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Abstract

We prove the almost complete intersection case of the Lex-Plus-Powers
Conjecture on graded Betti numbers. We show that the resolution of a
lex-plus-powers almost complete intersection provides an upper bound for
the graded Betti numbers of any other ideal with regular sequence in the
same degrees and the same Hilbert function. A key ingredient is finding
an explicit comparison map between two Koszul complexes. Finally, we
obtain bounds on the Hilbert function of an almost complete intersection,
including a special case of a conjecture of Eisenbud-Green-Harris.

1 Introduction

Let R = k[x1, . . . , xn] be the polynomial ring in n variables over a field k. There
is a close relationship between the Hilbert functions of homogeneous ideals I in
R and their graded free resolutions. Given the graded free resolution of R/I , one
can determine its Hilbert function HR/I by using the graded Betti numbers to
determine the rational function expression of the Hilbert series. However, there
may be many ideals with a given Hilbert function that have different minimal
graded free resolutions. There has been a considerable effort in the last decade
to determine what graded free resolutions can actually occur for a given Hilbert
function.

To study this problem, it is natural to impose a partial order on the reso-
lutions of ideals with the same Hilbert function. Let I and J be homogeneous
ideals in R with the same Hilbert function. Then we say that βR/I ≤ βR/J if
and only if βR/Iij ≤ βR/Jij for all i and j. This is a strong condition; the inequality
has to go the same way for every graded Betti number. In particular, it is not
clear a priori that there should be a unique maximal or minimal resolution for a
given Hilbert function. In fact, Charalambous and Evans have shown that there
may be incomparably minimal resolutions for a single Hilbert function [3] (see
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also the end of [12]). Richert [17] and Rodriguez [19] have done closely related
work as well.

However, the situation is better at the top of the partial order. Bigatti
and Hulett independently proved the main result about largest Betti numbers
in characteristic zero, and Pardue generalized it to positive characteristic. Re-
call that a lexicographic ideal is a monomial ideal generated in each degree by
an initial segment of monomials in descending lexicographic order. Macaulay
showed that lexicographic ideals can attain the maximal possible Hilbert func-
tion growth [14]. The following result from the early 1990s of Bigatti [1], Hulett
[12], and Pardue [16] establishes the maximality of the graded Betti numbers of
lexicographic ideals.

Theorem 1.1 Let L ⊂ R be a lexicographic ideal, and let I ⊂ R be a homoge-
neous ideal such that HR/I = HR/L. Then βR/I ≤ βR/L.

Consequently, the search for all the resolutions that occur for a Hilbert
function is a bounded problem. That is, we need only consider graded free
resolutions that lie below that of the lexicographic ideal, so there are only finitely
many possibilities. Unfortunately, it is still relatively difficult to show that a
particular candidate for a resolution cannot occur; see [6] for some techniques.

One would like to find ideals with analogous properties to those of the lexico-
graphic ideals in more restrictive settings to try to get more information about
the possible Hilbert functions and graded free resolutions that can occur. A log-
ical place to start is the case in which one considers ideals that contain a regular
sequence of maximal length in prescribed degrees. In [5], Eisenbud, Green, and
Harris identify a candidate for maximal Hilbert function growth in this setting.

Conjecture 1.2 Fix a nonnegative integer d. Let I be a homogeneous ideal
containing a maximal length regular sequence in degrees a1, . . . , an. Suppose we
can form a monomial ideal L with minimal generators xa1

1 , . . . , x
an
n plus the first

l monomials in degree d in descending lexicographic order, where l is selected so
that HR/I(d) = HR/L(d). Then HR/I(d+ 1) ≤ HR/L(d+ 1).

The most interesting case is when I contains a regular sequence of length
n in degrees a1, . . . , an and no smaller degrees; then we can always form the
ideal L described above. This conjecture is known for I a monomial ideal; it
follows from the theorem of Clements and Lindström [4]. There has been some
progress when the ai are all 2; see [11] and [8]. Eisenbud, Green, and Harris
were interested in the conjecture because they show in [5] that a special case of
it implies their Generalized Cayley-Bacharach Conjecture in algebraic geometry.

The ideals L in the conjecture are part of a larger class of ideals whose
graded Betti numbers we wish to consider. They are the natural analogues of
lexicographic ideals in the situation in which we require our ideals to contain a
regular sequence of maximal length in prescribed degrees.

Definition 1.3 Let a1 ≤ · · · ≤ an be positive integers. We call L an (a1, . . . , an)
−lex-plus-powers (LPP) ideal if:
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(1) L is minimally generated by xa1
1 , . . . , x

an
n and monomials m1, . . . ,ml, and

(2) If r is a monomial, deg r = degmi, and r >lex mi, then r ∈ L.

For example, L = (x2
1, x

3
2, x

3
3, x1x

2
2, x1x2x3) is a (2, 3, 3)−LPP ideal. It con-

tains appropriate powers of the variables, and we need only check the second
condition for the other two generators. Since x3

1, x2
1x2, and x2

1x3 are all in L, L
is an LPP ideal. One builds the ideal by first forming the regular sequence of
maximal length and then adding more generators in descending lexicographic
order to get the desired Hilbert function.

Intuitively, if we believe Conjecture 1.2, the correspondence between max-
imality of Hilbert function growth and graded Betti numbers of lexicographic
ideals should carry over to this new setting. This relationship led to the for-
mulation of the LPP Conjecture (whose history is murky but is perhaps best
described as due to Evans and inspired by Eisenbud-Green-Harris) in a paper
of Evans and Richert [6]:

Conjecture 1.4 (LPP Conjecture) Let L ⊂ R be an (a1, . . . , an)−LPP ideal.
Suppose I ⊂ R is a homogeneous ideal with the same Hilbert function that con-
tains a regular sequence in degrees a1, . . . , an. Then βR/I ≤ βR/L.

The LPP Conjecture is completely natural given our knowledge of lexico-
graphic ideals and Conjecture 1.2. There is substantial computational evidence
for it, but proving the conjecture in its full generality seems difficult. One is
tempted to borrow from the proofs of Bigatti and Hulett in the lexicographic
case; for example, instead of comparing any ideal I to a lexicographic ideal, they
consider the generic initial ideal of I. In characteristic zero, this gives a strongly
stable ideal with graded Betti numbers the same or larger than those of I, and
one has convenient formulas for the graded Betti numbers of strongly stable
ideals. However, if we were to do something similar, we would wish not only to
keep the Hilbert function the same, but we would need also to fix the degrees of
the regular sequence. Thus the generic initial ideal poses problems. Moreover,
even though Charalambous and Evans have found the minimal resolution for
LPP ideals [2], it can be hard to use it to compare LPP ideals to other ideals,
partially because of some unpredictable ideal quotients that arise.

The case of the LPP Conjecture in which the LPP ideal is a complete in-
tersection is trivial; the first nontrivial case is when the LPP ideal is an almost
complete intersection. We prove this in Theorem 6.1:

Theorem 6.1 Let L be an (a1, . . . , an)−LPP almost complete intersection. Let
I be any ideal with the same Hilbert function as L that contains a regular se-
quence in degrees a1, . . . , an. Then βR/I ≤ βR/L.

