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1. INTRODUCTION

Let f(x) ∈ K[x] be a polynomial with coefficients in a field K. For an integer k ≥ 0, we
denote by fk(x) the k-fold iterated composition of f with itself. The dth dynatomic polynomial
Φf,d(x) ∈ K[x] of f is defined by the product

Φf,d(x) :=
∏
e|d

(fd/e(x)− x)µ(e),

where µ is the standard number-theoretic Möbius function on N. We refer the reader to [12,
§4.1] for background on dynatomic polynomials. For generic f(x), the dth dynatomic polyno-
mial Φf,d(x) vanishes at precisely the periodic points of f with primitive period d. In this paper
we consider the polynomial equation Φf,d(x) = 1 and show that it often has f -preperiodic solu-
tions determined by arithmetic properties of d, independent of f . Moreover, these f -preperiodic
solutions are detected by cyclotomic factors of the dth necklace polynomial:

Md(x) =
1

d

∑
e|d

µ(e)xd/e ∈ Q[x].

Our results extend earlier work of Morton and Silverman [8], but our techniques are quite dif-
ferent and apply more broadly.

We begin by recalling some notation and terminology. The cocore of a positive integer d is
d/d′ where d′ is the largest squarefree factor of d. If m ≥ 0 and n ≥ 1, then the (m,n)th
generalized dynatomic polynomial Φf,m,n(x) of f(x) is defined by Φf,0,n(x) := Φf,n(x) and

Φf,m,n(x) :=
Φf,n(fm(x))

Φf,n(fm−1(x))

for m ≥ 1. The roots of Φf,m,n for generic f are those preperiodic points which enter into an
n-cycle after exactly m iterations under f .

Theorem 1.1 is our main result; it is proved in Section 3.

Theorem 1.1. Let K be a field, let f(x) ∈ K[x] be a polynomial of degree at least 2, and let
c, d,m, n be integers with c,m ≥ 0 and d, n ≥ 1. Suppose that

(1) either m > c or n - d,
(2) the cocore of d is at least m−max(c− 1, 0), and
(3) xn − 1 divides the dth necklace polynomial Md(x) in Q[x].

Then Φf,m,n(x) divides Φf,c,d(x)− 1.
Alternatively, if d > 1, c− 1 ≥ m, and n = 1, then Φf,m,n(x) divides Φf,c,d(x)− 1.

Remark 1.2. While we generally discuss polynomials over arbitrary fields, the polynomial Md

will always be considered to be a polynomial over Q; in particular, all statements regarding
divisibility or factorizations of Md should be interpreted in characteristic zero.
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1.1. Dynamical units. Let K be a number field with ring of integers OK . Morton and Sil-
verman [8] define dynamical units to be algebraic integral units constructed in one of sev-
eral closely related ways from differences of preperiodic points of a given monic polynomial
f(x) ∈ OK [x]. If Φf,m,n(x) divides Φf,c,d(x)− 1, then for each root α ∈ K of Φf,m,n(x),

1 = Φf,d(α) =
∏
β

(α− β), (1.1)

where the product ranges over all the roots β of Φf,c,d(x) with multiplicity. The differences
α− β are dynamical units and (1.1) is a multiplicative relation between dynamical units. If the
conditions of Theorem 1.1 are satisfied for m,n, c, d, then (1.1) holds for all f(x) with degree
at least 2; we view these as universal relations for dynamical units. Examples of universal
relations for dynamical units have been found by Morton and Silverman [8, Thm. 7.5] and
Benedetto [1, Thm. 2]. We give some results on universal relations, and relate them to previous
work, in Section 3.2 below.

1.2. Cyclotomic factors of necklace polynomials. Of the conditions in Theorem 1.1, (3) is
the most subtle. Necklace polynomials Md(x) have several combinatorial interpretations; for
example, if q is a prime power, then Md(q) is the number of irreducible degree-d monic poly-
nomials in Fq[x]. These interpretations give no indication as to when, if ever, Md(x) will vanish
at all the nth roots of unity. However, as observed in [5], necklace polynomials are generally
divisible by many cyclotomic polynomials. Recall that the nth cyclotomic polynomial Φn(x) is
the Q-minimal polynomial of a primitive nth root of unity.

Example 1.3. M105(x) factors over Q as

M105(x) = 1
105

(x105 − x35 − x21 − x15 + x7 + x5 + x3 − x)

= e(x) · Φ8 · Φ6 · Φ4 · Φ3 · Φ2 · Φ1 · x, (1.2)

where e(x) ∈ Q[x] is a degree 92, irreducible, non-cyclotomic polynomial. Since

xn − 1 =
∏
m|n

Φm(x),

the factorization (1.2) implies that M105(x) is divisible by xn − 1 for n = 1, 2, 3, 4, 6, 8. Note
that d = 105 = 3 · 5 · 7 is squarefree, hence the cocore of d is 1. Thus Theorem 1.1 implies that
for any polynomial f(x) ∈ K[x] of degree at least 2, Φf,105(x)− 1 is divisible by Φf,1,n(x) for
n = 1, 2, 3, 4, 6, 8 and Φf,0,n for n = 2, 4, 6, 8.

In light of Theorem 1.1 one might naturally ask how often xn − 1 divides Md(x). Figure
1 suggests that Md(x) is divisible by several xn − 1 for all d ≥ 1. Hyde [5] characterized
the cyclotomic factors of necklace polynomials in terms of hyperplane arrangements in finite
abelian groups. Let Ûn := Hom((Z/(n))×,C×) denote the group of Dirichlet characters of
modulus n. If q is a unit modulo n, then the hyperplaneHq ⊆ Ûn is defined to be the set

Hq := {χ ∈ Ûn : χ(q) = 1}.

