =
q1q2

4πεo ‖r‖
3
r

and is equal to

εo = 8.85× 10
−12

(colomb)
2
(sec)

2
(kg)

−1
(meter)

−3

j(x) is the density of electrical current at the point x, and µo is another experimentally determined constant.

It is called the magnetic permeability of the vacuum and its value is

µo = 1.26× 10−6 (coulomb)−2(kg)(meter)



2. APPLICATION: MAXWELL’S EQUATIONS 3

In vacuum, where both the charge density and the current density are 0, we have

∇ ·E = 0(15.1)

∇ ·B = 0(15.2)

∇×E = −

∂B

∂t
(15.3)

∇×B = µoεo
∂E

∂t
(15.4)

If we take the time derivative of the last equation we get

∂

∂t
(∇×B) = µ

o
ε
o

∂
2
E

∂t2

or

∂
2
E

∂t2
−

1

µoεo
∇×

(
∂B

∂t

)
= 0

Using Faraday’s Law we have

∂
2
E

∂t2
− 1

µoεo
∇× (−∇×E) = 0

or

∂
2
E

∂t2
+

1

µoεo
∇× (∇×E) = 0(15.5)

Let’s now apply Identity 15 above:

∇× (∇×E) = ∇ (∇ ·E) −∇2
E

= 0−∇2
E

In the last step we have applied Gauss’ Law in vacuum. Thus, Eqn. (15.5) can be written

∂
2
E

∂t2
− 1

µ
o
ε
o

∇2
E = 0

If we examine this equation component by component we find

∂
2
Ex

∂t2
− 1

µoεo
∇2

E
x

= 0

∂
2
Ey

∂t2
− 1

µoεo
∇2

E
y

= 0

∂
2
E
z

∂t2
− 1

µoεo
∇2

E
z

= 0

Each of these equations is of the form

∂
2Φ

∂t2
− c

2∇2
Φ = 0.

This is the equation of a wave travelling in a 3-dimensional space with velocity c. Thus, each component

of the electric field satisfies a wave equation with velocity

c =
1√
εoµo

=
1

√
(8.85× 10−12 (colomb)2(sec)2(kg)−1(meter)−3) (1.26× 10−6 (coulomb)−2(kg)(meter))

= 2.99× 10
8
m/s