We adopt an approach different from that of Charalambous and Evans to
resolve almost complete intersection ideals. Instead of aiming for minimal free
resolutions at the start, we form nonminimal resolutions and then try system-
atically to detect the nonminimality.
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Our main interest in this paper is the LPP Conjecture and related ques-
tions about Hilbert functions. We note that Migliore and Miró-Roig have done
substantial work in a different direction in [15] to find the minimal graded free
resolution of almost complete intersections whose generators are generic. Our
results give sharp upper bounds for the graded Betti numbers of any ideal with
the same Hilbert function as an LPP almost complete intersection, not only
generic (n + 1)-generated ideals. However, the disadvantage is that many al-
most complete intersections do not have the same Hilbert function as an LPP
almost complete intersection, and Migliore and Miró-Roig can, in a lot of cases,
give the precise resolution of generic almost complete intersections.

The paper is organized in the following way. In Section 2, we outline our
strategy using almost complete intersection monomial ideals and prove some
preliminary lemmas. We then modify the attack used on monomial ideals so
that it works in the nonmonomial case in Section 3. In this section, we also
give an explicit comparison map between two Koszul complexes that is vital in
detecting nonminimality in the mapping cone resolutions we use. In Section 4,
we identify complete intersection ideals that can have the Hilbert function of
an LPP almost complete intersection and examine their resolutions. We handle
final possibilities in Section 5, where we also obtain some bounds on the Hilbert
functions of almost complete intersections. The proof of the main result on
graded Betti numbers is in Section 6.

I thank Mike Stillman for his invaluable assistance with this paper and grate-
fully acknowledge Daniel Grayson and Mike Stillman for their computer algebra
system, Macaulay 2 [10]. I also thank the referee for his or her careful reading
and helpful suggestions for improving the paper.

2 Resolutions of LPP almost complete intersec-
tions and the monomial case

Our first goal is to compare the resolutions of two almost complete intersection
monomial ideals with the same Hilbert function. In this section, we assume that
the ideals have minimal generators that form a maximal length regular sequence
in the same degrees. Since we are restricting to almost complete intersections,
we have some extra structure with which to work. We begin by describing the
minimal resolution of a monomial almost complete intersection.

Let L = (xa1
1 , . . . , x

an
n , xd11 · · ·xdn

n ). We form the canonical short exact se-
quence

0→ R/(xa1−d1
1 , . . . , xan−dn

n )(−
∑

di)→ R/(xa1
1 , . . . , x

an
n )→ R/L→ 0.

We can find a resolution of R/L by taking the mapping cone induced by this
short exact sequence. The situation here is particularly good because we have
complete intersections in the first two nonzero places in the exact sequence, and
therefore we can resolve these modules minimally by Koszul complexes.
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The only difficulty is that this resolution of R/L might be nonminimal. Of
course, the only places nonminimality may arise come from constants appear-
ing in a comparison map between the resolutions of R/H and R/F , where
H = (xa1−d1

1 , . . . , xan−dn
n ), and F = (xa1

1 , . . . , x
an
n ). To see how to detect this

nonminimality, we examine a comparison map closely in an example.
Let L = (x2

1, x
3
2, x

3
3, x1x

2
2); this is a (2, 3, 3)−LPP ideal in R = k[x1, x2, x3].

Let F = (x2
1, x

3
2, x

3
3), and let

H = (x2
1, x

3
2, x

3
3) : (x1x

2
2) = (x1, x2, x

3
3).

We resolve R/L using the following diagram:

0 −−−−→ R
∂F
3−−−−→ R3 ∂F

2−−−−→ R3 ∂F
1−−−−→ R −−−−→ R/F −−−−→ 0

1

x C2

x C1

x xx1x
2
2

xx1x
2
2

0 −−−−→ R −−−−→
∂H
3

R3 −−−−→
∂H
2

R3 −−−−→
∂H
1

R −−−−→ R/H −−−−→ 0

Here, the ∂Fi and ∂Hi are the Koszul maps. We need to determine what C2 and
C1 are. It is not hard to see that C2 should give the relationship between the
generators of H and F , and from there, it is easy to compute the two maps.
They are:

C2 =

1 0 0
0 x2

2 0
0 0 x1

 and C1 =

x2
2 0 0

0 x1 0
0 0 x1x

2
2

 .

Note that C2 is just a diagonal matrix with diagonal entries the powers of the
xi that appear in the additional generator x1x

2
2 of L. Moreover, C1 is just the

matrix of 2× 2 minors of C2, and x1x
2
2 is the determinant of C2. This suggests

a general strategy: Compute the penultimate vertical map C in the diagram,
and fill in the other vertical maps with the appropriate exterior powers of C.
We shall show that these are the maps we want.

Lemma 2.1 Let L = (xa1
1 , . . . , x

an
n , xd11 · · ·xdn

n ). Let F = (xa1
1 , . . . , x

an
n ) and

H = (xa1−d1
1 , . . . , xan−dn

n ), and let ∂Fi and ∂Hi be the Koszul maps.
Let C :

∧n−1
Rn →

∧n−1
Rn be given by eA 7→ xdi

i eA, where A = {1, 2, . . . , î,
. . . , n}. Then the following diagram is commutative for all j = 1, . . . , n:

∧j
Rn

∂F
j−−−−→

∧j−1
Rn

∧n−j C

x x∧n−j+1 C∧j
Rn −−−−→

∂H
j

∧j−1
Rn

5



Proof: Let A = {i1, . . . , ij} ⊂ [n] = {1, . . . , n}, and let eA = ei1 ∧ · · · ∧ eij be
a basis element of

∧j
Rn in the resolution of R/H . Note that C is just the

diagonal matrix with diagonal entries xdi
i such that ∂Fn ◦ 1 = C ◦ ∂Hn . We have

∂Hj (eA) =
∑
it∈A

(−1)txait−dit
it

eA\it .

Applying
∧n−j+1

C, we obtain

(∧n−j+1
C ◦ ∂Hj

)
(eA) =

∑
it∈A

(−1)txait−dit
it

 ∏
l 6∈A\it

xdl

l

 eA\it .

=
∑
it∈A

(−1)txait
it

∏
l 6∈A

xdl

l

 eA\it .

Now, going the other direction,

(∧n−j
C

)
(eA) =

∏
l 6∈A

xdl

l

 eA,

and then (
∂Fj ◦

∧n−j
C

)
(eA) =

∑
it∈A

(−1)txait
it

∏
l 6∈A

xdl

l

 eA\it .

The coefficients of each eA\it are equal, and thus we are done. �

As a result, we can easily determine the nonminimality that occurs in the
mapping cone resolution of an almost complete intersection monomial ideal.
The matrix C in Lemma 2.1 has entry 1 only in the places corresponding to
some di being 0, forcing cancellation in the tail of the resolution in degree
a1 + · · ·+ âi + · · ·+ an. Since the other vertical maps are matrices of minors of
C, we can detect constants in the other vertical maps just by knowing C.

We use Lemma 2.1 to compare the resolutions of two monomial almost com-
plete intersections. We show that if there is any nonminimality in the mapping
cone resolution of an LPP almost complete intersection, there is correspond-
ing nonminimality in the mapping cone resolution of the other ideal we are
considering.

Proposition 2.2 Let I be a monomial ideal containing minimal generators
xa1

1 , . . . , x
an
n . Suppose I has the same Hilbert function as an (a1, . . . , an)−LPP

almost complete intersection L. Then βR/I ≤ βR/L.
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Proof: We may immediately reduce to the case in which we can apply Lemma 2.1:
The theorem of Clements and Lindström in [4] shows that L has at least as
many generators in each degree as I, and therefore I must also be an almost
complete intersection. (Alternatively, see Lemma 5.1.) Hence we may assume
that I = (xa1

1 , . . . , x
an
n , xb11 · · ·xbn

n ). Because I and L have the same Hilbert
function and have as minimal generators the same powers of the xi, the sets
Sd = {a1 − d1, . . . , an − dn} and Sb = {a1 − b1, . . . , an − bn} must be the same
(for we can compute the Hilbert functions from the nonminimal mapping cone
resolutions). We show that if some di is zero, then there exists an i′ (a different
one for each i with di = 0) such that ai′ = ai and bi′ = 0. Since any constant in
the comparison map (aside from the far left vertical map, which always induces
nonminimality) comes from some bi or di being zero, this proves that any non-
minimality in the mapping cone resolution of R/L occurs in the same degree in
the resolution of R/I .