The following theorem gives an alternative to condition (3) in Theorem 1.1 in terms of hy-
perplanes in the group of Dirichlet characters. We prove Theorem 1.4 in Section 3.3.
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FIGURE 1. Pairs (d, n) with d, n ≤ 1000 for which xn − 1 divides Md(x).

Theorem 1.4. Let d, n ≥ 1. Then xn − 1 divides Md(x) if and only if

Ûn ⊆
⋃
p|d
p-n

Hp.

Theorem 1.4 says xn− 1 divides Md(x) if and only if the finite abelian group Ûn of modulus
n Dirichlet characters is covered by an arrangement of “hyperplanes” determined by the prime
factors of d. In Example 3.14 we explain how the 5 distinct prime factors of

d = 440512358437 = 472 · 73 · 79 · 151 · 229

correspond to the 5 lines in (R/4Z)2 in Figure 2, and how the fact that the lines cover all the
lattice points translates, via Theorem 1.4, into the fact that x65 − 1 divides M440512358437(x).
Since the cocore of d is 47, Theorem 1.1 implies that

Φf,m,65(x) divides Φf,440512358437(x)− 1,

for all f(x) ∈ K[x] with deg(f) ≥ 2 and 0 ≤ m ≤ 47.

1.3. Cyclotomic factors of shifted cyclotomic polynomials. Cyclotomic factors of necklace
polynomials are also closely related to cyclotomic factors of shifted cyclotomic polynomials
Φd(x)− 1. For example, if d = 105, then

Φ105(x)− 1 = ẽ(x) · Φ8 · Φ6 · Φ4 · Φ3 · Φ2 · Φ1 · x,

where ẽ(x) ∈ Q[x] is a degree 35, irreducible, non-cyclotomic polynomial. Note that the
cyclotomic factors dividing Φ105(x) − 1 are precisely the same as those dividing M105(x). In
general, Md(x) and Φd(x) − 1 have most, but not all, cyclotomic factors in common. See [5]
for a detailed analysis of the cyclotomic factors in these two sequences.
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FIGURE 2.

Cyclotomic factors of Φd(x) − 1 are also detected by cyclotomic factors of Md(x) and have
an interpretation in terms of multiplicative relations between cyclotomic units analogous to
the situation with dynamical units discussed above. Thus the cyclotomic factors of necklace
polynomials give explicit structural parallels between these two analogous families of units.

1.4. Necklace operators. Let ZΨ denote the ring generated by formal expressions [m] with
m ∈ N subject only to the multiplicative relations [m][n] = [mn]. The dth necklace operator
ϕd ∈ ZΨ is defined by

ϕd :=
∑
e|d

µ(e)[d/e].

The cyclotomic factors of Md(x), cyclotomic factors of Φd(x) − 1, and dynatomic factors of
Φf,d(x) − 1 ultimately trace back to the necklace operator ϕd. The polynomials Md(x), Φd(x)
and Φf,d(x) may be expressed as images of ϕd with respect to different ZΨ-module structures.
Suppressing the details of the module structures for now, we have

Md(x) =
1

d

∑
e|d

µ(e)xd/e = ϕd(x/d),

Φd(x) =
∏
e|d

(xd/e − 1)µ(e) = (x− 1)ϕd ,

Φf,d(x) =
∏
e|d

(fd/e(x)− x)µ(e) = (f(x)− x)ϕd . (1.3)

As the notation suggests, Md(x) is an image in an additive ZΨ-module while Φd(x) and
Φf,d(x) arise from multiplicative ZΨ-modules. Much of the work that goes into proving Theo-
rem 1.1 involves constructing the appropriate ZΨ-module in which to realize the above expres-
sion of Φf,d(x) as an image of ϕd.

All of the cyclotomic and dynatomic factors of the polynomials discussed above, as well
as the connection to hyperplane arrangements in the group of Dirichlet characters, ultimately
traces back to the following factorization of the necklace operator (in a localization of ZΨ):

ϕd = [d]
∏
p|d

(
1− 1

[p]

)
,

where the product is taken over all primes p dividing d.
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2. PRELIMINARY RESULTS

In this section we prove preliminary results leading up to the proofs of Theorem 1.1 and
Theorem 1.4 in Section 3. Our main goal is to make sense of (1.3). We accomplish this by
introducing the notions of composition rings and their algebras. In Section 2.4, we prove a
statement on the generic separability of (generalized) dynatomic polynomials; this result is
folklore in the arithmetic dynamics community but we were unable to find a suitable reference.

2.1. Composition rings. Suppose R is a commutative ring and S is a monoid of ring endo-
morphisms of R with respect to composition. The monoid S generates a (non-unital) subring
CS of the ring of all R-valued functions on R, with pointwise ring operations. Furthermore, CS
has an extra layer of structure coming from the composition operation on S. We abstract this
situation into the notion of a composition ring.

Definition 2.1. A composition ring C is a (potentially non-unital) commutative ring together
with an associative operation ◦ such that for all f, g, h ∈ C

(1) (f + g) ◦ h = (f ◦ h) + (g ◦ h),
(2) (f · g) ◦ h = (f ◦ h) · (g ◦ h), and
(3) there exists a two-sided compositional identity x ∈ C.

A morphism σ : C → D of composition rings is a ring homomorphism which respects the
composition operator and preserves compositional identities.