It is clear from the definition of an LPP ideal that d1 = a1 − 1, . . . , dj−1 =
aj−1−1, and dj+1 = · · · = dn = 0 for some 1 < j ≤ n. Hence Sd = {1, . . . , 1, aj−
dj , aj+1, . . . , an} for some 1 < j ≤ n, and since the ai are weakly increasing,
1 ≤ aj − dj ≤ aj+1 ≤ · · · ≤ an.

If no di = 0, then the mapping cone resolution of R/L is minimal (except
for the obvious nonminimality from the far left vertical map), and we are done.
Otherwise, dn = 0. Since Sb = Sd, an ∈ Sb, and there is some r such that
an = ar − br. Because an ≥ ai for all i, we must have ar = an and br = 0.

Inductively, suppose that for s > l, the following holds: If ds = 0, there is s′

such that as′ = as and bs′ = 0. If dl > 0, there is nothing to prove. Otherwise,
dl = 0, and then al ∈ Sd = Sb. By the induction hypothesis, the only way for
al to be in Sb is for there to be an al′ = al such that bl′ = 0 (for any ai larger
than al has bi = 0 by induction), with l′ different from the other indices we have
already used. This is what we needed to prove, and therefore we are done by
Lemma 2.1. �

This establishes the inequality we want for the monomial case and suggests
a method of attack for the nonmonomial case, which we explore in the next
section.

3 The nonmonomial almost complete intersec-
tion case

It was particularly convenient to work with monomial ideals in the last section
because the comparison map consists of diagonal matrices of a nice form. Unfor-
tunately, if one wishes to generalize Proposition 2.2 to nonmonomial ideals, the
vertical maps will be much more complicated. We mimic the proof for monomial
ideals in this section.

Throughout, fix an LPP ideal L = (xa1
1 , . . . , x

an
n , xd11 · · ·xdn

n ). Let I =
(f1, . . . , fn, g) be an ideal with the same Hilbert function as L such that deg fi =
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ai, the fi form a regular sequence, and (f1, . . . , fn) : (g) = (h1, . . . , hn) is a com-
plete intersection. The reason for the last hypothesis is that we want to follow
the monomial case; we get a resolution of R/I by taking the mapping cone of
two Koszul complexes.

The goal in this section is Theorem 3.3, the LPP Conjecture in the setting
outlined above. To compare the graded Betti numbers of R/I and R/L, we first
find a convenient comparison map between the Koszul complexes on the fi and
hj . Let F = (f1, . . . , fn) and H = (h1, . . . , hn). The strategy is to find a matrix
C that writes the fi in terms of the hj and then to fill in the other vertical maps
with the exterior powers of C. This gives us a comparison map in which we can
detect the presence of nonzero constants in any of the vertical maps solely by
examining C.

Lemma 3.1 Let ∂Fi and ∂Hi be the Koszul maps in the resolutions of R/F and
R/H. Let C be any lift induced by g from the Comparison Theorem mapping∧n−1

Rn in the resolution of R/H to
∧n−1

Rn in the resolution of R/F . Then
the following diagram is commutative for all j = 1, . . . , n:∧j

Rn
∂F

j−−−−→
∧j−1

Rn

∧n−j C

x x∧n−j+1 C∧j
Rn −−−−→

∂H
j

∧j−1
Rn

Proof: Let A = {i1, . . . , ij} ⊂ [n], and let eA = ei1 ∧ · · · ∧ eij be a basis element
of
∧j

Rn in the resolution of R/H . Throughout, for X,Y ⊂ [n], let m(X,Y )

represent the minor of C obtained by omitting rows X and columns Y from C.
Computing first (

∧n−j+1
C ◦ ∂Hj )(eA), we have

∂Hj (eA) =
j∑
l=1

(−1)lhileA\il ,

and applying
∧n−j+1

C, we obtain
j∑
l=1

(−1)lhil
∑

|B|=j−1

m(B,A\il)eB =
∑

|B|=j−1

j∑
l=1

(−1)lhilm(B,A\il)eB ,

where the summation is over all B ⊂ [n] of cardinality j − 1.
In the other direction,(∧n−j

C

)
(eA) =

∑
|D|=j

m(D,A)eD,

with the summation over all D ⊂ [n] of cardinality j. Applying ∂Fj yields

∑
|D|=j

m(D,A)

j∑
l=1

(−1)lfDl
eD\Dl

,
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where Dl represents the lth element of D in increasing order.
To compare these two calculations, we convert the second to a summation

over sets of cardinality j− 1. The messy part here is keeping track of the signs.
Let p(x, Y ) denote the position of x in the set Y ⊂ [n], where Y is ordered in
the usual way. Then(

∂Fj ◦
∧n−j

C

)
(eA) =

∑
|B|=j−1

∑
α 6∈B

(−1)p(α,B∪α)fαm(B∪α,A)eB .

We need to write the fi in terms of the hj . We index the entries of the
matrix C unconventionally to keep the notation simpler. We havecnn · · · cn1

...
. . .

...
c1n · · · c11


(−1)nhn

...
−h1

 =

(−1)nfn
...
−f1

 .

Thus (−1)ifi = (−1)ncinhn + · · ·+ (−1)1ci1h1. Hence(
∂Fj ◦

∧n−j
C

)
(eA) =

∑
|B|=j−1

∑
α 6∈B

(−1)p(α,B∪α)m(B∪α,A)(−1)α
n∑
r=1

(−1)rcαrhreB.

Suppose first that r ∈ A, so r = il for some l. We show that the coefficients
of hileB in the two computations are identical by proving that

(−1)lm(B,A\il) =
∑
α6∈B

(−1)p(α,B∪α)m(B∪α,A)(−1)α(−1)ilcαil .

Because

m(B,A\il) =
∑
α 6∈B

(−1)p(α,B
′)+p(il,A

′∪il)cαilm(B∪α,A),

where X ′ is the complement of X in [n], it is enough to show that

l + p(α,B′) + p(il, A′ ∪ il) ≡ p(α,B ∪ α) + α+ il (mod 2),

which would prove that the signs are consistent. Note that l = p(il, A), and for
x ∈ Y , p(x, Y ) + p(x, Y ′ ∪ x) = x+ 1, so the left-hand side is just

p(α,B′) + il + 1.

The right-hand side is

α+ 1− p(α,B′) + α+ il,

and thus the parities are equal.
Finally, if instead r 6∈ A, we need the coefficient of hreB in the expression

for (∂Fj ◦
∧n−j

C)(eA) to be zero for all B. This follows because this formula
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includes the Laplacian determinant expansion of a submatrix of C with column
r repeated. �

To prove that the
∧j

C form a comparison map, we still need to show that
the diagram

R
πF−−−−→ R/F

detC

x xg
R −−−−→

πH

R/H

is commutative, where πF and πH are the canonical projections. This follows
from the next lemma.

Lemma 3.2 Let C be as above. Then detC = g in R/F .

Proof: We suppose that n ≥ 3 since when n = 2, our goal, Theorem 3.3, is
trivial by the Hilbert-Burch Theorem in the graded case (see, e.g., [3]). We
shall use a diagram chase to show that detC − g ∈ F , which gives the result.

For j = 2, . . . , n−1, let Aj be vertical maps induced by g from
∧n−j

Rn in the
resolution of R/H to

∧n−j
Rn in the resolution of R/F . Also, throughout, let

Mi be matrices of appropriate size with their entries homogeneous polynomials.
The following diagram is commutative:

∧n−1
Rn

∂F
n−1−−−−→

∧n−2
Rn

∂F
n−2−−−−→ · · · ∂F

2−−−−→
∧1

Rn
∂F
1−−−−→

∧0
Rn

C−C
x ∧2 C−A2

x x∧n−1 C−An−1

xdetC−g∧n−1
Rn −−−−→

∂H
n−1

∧n−2
Rn −−−−→

∂H
n−2

· · · −−−−→
∂H
2

∧1
Rn −−−−→

∂H
1

∧0
Rn

Because
(∧2

C −A2

)
◦ ∂Hn−1 is zero,

im
(∧2

C −A2

)T
⊆ ker(∂Hn−1)T = im(∂Hn−2)T .

Hence (
∧2
C−A2) = M2 ◦∂Hn−2 for some M2. Commutativity of the next square

to the right yields(∧3
C −A3

)
◦ ∂Hn−2 = ∂Fn−2 ◦

(∧2
C −A2

)
= ∂Fn−2 ◦M2 ◦ ∂Hn−2.

Therefore,

im
((∧3

C −A3

)
− ∂Fn−2 ◦M2

)T
⊆ ker(∂Hn−2)T = im(∂Hn−3)T .
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Thus for some M3, we have(∧3
C −A3

)
= ∂Fn−2 ◦M2 +M3 ◦ ∂Hn−3.

Inductively, suppose that there exist Mj−2 and Mj−1 such that∧j−1
C −Aj−1 = ∂Fn−j+2 ◦Mj−2 +Mj−1 ◦ ∂Hn−j+1.

By commutativity,(∧j
C −Aj

)
◦ ∂Hn−j+1 = ∂Fn−j+1 ◦

(∧j−1
C −Aj−1

)
,

so (∧j
C −Aj

)
◦ ∂Hn−j+1 = ∂Fn−j+1 ◦ (∂Fn−j+2 ◦Mj−2 +Mj−1 ◦ ∂Hn−j+1).

Thus, as in the arguments above,(∧j
C −Aj

)
− ∂Fn−j+1 ◦Mj−1 = Mj ◦ ∂Hn−j

for some Mj . Consequently,∧n−1
C −An−1 = Mn−1 ◦ ∂H1 + ∂F2 ◦Mn−2

for some Mn−2 and Mn−1. Commutativity of the rightmost square in the dia-
gram gives

(detC − g) ◦ ∂H1 = ∂F1 ◦
(∧n−1

C −An−1

)
,

and so

(detC − g) ◦ ∂H1 = ∂F1 ◦Mn−1 ◦ ∂H1 .

As a result,

(detC − g) = (f1 · · · fn)(p1 · · · pn)T

for some homogeneous polynomials pi, and therefore detC − g ∈ F . �

We now have a convenient, explicit comparison map, and therefore we can
examine the mapping cone resolution of R/I and detect the nonminimality.

Theorem 3.3 Let L = (xa1
1 , . . . , x

an
n , xd11 · · ·xdn

n ) be an LPP ideal. Let I =
(f1, . . . , fn, g) be an ideal with the same Hilbert function as L such that deg fi =
ai, the fi form a regular sequence, and (f1, . . . , fn) : (g) = (h1, . . . , hn) is a
complete intersection. Then βR/I ≤ βR/L.
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Proof: We need to determine where there are nonzero constants in the compar-
ison map between the resolution of R/H and that of R/F . We show that there
are nonzero constants in the columns of the vertical maps, each in a different
row, that correspond to the degrees in which there is nonminimality in the LPP
mapping cone resolution.

Let C be the map used in the mapping cone resolution ofR/I as above. Index
the hi such that deg hi = ai−di; then deg h1 ≤ · · · ≤ deg hn. Suppressing signs,
by commutativity, we havecnn · · · cn1

...
. . .

...
c1n · · · c11


hn...
h1

 =

fn...
f1

 ,

with the indexing of the entries C done unconventionally as in Lemma 3.1.
Let us consider the entries of C. Up to signs,

cinhn + · · ·+ ciihi + · · · ci1h1 = fi.

We have deg fi ≥ deg hi for all i. Note that deg fi = deg hi if and only if di = 0.
In that case, cii is a constant, and since deg hi = deg fi ≥ · · · ≥ deg f1, all
of cii, . . . , c1i must be constants. Thus a typical column of C has entries with
positive degree at the top, possibly constant entries in the middle, and zeros at
the bottom when deg hi > deg fj for j small.

Suppose that cii and cji are both nonzero constants in column i of C. Then
di = 0, and deg fi = deg hi = deg fj . We may perform row operations on C to
change one of these nonzero constants to zero, modifying the generating set of
F to be the appropriate linear combination of fi and fj . In this way, we may
assume that each column of C contains at most one nonzero constant. Moreover,
by reindexing generators of F with the same degree, we may suppose that if
di = 0 and there is a nonzero constant in column i, it occurs on the diagonal
in position cii. We assume C has this form in the rest of the proof. (Note that
there may also be nonzero constants below the main diagonal in a column j of
C when dj 6= 0; see Example 1 below.)

If all di > 0, then there is no nonminimality in the LPP mapping cone
resolution (apart from that arising from the map

∧n
Rn →

∧n
Rn), so we are

done. If not, then dn = 0, and so deg hn = deg fn. Therefore cnn is a constant.
Since deg hn = deg fn ≥ deg fj for all j, cjn is a constant for all j. Suppose
all cjn = 0. Then we can write all the fi in terms of only h1, . . . , hn−1. Hence
(f1, . . . , fn) ⊂ (h1, . . . , hn−1), meaning that a depth n ideal is contained in a
depth n − 1 ideal, which is impossible. Thus some cjn is a nonzero constant,
and it must be cnn by our assumptions on the form of C.

Our objective is to show that for each di that is zero, there is a nonzero
constant in column i of the matrix C and that these occur in different rows. This
proves that if there is nonminimality in the mapping cone resolution of R/L,
nonminimality occurs in the same degree in the same place in the mapping cone
resolution of R/I since the comparison map is made up of the exterior powers
of C.
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We proceed by induction. The base case is above, showing that if dn = 0,
then cnn is a nonzero constant. For the induction hypothesis, suppose that for
each j > v such that dj = 0, cjj is a nonzero constant. If dv 6= 0, there is
nothing to prove. Suppose dv = 0. Then deg hv = av − 0 = deg fv. Since, up to
signs,

fv = cvnhn + · · ·+ cvvhv + · · ·+ cv1h1,

cvv must be a constant. As before, deg hv = deg fv ≥ deg fi for all i ≤ v, and
hence civ is a constant for all i ≤ v.

We show that cvv is a nonzero constant. Suppose that for all i ≤ v, civ = 0.
Because deg hv+r ≥ deg hv = deg fv for all r ≥ 0, cvn, . . . , cvv are all constants.
Moreover, deg hv = deg fv ≥ deg fv−s for all s ≥ 0. These inequalities mean
that cij is a constant when both i ≤ v and j ≥ v. That is, every bolded entry
in the lower left-hand corner of C shown below

cnn · · · cn,v+1 cnv cn,v−1 · · · cn1

... . . .
...