All of the composition rings we consider are constructed as follows.

Definition 2.2. Let S be a multiplicative monoid. The free S-composition ring Z{S} is the
composition ring generated by expressions [s] with s ∈ S where the composition operation ◦ is
determined by the following relations: for all f, g ∈ Z{S} and s, t ∈ S

(i) [s] ◦ (f + g) = ([s] ◦ f) + ([s] ◦ g),
(ii) [s] ◦ (f · g) = ([s] ◦ f) · ([s] ◦ g), and

(iii) [s] ◦ [t] = [st].
Note that the compositional identity is x := [1] where 1 ∈ S is the multiplicative identity.

To see that the composition operation on Z{S} is determined by these properties, first observe
that Definition 2.1 (1) and (2) reduce the computation of f ◦ g for f, g ∈ Z{S} to [s] ◦ g with
s ∈ S. Then Definition 2.2 (i) and (ii) reduce us further to [s] ◦ [t] for s, t ∈ S, and finally (iii)
tells us that [s] ◦ [t] = [st]. This reduction is illustrated in the following example.

Example 2.3. Let S := 〈f, g〉 be the free monoid on two generators. Consider the elements

α := 3[f 2][f ] + 2[1][g]

β := [f ][g] + [fg]

of Z{S}. Then by Definition 2.1 (1) and (2),

α ◦ β = (3[f 2][f ] + 2[1][g]) ◦ β
= 3([f 2] ◦ β)([f ] ◦ β) + 2([1] ◦ β)([g] ◦ β).



6 JOHN R. DOYLE, PAUL FILI, AND TREVOR HYDE

Definition 2.2 (i) and (ii) imply that

[f 2] ◦ β = [f 3][f 2g] + [f 3g],

[f ] ◦ β = [f 2][fg] + [f 2g],

[1] ◦ β = [f ][g] + [fg],

[g] ◦ β = [gf ][g2] + [gfg].

Thus,

α ◦ β = 3
(
[f 3][f 2g] + [f 3g]

) (
[f 2][fg] + [f 2g]

)
+ 2 ([f ][g] + [fg])

(
[gf ][g2] + [gfg]

)
.

Remark 2.4. The composition ring Z{S} is closely related to the more familiar monoid ring
Z[S]. The latter is the ring generated by [s] for s ∈ S with multiplication determined by
[s] · [t] = [st]. The monoid ring Z[S] embeds into Z{S} as linear combinations of the “degree
one” elements with product structure given by ◦.

If σ̃ : S → T is a monoid homomorphism, then there is a unique composition ring homo-
morphism σ : Z{S} → Z{T} which lifts σ̃. In fact, the map S 7→ Z{S} gives a functor from
monoids to composition rings.

We further restrict our attention to monoids S which are quotients of the free cyclic monoid
on one generator 〈f〉. For each m,n ∈ N with n ≥ 1, let Z{f} := Z{〈f〉} and let

Zm,n{f} := Z{〈f : fm+n = fm〉}.
The monoid quotient

〈f〉 → 〈f : fm+n = fm〉.
induces, by functoriality, a map of composition rings Z{f} → Zm,n{f}. If α, β ∈ Z{f} are
elements with the same image in Zm,n{f}, then we write

α ≡ β mod Zm,n{f}.

2.2. Ψ-module structure on Z{f}. Let N◦ denote the multiplicative monoid of natural num-
bers and let Ψ := N[N◦] denote the monoid semiring of N◦. That is, Ψ is the semiring additively
spanned by formal expressions [m] for m ∈ N such that for m,n ∈ N,

[m][n] = [mn].

For each m ∈ N there is a unique endomorphism [m] of the cyclic semigroup 〈f〉 expressed
in exponential notation as f [m] := fm. This gives, by functoriality, an endomorphism [m] :
Z{f} → Z{f} of composition rings. We extend this action to a multiplicative Ψ-module
structure on Z{f}.
Example 2.5. If ψ = 3[5] + 2[4] ∈ Ψ, then

([f ]− [1])ψ = ([f ]− [1])3[5]+2[4] := ([f 5]− [1])3([f 4]− [1])2.

If m ≥ 0 and n ≥ 1 are natural numbers, the semiring quotient N → N/(m + n = m)
induces a quotient on multiplicative monoids N◦ → (N/(m + n = n))◦. Let Ψm,n denote the
semiring quotient of Ψ induced by this quotient of monoids. If ψ1, ψ2 ∈ Ψ are two elements
with the same image under this map, then we write

ψ1 ≡ ψ2 [mod m+ n = m],

or simply
ψ1 ≡ ψ2 [mod n],

when m = 0. This notation is meant to suggest that the quotient takes place inside the brackets.
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Example 2.6. If m = 0 and n = 3, then

5[1]− 3[2] + 4[5] ≡ 5[1] + [2] 6≡ 2[1] + [2] [mod 3].

The first congruence holds because [2] ≡ [5] [mod 3]. The second congruence does not hold
because the congruence does not extend to the coefficients so that 2[1] 6≡ 5[1] [mod 3].

The action of N◦ on the cyclic monoid 〈f : fm+n = fm〉 factors through the quotient
N◦/(m + n = m), hence the multiplicative Ψ-module structure on Zm,n{f} factors through
Ψm,n. Lemma 2.7 formally states this observation.

Lemma 2.7. If α ∈ Z{f} and ψ1, ψ2 ∈ Ψ are such that ψ1 ≡ ψ2 [mod m + n = m], then
αψ1 ≡ αψ2 mod Zm,n{f}.