...
... · · ·

...
cv+1,n · · · cv+1,v+1 cv+1,v cv+1,v−1 · · · cv+1,1

cvn · · · cv,v+1 cvv cv,v−1 · · · cv1
... . . .

...
...

... · · ·
...

c1n · · · c1,v+1 c1v c1,v−1 · · · c11


is a constant. We are assuming that cvv, . . . , c1v are all zero, and by our assump-
tions on the form of C, we conclude that all the entries in the bolded corner are
zero. That means that we can write fv, . . . , f1 in terms of only hv−1, . . . , h1,
and thus (f1, . . . , fv) ⊂ (h1, . . . , hv−1). This implies that an ideal of depth v is
contained in an ideal of depth v − 1, which is a contradiction. Therefore some
civ must be a nonzero constant, and it must be cvv by our construction of C.

With that established, the only question is whether having the correct non-
minimality from the matrix C gives us nonzero constants in the right columns of
the other vertical maps. The argument above shows that C has leading nonzero
constants in the columns for which di = 0, each in a different row. Therefore the
minors of C have nonzero constants in the columns corresponding to subsets of
the columns in which C has nonzero constants, which is what we need. Hence
any nonminimality that occurs in the mapping cone resolution of R/L occurs
in the same degree in that of R/I , and thus βR/I ≤ βR/L. �

We give two examples to illustrate some of the ideas from the previous proof.
The first uses monomial ideals for simplicity and demonstrates how the graded
Betti numbers of the LPP ideal can be strictly larger than those of the other
ideal. The second focuses on the nonmonomial case and also shows the form we
assume the matrix C to have in the proof above.

Example 1: Let R = C[a, b, c, d], L = (a2, b3, c4, d5, ab2c2), and I = (a2, b3,
c4, d5, b2c3). Then L is a (2, 3, 4, 5)−LPP ideal, and L and I have the same
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Hilbert function. Note that

(a2, b3, c4, d5) : (ab2c2) = (a, b, c2, d5) and (a2, b3, c4, d5) : (b2c3) = (a2, b, c, d5).

We write a2, b3, c4, d5 in terms of the generators of the ideal quotients,
ordering everything as in the proof of Theorem 3.3, to give an example of the
procedure followed there. The expression for L is on the left, and the one for I
is on the right. We have

1 0 0 0
0 c2 0 0
0 0 b2 0
0 0 0 a



d5

c2

b
a

 =


d5

c4

b3

a2

 and


1 0 0 0
0 0 0 c3

0 0 b2 0
0 1 0 0



d5

a2

b
c

 =


d5

c4

b3

a2

 .

There is a one in the upper left-hand corner of both matrices, which corre-
sponds to the power of d being zero in ab2c2, the extra generator of L. Thus
the same nonminimality from this nonzero constant will occur in both mapping
cone resolutions. There is also a one in the matrix for I in the bottom row, and
therefore there will be additional nonminimality in the mapping cone resolution
of R/I . Hence we expect the ranks of the last three free modules in the minimal
resolution of R/L to be respectively one, two, and one greater than the ranks
in the minimal resolution of R/I .

The minimal resolution of R/L is

0→ R3 → R9 → R10 → R5 → R→ R/L→ 0,

while the minimal resolution of R/I is

0→ R2 → R7 → R9 → R5 → R→ R/I → 0.

There are two copies of R(−12) and R(−7) in the minimal resolution of R/L
that do not appear in that of R/I , and otherwise the graded Betti numbers are
the same.

Example 2: For a simple example involving a nonmonomial ideal, we consider
the case of five quadrics in four variables. Let R = C[a, b, c, d], and let f1 =
ad+ d2, f2 = c2− bd, f3 = ab− b2, f4 = a2− bc, and g = a2 + cd. Note that the
fi form a regular sequence and that (f1, f2, f3, f4) : g is a complete intersection.
Let I = (f1, f2, f3, f4, g) and L = (a2, b2, c2, d2, ab). Then L is a (2, 2, 2, 2)−LPP
ideal, and HR/I = HR/L. Theorem 3.3 says that the graded Betti numbers of
R/I are at most those of R/L; we verify this.

In the extra generator ab of L, the powers of c and d are both zero, so
we should have nonminimality in the mapping cone resolution of R/L. Let
J = (a2, b2, c2, d2), and let M = J : (ab) = (a, b, c2, d2). Suppressing gradings
for the sake of room, we have

R
∂J
4−−−−→ R4 ∂J

3−−−−→ R6 ∂J
2−−−−→ R4 ∂J

1−−−−→ R −−−−→ R/J

1

x CL

x CL
2

x xCL
1

xab xab
R −−−−→

∂M
4

R4 −−−−→
∂M
3

R6 −−−−→
∂M
2

R4 −−−−→
∂M
1

R −−−−→ R/M
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with CL2 and CL1 the exterior powers of CL. Clearly the far left map induces
cancellation. Since CL is a diagonal matrix with nonzero entries 1, 1, a, and b,
there are two columns with nonzero constants in CL, and there is one in CL2 .
Thus the minimal resolution of R/L is

0→ R2 → R7 → R9 → R5 → R→ R/L→ 0.

Now, we have

I : (g) = (h1, h2, h3, h4) = (c, a− b+ d, bd, b2 + d2),

and we can write the fi in terms of the hj as
1 −2 a+ b− d −b
0 −1 b 0
0 −1 0 c
0 1 d 0



h4

h3

h2

h1

 =


f4
f3
f2
f1

 .

We can convert the above 4 × 4 matrix into a matrix CI that has at most
one nonzero constant in each column. We accomplish this by changing the
generating set of F to (f4 + 2f1, f1, f1 + f2, f1 + f3), and we get

1 0 a+ b+ d −b
0 1 d 0
0 0 d c
0 0 b+ d 0



h4

h3

h2

h1

 =


f4 + 2f1

f1
f1 + f2
f1 + f3

 .

Thus CI has nonzero constants in two columns, in separate rows, and induces
the same number of cancellations as in the mapping cone resolution of R/L. The
cancellations occur in the same degrees, and the minimal resolutions of R/I and
R/L are both

0→ R(−7)2 → R(−5)4 ⊕R(−6)3 → R(−3)2 ⊕R(−4)7 → R(−2)5 → R→ 0.

In the next sections, we remove some of the restrictions we have placed on
I in Section 3.

4 Complete intersections

So far we have compared the graded Betti numbers of an LPP almost complete
intersection L to another almost complete intersection I. In this section, we
explore what happens when I is instead a complete intersection. As a conse-
quence, we also obtain a better idea of what ideals with regular sequence in
degrees a1, . . . , an can have the same Hilbert function as an (a1, . . . , an)−LPP
almost complete intersection.

Our goal is the following result:
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Proposition 4.1 Let L be an (a1, . . . , an)−LPP almost complete intersection.
Let I be any complete intersection ideal with the same Hilbert function as L that
contains a regular sequence in degrees a1, . . . , an. Then βR/I ≤ βR/L.

To prove this, we first determine what form L and I must have to satisfy the
hypotheses of Proposition 4.1. We may assume that I is a monomial ideal since
its resolution and Hilbert function depend only on the degrees of the generators.
Of course, for I to contain a regular sequence in degrees a1, . . . , an, the minimal
generators of I must be in degrees at most a1, . . . , an. Our first step is to rule
out all but one type of candidate for L.

Lemma 4.2 If L and I are as above, then L = (xa1
1 , . . . , x

an
n , xa1−1

1 xb22 ), where
1 ≤ b2 ≤ a2 − 2.

Proof: R/L and R/I have the same Hilbert function and are Artinian, and
hence they have the same regularity and Betti number 1 in the same highest
degree in the nth term of their minimal resolutions. Suppose L = (xa1

1 , . . . , x
an
n ,

xa1−1
1 · · ·xaj−1

j x
bj+1
j+1 ). We get a short exact sequence

0→ R/(x1, . . . , xj , x
aj+1−bj+1
j+1 , x

aj+2
j+1 , . . . , x

an
n )→ R/(xa1

1 , . . . , x
an
n )→ R/L→ 0,

with the first term shifted in degree by −(a1+ · · ·+aj+bj+1−j). This induces a
mapping cone resolution of R/L. The degrees of the generators of the nth term
Fn of the minimal resolution of R/L come from sums of n−1 choices of 1, . . . , 1,
aj+1− bj+1, aj+2, . . . , an plus the shift in degree of (a1− 1) + · · · (aj − 1) + bj+1,
but the only combinations available are those that are not canceled because of
nonminimality. Thus we must leave out either a 1 or aj+1 − bj+1, or else that
portion of the chain map is 1 = x0

r for some r > j+ 1. To get the largest degree
possible, we leave out a 1, giving us the degree of the highest degree generator
of Fn. But we may have only one of these. Hence j = 1, and a2 − b2 ≥ 2, so
1 ≤ b2 ≤ a2 − 2. �

Lemma 4.2 tells us what L must look like under the hypotheses of Proposi-
tion 4.1. The next two lemmas place strong restrictions on I.

Lemma 4.3 With L and I as above, I = (xa1
1 , . . . , x

ai−1
i , . . . , xan

n ), up to rein-
dexing.

Proof: Write I = (xd11 , . . . , x
dn
n ). Since I contains a regular sequence in degrees

a1, . . . , an, reindexing if necessary, dj ≤ aj for all j. Let dj = aj − cj . Then the
degree of the generator for the nth term in the resolution of R/I is the sum of
the aj − cj . Note that

(xa1
1 , . . . , x

an
n ) : (xa1−1

1 xb22 ) = (x1, x
a2−b2
2 , xa3

3 , . . . , x
an
n ).

Thus the highest degree generator in the nth term of the resolution of R/L has
degree (a1 − 1 + b2) + (a2 − b2) +a3 + · · ·+ an, which comes from leaving out 1
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in the set of degrees of minimal generators in the ideal quotient. Therefore

n∑
j=1

(aj − cj) = (a1 − 1 + b2) + (a2 − b2) +
n∑
j=3

aj =
n∑
j=1

aj − 1.

Hence some cj = 1, and the rest are 0. �

Lemma 4.4 For L and I as above to have the same Hilbert function, either
i = 2, or ai = a2.

Proof: Suppose the conclusion is false. We show that the Hilbert functions are
then different, and we proceed by proving that the alternating sum of Betti
numbers for a certain degree is nonzero for R/L and zero for R/I . We know
that I = (xa1

1 , . . . , x
ai−1
i , . . . , xan

n ), where the ai are weakly increasing, and L =
(xa1

1 , . . . , x
an
n , xa1−1

1 xa2−l
2 ), where l ≥ 2. Suppose that i > 2 and ai > a2. The

degrees of the elements in the last term of the resolution of R/L are

1 +
n∑
j=3

aj + (a1 − 1) + (a2 − l) =
n∑
j=1

aj − l and

l +
n∑
j=3

aj + (a1 − 1) + (a2 − l) =
n∑
j=1

aj − 1.

We claim that βR/Lmd = 0 for m < n and d = a1 + · · ·+ an − l, and βR/Imd = 0 for
all m. This would prove the lemma since βR/Lnd = 1.

Consider firstR/I . We need to prove that no subset of {a1, . . . , ai−1, . . . , an}
sums to give d. This is equivalent to showing that no subset sums to l−1 because
a1 + · · ·+ai−1 + · · · an = d+ l−1. If such a subset exists, it must consist of a1

alone since aj > l for j > 1. Note that ai−1 = (a1−1)+(a2−l) since the degree
of xai−1

i must equal the degree of the extra generator of L, so ai = a1 + a2 − l.
If a1 = l − 1, then ai = a2 − 1, and we have a contradiction because ai ≥ a2.
Thus βR/Imd = 0 for all m.

Next consider the resolution of R/L. Recall that we obtain generators of
the free modules in the resolution of a certain degree in one of two ways: Ei-
ther we take sums of a subset of {a1, . . . , an}, or we take sums of a subset
of {1, l, a3, . . . , an} and add (a1 − 1) + (a2 − l). Suppose that some subset of
{a1, . . . , an} sums to d. Then the complementary subset sums to l, and be-
cause aj > l for j > 1, a1 = l. But then ai − 1 = (a1 − 1) + (a2 − l), so
ai = (l − 1) + (a2 − l) + 1 = a2, a contradiction.

Suppose instead that we obtain d using the other method. Then some subset
A of {a3, . . . , an} plus the shift of (a1 − 1) + (a2 − l) plus possibly 1 and/or l
equals d, and so the sum of the elements of S = ({a3, . . . , an}\A) is -1 plus
possibly 1 and/or l. Obviously -1 is impossible. The sum of the elements of S
could only be zero if a3, . . . , an, and 1 are used, which cannot happen if m < n
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since we are limited to using ≤ n − 2 elements from {1, l, a3, . . . , an}. Finally,
suppose the sum is l − 1 or l. Then some aj ≤ l for j ≥ 3, which is impossible
since aj ≥ a2 ≥ l + 1. Therefore βR/Lmd = 0 for m < n, and β

R/L
nd = 1. Thus if

the Hilbert functions of L and I are the same, i = 2, or ai = a2. �

We can now give the proof of Proposition 4.1.

Proof: We may assume that L = (xa1
1 , . . . , x

an
n xa1−1

1 xa2−l
2 ) for 2 ≤ l ≤ a2 − 1

and I = (xa1
1 , x

a2−1
2 , xa3

3 , . . . , x
an
n ). Note that a2 − 1 = (a1 − 1) + (a2 − l) since

a2 − 1 must equal the degree of the additional generator of L, so a1 = l. To
prove the proposition, we need to show that we can get the sum of any j of
a1, a2−1, a3, . . . , an as degrees of generators of the free modules in the minimal
resolution of R/L. These degrees in the minimal resolution of R/L come from
(1) taking the sum of j elements of {a1, . . . , an} (but not both a1 and a2) or
(2) taking the sum of j − 1 elements of {1, a2 − (a2 − l) = l = a1, a3, . . . , an}
(but not both 1 and a1) plus a2 − 1, the degree of the additional generator of
L. (Note that we cannot take both a1 and a2 or 1 and a1 because those terms
will be canceled since they yield a constant in the comparison map.)

Let S be a subset of j elements of {a1, a2 − 1, a3, . . . , an}. If S contains a1

and not a2 − 1, we get the corresponding degree from method (1). The case in
which S has neither a1 nor a2 − 1 is the same. If S contains a1 and a2 − 1, use
method (2) without using the 1. Finally, if S contains a2− 1 but not a1, we use
method (2), picking the necessary j − 1 of a3, . . . , an. Therefore βR/I ≤ βR/L.
�

We use the information in the results above about the degrees of socle gen-
erators in LPP almost complete intersections in the following lemma.