2.3. Necklace operators. If R is a semiring, then let RΨ := R ⊗N Ψ denote the extension of
scalars of Ψ from N to R.

Definition 2.8. If d ≥ 1 is a natural number, then the dth necklace operator ϕd is

ϕd :=
∑
e|d

µ(e)[d/e] ∈ ZΨ,

where µ is the usual number theoretic Möbius function.

There is a unique cancellation-free way to write the dth necklace operator as a difference
ϕd = ϕ+

d − ϕ
−
d of elements ϕ±d ∈ Ψ. Now let Φ±f,d ∈ Z{f} be defined by

Φ±f,d = ([f ]− [1])ϕ
±
d .

Note that Ψ and Ψm,n have no additive torsion, hence embed into QΨ and QΨm,n, respec-
tively. Lemma 2.9 constructs a simple polynomial model of the free QΨm,n-module which
allows us to relate the vanishing of ϕd in ZΨm,n to cyclotomic factors of Md(x). The poly-
nomial ring Q[x] carries a natural QΨ-module structure determined by [k]g(x) := g(xk) for
g(x) ∈ Q[x]. Here xk denotes a monomial and not the kth compositional power of the identity
function (which would again be the identity.)

Lemma 2.9. Let m ≥ 0 and n ≥ 1. The QΨ-module structure on Q[x] defined by [k]g(x) :=
g(xk) descends to Q[x]/(xm+n − xm) and factors through QΨm,n. Furthermore,

Q[x]/(xm+n − xm) ∼= QΨm,n

as QΨm,n-modules.

Proof. LetMm,n := Q[x]/(xm+n−xm). To see that the QΨ-module structure on Q[x] descends
to Mm,n it suffices to check that if f(x) ≡ g(x) mod (xm+n − xm), then f(xk) ≡ g(xk) mod
(xm+n−xm). This follows from the observation that xmk(xnk−1) is divisible by xm(xn−1) for
all k ∈ N. The QΨ-action on Mm,n clearly factors through QΨm,n. Observe that Mm,n is cyclic
as a QΨm,n-module and is generated by x. Note that both Mm,n and QΨm,n have dimension
m+ n over Q, hence Mm,n is free. �

Definition 2.10. The core of a positive integer d is the largest squarefree factor d′ of d and the
cocore of d is d/d′. Note that the core of d is the product of all distinct primes dividing d.

Definition 2.11. The dth necklace polynomial Md(x) ∈ Q[x] for d ≥ 1 is defined by

Md(x) :=
1

d

∑
e|d

µ(e)xd/e.
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Proposition 2.12. Let m,n, d ∈ N be such that n, d ≥ 1. If

(1) the cocore of d is at least m, and
(2) xn − 1 divides Md(x) in Q[x],

then ϕd = 0 in ZΨm,n and
Φ+
f,d ≡ Φ−f,d mod Zm,n{f}.

Proof. Lemma 2.9 implies that Q[x]/(xm+n − xm) is a free QΨm,n-module generated by x.
Hence ϕd = 0 in ZΨm,n if and only if ϕdx = 0 in Q[x]/(xm(xn − 1)). Since

ϕdx =
∑
e|d

µ(e)[d/e]x =
∑
e|d

µ(e)xd/e = dMd(x),

ϕd = 0 in ZΨm,n if and only if xm and xn− 1 both divide Md(x). Since µ(e) = 0 when e is not
squarefree, the exponent of the largest power of x dividing Md(x) is the cocore of d. Therefore
(1) and (2) imply that ϕd = 0 in ZΨm,n.

If ϕd = 0 in ZΨm,n, then ϕ+
d ≡ ϕ−d [mod m+ n = m] and, by Lemma 2.7,

Φ+
f,d = ([f ]− [1])ϕ

+
d ≡ ([f ]− [1])ϕ

−
d = Φ−f,d mod Zm,n{f}. �

2.4. Dynatomic polynomials are generically squarefree. We step aside from the theory de-
veloped in the previous sections to prove a dynamical lemma.

Lemma 2.13. Let K be a field and let f(x) be the generic degree k ≥ 2 polynomial over K,

f(x) = akx
k + ak−1x

k−1 + . . .+ a1x+ a0 ∈ K(a0, a1, . . . , ak)[x].

Then for any m,n ∈ N such that n ≥ 1, fm+n(x)− fm(x) has non-vanishing discriminant.

Proof. It suffices to prove the claim after specializing some subset of the coefficients of f . We
consider two specializations depending the characteristic p ≥ 0 of K.

First, suppose that p - k. Morton [6, Lemma 2] shows that for ft(x) := xk+t, the polynomial
fnt (x)−x is separable overK(t) for all n ≥ 1, and, using similar techniques, the same is shown
in [2, Lemma 4.2] for fm+n

t (x)− fmt (x) with m ≥ 0 and n ≥ 1.
Now suppose that p | k, and consider the polynomial ft(x) := xk + tx ∈ K(t)[x]. Then

f ′t(x) = t, hence (f `t )
′(x) = t` for all ` ≥ 1 by the chain rule. This implies that the polynomial

fm+n
t (x)− fmt (x) has derivative tm+n − tm, a nonzero constant in K(t). Since its derivative is

nowhere vanishing, the polynomial fm+n
t (x)−fmt (x) is separable for allm ≥ 0 and n ≥ 1. �

Remark 2.14.
(1) In characteristic 0, Lemma 2.13 predates [6]. Indeed, for a ∈ C and fa(x) = xk + a,

the polynomial fm+n
a (x) − fma (x) has a multiple root if and only if either fa has fewer

than kn points of period dividing n, or m ≥ 1 and the critical point 0 is a root of
fm+n
a (x) − fma (x). The set of such a ∈ C is contained in the degree-k “Multibrot

set” Mk, which is a compact subset of C, hence one can further specialize ft to any
a ∈ C \Mk. See also [3]—especially [3, §3]—for related results.