Lemma 4.5 Let L be an (a1, . . . , an)−LPP almost complete intersection. Let I
be an ideal containing a regular sequence f1, . . . , fn in degrees a1−b1, . . . , an−bn,
with at least one bi > 0, among its minimal generators. Suppose that R/I is not
a complete intersection. Then I and L do not have the same Hilbert function.

Proof: From the earlier computations, it is clear that the highest degree gener-
ator of the last term in the minimal resolution of R/L is a1 + · · ·+ an − 1. Let
F = (f1, . . . , fn). Then the socle generator of R/F has degree (a1 − b1) + · · ·+
(an − bn)− n. Thus after shifting, the degree of the generator of the last term
in the resolution of R/F is (a1 − b1) + · · ·+ (an − bn). Since we need R/I and
R/L to have the same regularity, and we are requiring some bi to be positive,
we conclude that a single bi = 1, and the rest are zero. Consequently, either
HR/L(r) > HR/F (r) for some r, so I cannot have the same Hilbert function
as L, or the Hilbert functions are last nonzero in the same degree s. In the
latter case, both Hilbert functions are 1 in degree s. But we want R/I not to
be a complete intersection, and adding another generator to F kills the socle
generator of R/F , making HR/I(s) too small. �

Consequently, we now need only consider ideals I with a regular sequence of
minimal generators in degrees a1, . . . , an.
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5 Upper bounds on some Hilbert functions

There are two cases left to consider to prove the LPP Conjecture when L is
an (a1, . . . , an)-LPP almost complete intersection. We need to show that if I
has the same Hilbert function as L and contains a regular sequence of minimal
generators in the same degrees, then

(1) I cannot have more than n+ 1 minimal generators, and

(2) the ideal quotient (maximal regular sequence of minimal generators of I) :
(other minimal generator of I) must be a complete intersection.

The next lemma proves that if either of these conditions fails, I cannot have
the same Hilbert function as an LPP almost complete intersection.

Lemma 5.1 Let L = (xa1
1 , . . . , x

an
n , m) be an (a1, . . . , an)−LPP almost com-

plete intersection. Let I = (f1, . . . , fn, g), where deg fi = ai, the fi form a
regular sequence, and deg g = degm.
(1) If (f1, . . . , fn) : (g) is a complete intersection, then either HR/I = HR/L, or
there exists u > 0 such that HR/I(u) < HR/L(u).
(2) If (f1, . . . , fn) : (g) is not a complete intersection, then there exists u > 0
such that HR/I(u) < HR/L(u).

Proof: Write J = (xa1
1 , . . . , x

an
n ) and F = (f1, . . . , fn). Let CL = J : (m), and

let CI = F : (g). Write d = deg g = degm. The canonical short exact sequences
show that

HR/L(l) = HR/J (l)−HR/CL
(l − d) and HR/I(l) = HR/F (l)−HR/CI

(l − d).

Of course, HR/J = HR/F . Therefore it suffices to show that if HR/I 6= HR/L,
then there is an u such that HR/CI

(u) > HR/CL
(u).

Since R/J and R/F both have a single socle generator in the same top
degree, adding m and g into those ideals kills the socle element, and thus HR/CI

and HR/CL
are both last nonzero in the same degree.

(1) Assume first that R/CI is a complete intersection and that HR/I 6= HR/L.
Then the degrees of the minimal generators of CI and CL have the same
sum. The degrees of the minimal generators of CL are 1, . . . , 1, aj+1 − bj+1,
aj+2, . . . , an, where 0 ≤ bj+1 < aj+1. Write the degrees of the minimal genera-
tors of CI in weakly increasing order, and call them ci. If the first j ci are not
all 1, we are done, for then HR/CI

(1) > HR/CL
(1). Otherwise, let r be the first

index where the list of degrees differs.
If ar < cr (or if r = j+1, then if aj+1−bj+1 < cj+1), we are done, since then

HR/CL
(ar) < HR/CI

(ar). Otherwise, ar > cr (or aj+1 − bj+1 > cj+1). Hence
there exists s such that cr+s > ar+s because the lists of degrees have the same
sum. By construction, F ⊂ CI =: (h1, . . . , hn), where deg hi = ci. Comparing
degrees of minimal generators of F and CI , we find

(f1, . . . , fr+s) ⊂ (h1, . . . , hr+s−1)
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since deg hr+s > deg fl for l ≤ r + s (recall that the ai, the degrees of the fi,
are weakly increasing). But this means that a depth r + s ideal is contained in
an ideal of smaller depth, a contradiction.

Consequently, if R/CI is a complete intersection, we cannot have HR/CI
(l)

≤ HR/CL
(l) for each l without equality occurring for every l. This gives the

desired inequality for HR/I and HR/L.

(2) Suppose instead thatR/CI is not a complete intersection but thatHR/CI
(l) ≤

HR/CL
(l) for all l. CI must have at least as many linear generators as CL, or we

are done. Moreover, since F ⊂ CI , there is an (a1, . . . , an) complete intersection
inside CI .

As before, the regularities of CI and CL are the same, and so the sum of
the degrees of any maximal length regular sequence inside CI must exceed, in
the notation above, j + (aj+1 − bj+1) + aj+2 + · · · + an. We form a minimal
generating set of CI as follows: Pick a linear form inside CI , and call it h1. Now
pick another element of CI of minimal degree, calling it h2, such that h1 and h2

form a regular sequence. Continue until one has a regular sequence h1, . . . , hn of
length n with deg hi ≤ deg hi+1. Write CI = (h1, . . . , hn, hn+1, . . . , hp), where
p ≥ n + 2 (since a theorem of Kunz shows that almost complete intersections
are never Gorenstein [13]).

Let us consider the degrees of these generators. We know deg hi = 1 for
i ≤ j. Let cs = deg hs for j + 1 ≤ s ≤ n. Then

cj+1 + · · ·+ cn > (aj+1 − bj+1) + aj+2 + · · ·+ an.

If aj+1 − bj+1 < cj+1, then we are done, for then HR/CL
(aj+1 − bj+1) <

HR/CI
(aj+1−bj+1). Otherwise, aj+1−bj+1 ≥ cj+1. Hence there exists r > j+1

such that ar < cr because of the restriction on the sums of the degrees. Note
that (f1, . . . , fr) must be contained in the portion of CI in degrees at most
ar. Therefore, if {hq1 , . . . , hqt} is the subset of {hn+1, . . . , hp} of polynomials of
degree at most ar, we have

(f1, . . . , fr) ⊂ (h1, . . . , hr−1, hq1 , . . . , hqt).

But the left-hand side has depth r, while our construction guarantees that the
right-hand side has depth only r−1, a contradiction. Hence there must be some
l such that HR/CI

(l) > HR/CL
(l), and we are done. �

Analyzing the preceding proof, we obtain a special case of Conjecture 1.2.

Corollary 5.2 Let a1 ≤ · · · ≤ an be positive integers. Let I be an almost
complete intersection generated by homogeneous polynomials f1, . . . , fn, and g,
where the fi form a regular sequence, deg fi = ai, and deg g = d. Assume
d ≥ a1. Let L = (xa1

1 , . . . , x
an
n ,m), where m is the greatest monomial in lex

order in degree d not in (xa1
1 , . . . , x

an
n ). Then HR/I(d+ 1) ≤ HR/L(d+ 1).

Given an ideal I as above, the idea is to take the appropriate LPP almost
complete intersection L so that HR/I(d) = HR/L(d), where d is the degree of the
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extra generator g of I. Then we show that the Hilbert function of R/I cannot
grow any faster than that of R/L in the next degree. Our assumption that
d ≥ a1 is not actually a significant restriction; one can choose the generators of
the maximal regular sequence to ensure that this is the case.