(2) In [2, Lemma 4.2], which we refer to in the proof of Lemma 2.13, it was assumed
that K is a finite field, since that was the only case for which the result was needed.
However, the proof that fm+n

t (x)− fmt (x) is separable over K(t) only requires that the
characteristic of K does not divide k.
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Definition 2.15. If f(x) ∈ K[x] is a polynomial, then the nth dynatomic polynomial Φf,n(x) ∈
K[x] for n ≥ 1 is defined by the product

Φf,n(x) :=
∏
j|n

(fn/j(x)− x)µ(j).

Ifm ≥ 0, then the (m,n)th generalized dynatomic polynomial Φf,m,n(x) is defined by Φf,0,n(x) :=
Φf,n(x) and for m ≥ 1,

Φf,m,n(x) :=
Φf,n(fm(x))

Φf,n(fm−1(x))
.

Despite their appearance, dynatomic polynomials are indeed polynomials and not just ratio-
nal functions, as was first proven by Morton and Patel [7]. See Silverman [12, Sec. 4.1] for a
general introduction to dynatomic polynomials and [12, Thm. 4.5] for a proof that Φf,d(x) is
a polynomial (and not just a rational function as is apparent from the defining product). As a
special case of Hutz [4, Thm. 1] we get that Φf,m,n(x) is a polynomial; we may also deduce
this quickly from Lemma 2.13.

The following factorization of fm+n(x) − fm(x) is well-known and is often used without
proof. We prove it here for the reader’s convenience.

Lemma 2.16. Let f(x) ∈ K[x] be a polynomial of degree at least 2, then

fm+n(x)− fm(x) =
∏
i≤m
j|n

Φf,i,j(x).

Proof. Recall that the definition of the dynatomic polynomials is equivalent to

fn(x)− x =
∏
j|n

Φf,j(x), (2.1)

by Möbius inversion. Pre-composing both sides with fm(x) and using the telescoping product
identity

Φf,j(f
m(x)) =

Φf,j(f
m(x))

Φf,j(fm−1(x))

Φf,j(f
m−1(x))

Φf,j(fm−2(x))
· · · Φf,j(f(x))

Φf,j(x)
Φf,j(x) =

∏
i≤m

Φf,i,j(x),

gives us the desired factorization of fm+n(x)− fm(x). �

Together Lemma 2.13 and Lemma 2.16 imply that the generic generalized dynatomic poly-
nomial Φf,m,n(x) is also squarefree.

2.5. Composition algebras. Next we introduce the notion of an algebra for a composition
ring.

Definition 2.17. Let C be a composition ring. A C-composition algebra is a commutative ring
R together with an operation ◦ : R× C → R such that for all r ∈ R and g, h ∈ C we have

(1) r ◦ (g ◦ h) = (r ◦ g) ◦ h,
(2) r ◦ (g + h) = (r ◦ g) + (r ◦ h),
(3) r ◦ (g · h) = (r ◦ g) · (r ◦ h), and
(4) r ◦ x = r,

where x is the compositional identity in C.
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Suppose that a monoid S acts (on the right) by ring endomorphisms on a commutative ring
R. If r ∈ R and s ∈ S, then we denote this action by rs. By construction there is a unique way
to extend this action to a Z{S}-composition algebra structure on R so that

r ◦ [s] = rs

for all r ∈ R and s ∈ S.
Let K be a field. The polynomial ring K[x] is the free K-algebra on one generator. This

implies that for any element f in a K-algebra R, there is a unique map of K-algebras σf :
K[x] → R such that σf (x) = f . In particular, for each polynomial f(x) ∈ K[x] there is a
K-algebra endomorphism σf : K[x]→ K[x] such that g(x)σf := g(f(x)) for all g(x) ∈ K[x].
Thus K[x] carries a K{f}-composition algebra structure where K{f} := K ⊗ Z{f} and
g(x) ◦ f := g(f(x)).

Example 2.18. We demonstrate these notions with a simple explicit example: If g(x) ∈ K[x],
then

g(x) ◦ ([f 5]− [1])([f 3]− [1]) = (g(f 5(x))− g(x))(g(f 3(x))− g(x)).

Definition 2.19. A polynomial q(x) ∈ K[x] is f -stable for f(x) ∈ K[x] if q(x) divides q(f(x)).

If q(x) is f -stable, then the endomorphism σf : K[x]→ K[x] descends to an endomorphism
of the quotient K[x]/(q(x)). Note that if q(x) is squarefree, then q(x) divides q(f(x)) if and
only if f maps the roots of q(x) into themselves. More generally, let vα(q(x)) denote the
valuation of q(x) at x − α, then q(x) is f -stable if and only if vf(α)(q(x)) ≥ vα(q(x)) for all
roots α of q.

Lemma 2.20. Let f(x) ∈ K[x] be a polynomial and let m,n ∈ N such that n ≥ 1. Then
fm+n(x)− fm(x) is f -stable

Proof. First suppose f(x) = akx
k + ak−1x

k−1 + . . . + a1x + a0 ∈ K(a0, a1, . . . , ak)[x] is the
generic degree-k polynomial over K. Lemma 2.13 implies that fm+n(x)−fm(x) is squarefree.
The roots of fm+n(x)− fm(x) are f -preperiodic hence closed under iteration by f . Therefore
fm+n(x)− fm(x) is f -stable. Stability is preserved under specialization. �

Lemma 2.20 implies that K[x]/(fm+n(x)− fm(x)) inherits a Z{f}-composition ring struc-
ture from K[x]. Furthermore, since g(fm+n(x)) ≡ g(fm(x)) mod (fm+n(x) − fm(x)) for
all polynomials g(x), the action of Z{f} factors through Zm,n{f}. This is summarized in the
following lemma.

Lemma 2.21. Let f(x) ∈ K[x], and let the composition ring Z{f} act on K[x] by g(x) ◦ f :=
g(f(x)). If α, β ∈ Z{f} are elements such that α ≡ β mod Zm,n{f}, then for all g(x) ∈ K[x],

g(x) ◦ α ≡ g(x) ◦ β mod (fm+n(x)− fm(x)).

3. RESULTS

With everything in place, we now prove the main result.

Theorem 3.1. Let K be a field, let f(x) ∈ K[x] be a polynomial of degree at least 2, and let
c, d,m, n be integers with c,m ≥ 0 and d, n ≥ 1. Suppose that

(1) either m > c or n - d,
(2) the cocore of d is at least m−max(c− 1, 0), and
(3) xn − 1 divides the dth necklace polynomial Md(x) in Q[x].
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Then Φf,m,n(x) divides Φf,c,d(x)− 1.
Alternatively, if d > 1, c− 1 ≥ m, and n = 1, then Φf,m,n(x) divides Φf,c,d(x)− 1.

Proof of Theorem 3.1. It suffices to prove the result for f(x) ∈ K(a0, a1, . . . , ak)[x] the generic
degree k ≥ 2 polynomial over K. Suppose (1), (2), and (3) hold. We first prove the result
assuming c = 0. Assumptions (2) and (3) imply that Φ+

f,d ≡ Φ−f,d mod Zm,n{f} by Proposition
2.12. If Φ±f,d(x) := x ◦ Φ±f,d, then by Lemma 2.21,

Φ+
f,d(x) ≡ Φ−f,d(x) mod (fm+n(x)− fm(x)). (3.1)

If α ∈ K(a0, a1, . . . , ak) is a root of Φf,m,n(x), then Lemma 2.16 and (3.1) imply that

Φ+
f,d(α) = Φ−f,d(α).

If m > 0 or n - d, then f e(α) − α 6= 0 for any e | d by Lemma 2.13 and Lemma 2.16; hence
Φ±f,d(α) 6= 0. Observe that

Φ+
f,d(x)

Φ−f,d(x)
= x ◦ ([f ]− [1])ϕ

+
d −ϕ

−
d

= x ◦ ([f ]− [1])
∑

e|d µ(e)[d/e]

=
∏
e|d

(fd/e(x)− x)µ(e)

= Φf,d(x).

Thus Φf,d(α) = 1. Since this holds for all roots α and Φf,m,n(x) is squarefree by Lemma 2.13,
we conclude that Φf,m,n(x) divides Φf,d(x)− 1.

Next suppose c > 0 and that the cocore of d is at leastm−c+1. The above argument implies
that Φf,m−c+1,n(x) and Φf,m−c,n(x) divide Φf,d(x)− 1. If α is a root of Φf,m,n(x), then f c−i(α)
is a root of Φf,m−c+i,n(x). Hence Φf,d(f

c(α)) = Φf,d(f
c−1(α)) = 1 and

Φf,c,d(α) =
Φf,d(f

c(α))

Φf,d(f c−1(α))
=

1

1
= 1.

Thus Φf,m,n(x) divides Φf,c,d(x)− 1 by Lemma 2.13.
Finally assume that d > 1, c− 1 ≥ m, and n = 1. If α is a root of Φm,1(x), then c− 1 ≥ m

implies that β := f c(α) = f c−1(α). Furthermore, since d > 1 and f(x) is generic, Φf,d(β) 6= 0.
Hence

Φf,c,d(α) =
Φf,d(f

c(α))

Φf,d(f c−1(α))
=

Φf,d(β)

Φf,d(β)
= 1.

This identity holds for all α and Φf,m,1(x) is squarefree by Lemma 2.13, therefore Φf,m,n(x)
divides Φf,c,d(x)− 1. �

Example 3.2. We show that condition (1) from Theorem 3.1 is generically necessary, in the
sense that if f(x) = akx

k + · · ·+ a1x+ a0 ∈ K(a0, a1 . . . , ak)[x] is the generic polynomial of
degree k, and if n, d ≥ 1 are integers satisfying n | d, then Φf,0,n(x) = Φf,n(x) does not divide
Φf,d(x)− 1. If n = d, this is immediate so we assume that n < d.

Consider the polynomial f(x) := xk + a ∈ K(a)[x], where a is an indeterminate. If the
characteristic of K does not divide k, then Theorem 2.2, Corollary 3.3, and Proposition 3.4 of
[9] combine to show that the resultant Res(Φf,n(x),Φf,d(x)) with respect to x is a nonconstant
polynomial in K[a]. Thus there exists a0 ∈ K such that, for the polynomial f0(x) := xk + a0,
the dynatomic polynomials Φf0,n(x) and Φf0,d(x) have a common root x0. (Over C, these values
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of c0 are roots of hyperbolic components of the degree-k multibrot set.) It follows that Φf0,n(x)
cannot divide Φf0,d(x)− 1, therefore this divisibility relation cannot hold generically.