Proof: The proof is almost identical to that of Lemma 5.1. We outline the case in
which (f1, . . . , fn) : (g) = (h1, . . . , hn) is a complete intersection. In the notation
of Lemma 5.1, we need to show that HR/CI

(1) ≥ HR/CL
(1). If not, then there

are more minimal linear generators in CI than in CL. Since the regularity of
the ideals is the same, there is some r > j + 1 such that deg hr > ar, where we
have ordered the hi such that deg hi ≤ deg hi+1 as above. Then (f1, . . . , fr) ⊂
(h1, . . . , hr−1), a contradiction. The proof of the case in which (f1, . . . , fn) : (g)
is not a complete intersection is also essentially identical to the argument in
Lemma 5.1. �

To conclude this section, we state two more results of this nature.

Proposition 5.3 Under the hypotheses of Corollary 5.2:
(1) If HR/I 6= HR/L, let l0 be the first degree such that HR/I(l) 6= HR/L(l).
Then HR/I(l0) < HR/L(l0).
(2) If (f1, . . . , fn) : g is a complete intersection, then HR/I(l) ≤ HR/L(l) for all
l. �

Proof: (1) This is very similar to the proofs of the previous results. Suppose
(f1, . . . , fn) : (g) is not a complete intersection (if it is, then (1) follows from
(2)). As in Corollary 5.2, using the same notation, CI has at least as many
linear generators as CL; if it has fewer, then HR/I(d + 1) < HR/L(d + 1), and
we are done. Otherwise, choose a maximal length regular sequence h1, . . . , hn
inside CI as before, picking something of minimal degree each time. Suppose
CL and CI have j linear generators. If deg hj+1 > aj+1 − bj+1, we are done,
for then HR/I(d+ aj+1− bj+1) < HR/L(d+ aj+1− bj+1). If not, then since the
sum of the degrees of h1, . . . , hn is greater than the sum of the degrees of the
minimal generators of CL, for some n ≥ i > j + 1, deg hi > ai. But then, as
before, we have an ideal (f1, . . . , fi) of depth i contained in an ideal of depth
i− 1, a contradiction.

(2) Let CI and CL be as before. Call the minimal generators of CI h1, . . . , hn,
with their degrees weakly increasing. We need to show thatHR/CI

(l) ≥ HR/CL
(l)

for all l. To do this, we analyze how changing the degrees of the minimal gen-
erators of a complete intersection in a particular way affects the Hilbert series.

We need to determine the possible degrees vl = (q1, . . . , qn) of the minimal
generators of CI , where qi ≤ qi+1 for each i. By previous arguments, we know
that qi ≤ ai for all i. We claim that we can start with the degree vector of the
minimal generators of CL, v0 = (1, . . . , 1, aj+1 − bj+1, aj+2, . . . , an), and move
to any possible degree vector (q1, . . . , qn) of the minimal generators of CI by a
sequence of switches of degrees from some cj and ci to cj − 1 and ci + 1, where
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cj > ci + 1. (Note that the regularities of CI and CL are the same, so the sums
of the degrees of the minimal generators of each are the same.) To do this, we
proceed in the following manner. Starting with v0, take the greatest entry of v0
that is greater than its corresponding entry in vl. Subtract one from it and add
that to the lowest entry of v0 that needs to increase; then sort so that the new
list is weakly increasing. Here, the ones in v0 cannot decrease, and the entries
of ai cannot increase, so we do not have to subtract from a lesser degree and
add to a greater number.

Suppose we get to some vc = (c1, . . . , cn) in the algorithm, where ci ≤ ci+1

for each i. Say cj is the greatest number that needs to decrease and ci is the
least number that needs to increase. We show that cj > ci + 1. If cj = ci + 1,
then we are not changing the degrees by taking one from cj and adding it to
ci. This is not a move the algorithm can require us to make because in this
case, qi > ci = cj − 1 ≥ qj , a contradiction since j > i. If cj < ci + 1, then
we previously needed an entry of ci + 1 (or greater), and so we should not have
decreased cj (or something greater) earlier.

For example, we might start with degrees (1, 1, 1, 5, 7, 9) and need to switch
to (2, 2, 4, 6, 8). We would do this by changing (1, 1, 1, 5, 7, 9) to (1, 1, 2, 5, 7, 8)
to (1, 2, 2, 5, 6, 8) to (2, 2, 2, 4, 6, 8).

Now, let us compute the effect of such switches in the degrees of minimal
generators of complete intersection ideals on the Hilbert function. For ease in
notation, without loss of generality, suppose we change a complete intersection
with minimal generators in degrees c1, . . . , cn to one with minimal generators
in degrees c1 + 1, c2 − 1, c3, . . . , cn. We may assume by the arguments above
that c2− c1− 1 > 0. We compute the Hilbert series of R/(new ideal) minus the
Hilbert series of R/(old ideal), which is:

(1− tc1+1)(1− tc2−1)
n∏
i=3

(1− tci)

(1− t)n
−

(1− tc1)(1− tc2)
n∏
i=3

(1− tci)

(1− t)n
=

n∏
i=3

(1− tci)

(1− t)n
(
tc1 + tc2 − tc2−1 − tc1+1

)
=

n∏
i=3

(1− tci)

(1− t)n
tc1 (1− t)

(
1− tc2−c1−1

)

= tc1

(
1− tc2−c1−1

1− t

)(
1− t
1− t

)(
1− tc3
1− t

)
· · ·
(

1− tcn

1− t

)
.

Since c2 − c1 − 1 > 0, this expression is a polynomial with all nonnegative
coefficients, so the Hilbert function of R/CL is at most that of R/CI in every
degree. Hence HR/I(l) ≤ HR/L(l) for all r. �

We believe that the stronger statement of (2) in Proposition 5.3 should also
hold when (f1, . . . , fn) : g is not a complete intersection. Finally, we note that
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if f1, . . . , fn and g are generic, then the inequality HR/I(l) ≤ HR/L(l) holds for
all l by a result of Fröberg in [7]; one can also compute this directly without
much difficulty.

6 Conclusion

We can now give our main result.

Theorem 6.1 Let L be an (a1, . . . , an)−LPP almost complete intersection. Let
I be any ideal with the same Hilbert function as L that contains a regular se-
quence in degrees a1, . . . , an. Then βR/I ≤ βR/L.

Proof: If I contains a complete intersection in degrees less than a1, . . . , an, then
by the results of Section 4, I is an (a1, a2 − 1, a3, . . . , an) complete intersec-
tion. The theorem then follows from Proposition 4.1. Otherwise, I has minimal
generators f1, . . . , fn that form a regular sequence in degrees a1, . . . , an. By
Lemma 5.1, I is an almost complete intersection (f1, . . . , fn, g) with (f1, . . . , fn) :
(g) a complete intersection. Then Theorem 3.3 gives the inequality for the Betti
numbers. �

The extra structure of almost complete intersections is important in our ar-
guments. All the mapping cones we have used come from two Koszul complexes,
and one loses this structure if one has to consider ideals with n+2 or more gen-
erators. In particular, it becomes much more difficult to detect nonminimality.

There has been some other recent work in this area. Gasharov, Hibi, and
Peeva have introduced the idea of a-stable ideals, and they study their ho-
mological properties in [9]. Richert [18] has proven the LPP Conjecture (and
Conjecture 1.2) in the case n = 2 and for monomial ideals in three variables. He
also has some reductions that we hope will make it possible to understand con-
nections between the Eisenbud-Green-Harris and LPP Conjectures more clearly
in the future.
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