Next suppose that the characteristic of K divides k. Let ζ ∈ K be a root of Φd(x), let
f(x) := xk + ζx, and let α be any root of Φf,n(x). Since f ′(x) = ζ , the period-n mul-
tiplier of α is (fn)′(α) = ζn, a root of Φd/n(x). It then follows from [9, Thm. 2.2] that
Res(Φf,n(x),Φf,d(x)) = 0. Therefore Φf,n(x) and Φf,d(x) have a common root, whence
Φf,n(x) does not generically divide Φf,d(x)− 1.

Example 3.3. Condition (1) in Theorem 3.1 is sufficient to guarantee that Φ±f,d(α) 6= 0 for any
root α of Φf,m,n(x). If (1) fails to hold, deciding whether or not Φf,m,n(x) divides Φf,d(x) − 1
is more subtle.

Consider the quadratic polynomial family fa(x) = x2 + a. One may verify computationally
that Φfa,6(x)− 1 factors over the function field Q(a) as

Φfa,6(x)− 1 = ha(x)Φfa,1,2(x)Φfa,1,1(x)

where ha(x) is a degree 50 irreducible non-dynatomic polynomial with coefficients in Q(a).
The cocore of d = 6 is 1 and

M6(x) = 1
6
(x6 − x3 − x2 + x) = 1

6
(x4 + x2 − x)(x2 − 1),

hence conditions (2) and (3) of Theorem 3.1 hold for m = 0 and n = 2, and yet Φfa,2(x) does
not generically divide Φfa,6(x) − 1. On the other hand, if a = −1 or a = −5/4, then one may
check that Φfa,0,2(x) does divide Φf,6(x)− 1.

If m = 0 and n = 1, then condition (1) of Theorem 3.1 is never satisfied. However, the
following Proposition shows that in certain cases the conclusion of Theorem 3.1 still holds.

Proposition 3.4. Let f(x) ∈ K[x] be a polynomial with fixed point α ∈ K, let λ := f ′(α) be
the multiplier of α, and let d ≥ 2 be an integer, then

Φf,d(α) = Φd(λ).

Moreover, if λ = 0 or if

(1) λ is a primitive nth root of unity,
(2) n is coprime to d, and
(3) xn − 1 divides Md(x),

then Φf,d(α) = 1.

Note that Φf,d(α) is the dth dynatomic polynomial of f(x) evaluated at a fixed point α and
Φd(λ) is the dth cyclotomic polynomial evaluated at the multiplier λ of α.

Proof. Since (fk)′(α) = λk,

fk(x)− x ≡ (λk − 1)(x− α) mod (x− α)2.

First suppose that λ is not a dth root of unity. Then the (x − α)-adic valuation of f e(x) − x is
one for each e | d. Thus

Φf,d(x) =
∏
e|d

(f e(x)− x)µ(d/e) =
∏
e|d

(
f e(x)− x
x− α

)µ(d/e)

,
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where the second equality uses the fact that
∑

e|d µ(d/e) = 0 for any d ≥ 2. Evaluating at
x = α gives

Φf,d(α) =
∏
e|d

(λe − 1)µ(d/e) = Φd(λ).

Fix a degree k and consider the affine algebraic variety

Vk := {(f, α) : deg(f) ≤ k and α is a fixed point of f}.
The identity Φf,d(α) = Φd(f

′(α)) holds on the Zariski open subset of all pairs (f, α) for which
the multiplier λ = f ′(α) is not a dth root of unity, hence it must hold on all of Vk.

If λ = 0, then d ≥ 2 implies that Φd(0) = 1, hence Φf,d(α) = 1. Our assumption that n
is coprime to d and that xn − 1 divides Md(x) implies, by Theorem 3.12, that Ûn ⊆

⋃
p|dHp.

Therefore 1 = Φd(λ) = Φf,d(α) by [5, Thm. 1.1]. �

Remark 3.5. The identity proved in Proposition 3.4 is implicit in the proof of Theorem 2.2 of
Morton and Vivaldi [9]; see the paragraph starting with display line (2.3). Hyde [5, Thm. 1.8(2)]
characterizes the pairs (n, d) for which d - n and Φd(ζn) = 1. Using this characterization and
Proposition 3.4 one may construct special dynamical unit relations from fixed points α with
λ = ζn which do not hold universally.

For example, one may check that Φ231(ζ12) = 1 and x12 − 1 does not divide M231(x). It is
not generally the case that Φf,231(α) = 1 for fixed points α, but this identity does hold if the
multiplier of α is a primitive 12th root of unity (e.g. f(x) = x2 + ζ12x with α = 0.)

3.1. Dynamical necklace polynomials. The composition ring Z{f} also carries an additive
Ψ-module structure where the natural action [m] · [f ] := [fm] is extended linearly. With re-
spect to this structure we may define dynamical necklace polynomials Mf,d(x) analogous to the
necklace polynomials Md(x),

Mf,d(x) :=
1

d

∑
e|d

µ(e)fd/e(x) = (x/d) ◦ ϕd[f ].

We are unaware of any natural interpretation, dynamical or otherwise, of the dynamical necklace
polynomials Mf,d(x). Nevertheless, the methods developed in the previous sections allow us to
easily prove the following analog of Theorem 3.1.

Proposition 3.6. Let K be a field and let f(x) ∈ K[x] be a polynomial. If
(1) the cocore of d is at least m, and
(2) xn − 1 divides the dth necklace polynomial Md(x) in Q[x],

then fm+n(x)− fm(x) divides Mf,d(x).

Proof. Proposition 2.12 and assumptions (2), (3) imply that ϕd = 0 mod ZΨm,n. Thus ϕdα ≡
0 mod Zm,n{f} for any α ∈ Z{f} by an additive version of Lemma 2.7. Hence by Lemma
2.21,

Mf,d(x) = (x/d) ◦ ϕd[f ] ≡ (x/d) ◦ 0 mod (fm+n(x)− fm(x)).

Note that for r ∈ R an element of any composition algebra,

r ◦ 0 = r ◦ (0 + 0) = (r ◦ 0) + (r ◦ 0),

hence r ◦ 0 = 0. Thus
Mf,d(x) ≡ 0 mod (fm+n(x)− fm(x)),

which is to say that fm+n(x)− fm(x) divides Mf,d(x). �
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3.2. Dynamical units. Theorem 3.1 has implications for the construction of dynamical units.
Inspired by the theory of cyclotomic and elliptic units, Narkiewicz [10] and later Morton and
Silverman [8] initiated the study of dynamical units: algebraic units constructed in one of sev-
eral closely related ways from differences of preperiodic points of a rational map of the projec-
tive line. The inspiration comes from the fact that, in the dictionary between dynamical height
and the usual Weil height on the torus Gm(Q), the preperiodic points play the same role as that
of roots of unity, so the fields generated by these points are naturally thought of as dynatomic
fields in analogy with the classical theory of cyclotomic fields. We refer the reader to [12,
Section 3.11] for further background on dynamical units.

Some families of dynamical units are known. Let K be a number field with ring of integers
OK . Narkiewicz ([10], cf. [8, Thm. 6.3(a)]) proved that if f ∈ OK [x] is a monic polynomial of
degree at least 2, α ∈ K is a root of Φf,n(x) for some n ≥ 2, and i, j ≥ 0 are integers such that
gcd(i− j, n) = 1, then

f i(α)− f j(α)

f(α)− α
∈ O×K

is a dynamical unit. If ζ = ζpm denotes a primitive prime power order root of unity, then the
reader will note the similarity to cyclotomic units in the maximal totally real subfield Q(ζ)tr of
Q(ζ) given by

ζ(1−a)/2 1− ζa

1− ζ
, where 1 < a < pm/2 and gcd(a, p) = 1.

It is known that units of this form, together with −1, generate the unit group of Q(ζ)tr, and that
this group has finite index in the unit group of Q(ζ).

Morton and Silverman proved in [8, Thm. 6.3(b)] (see also [8, Prop. 7.4] for a formulation
which is closer to our result) that if f(x) ∈ OK [x] is monic of degree at least 2, and α, β ∈ K
are points of strict period m and n respectively, where m,n ∈ N satisfy m - n and n - m, then
in fact

α− β ∈ O×K
is a dynamical unit. Under the same assumptions on f(x), Benedetto proved that if m ≥ 1 and
α is a root of Φf,m,n(x) and β is a root of Φf,d(x) for some n, d ≥ 1, then again, α − β ∈ O×K
(see [1, Thm. 3]). Benedetto’s result has interesting implications. For example, if {α1, . . . , αn}
is an n-cycle for f(x) = x2 + c, that is, if f(α1) = α2, f(α2) = α3, . . . , f(αn) = α1, then
Benedetto shows [1, Theorem 1] that

n∏
i=1

(f(αi) + αi) = 1,

and in particular, that f(α) + α is a dynamical unit. This result is particularly remarkable
as, from a dynamical perspective, one would not expect the sum of points to be related to the
dynamics of a quadratic map. For a more recent result involving quadratic forms and dynamical
units for rational maps, we also refer the reader to the work of Panraksa and Washington [11].

Theorem 3.1 allows us to deduce similar results about dynamical units, extending the results
of Morton-Silverman and Benedetto. Note that if f ∈ OK [x] is monic, then Φf,m,n(x) ∈ OK [x]
is monic as well, and so our preperiodic points are algebraic integers. It follows that if Φf,m,n(x)
divides Φf,d(x)− 1, then for each root α ∈ K of Φf,m,n(x),

1 = Φf,d(α) =
∏
β

(α− β), (3.2)
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where the product ranges over all the roots β of Φf,d(x) with multiplicity. Since α, β are alge-
braic integers, (3.2) implies that the differences α− β are dynamical units. If the conditions of
Theorem 3.1 are satisfied for m,n, d, then (3.2) holds for all f(x) with degree at least 2. We
view these as universal relations for dynamical units. In the case where the conditions of The-
orem 3.1 are met with m = 0 and n - d, we recover the result of Morton and Silverman quoted
above. However, our result also applies in cases where the results of Morton and Silverman,
and those of Benedetto, do not apply.

Example 3.7. If (m,n, c, d) = (1, 2, 1, 3), then the conditions of Theorem 3.1 hold. Suppose
that K is a number field, f(x) ∈ OK [x] is a monic polynomial of degree at least 2. If α, β ∈ K
are roots of Φf,1,2(x) and Φf,1,3(x), respectively, then α − β is a dynamical unit. This class
of dynamical units is new; the results of Morton-Silverman and Benedetto for differences of
preperiodic points both required at least one of the points to be purely periodic, while both
points here are strictly preperiodic.

Morton and Silverman [8, Prop. 7.4(b)] prove that if all the prime factors of d > 1 are
congruent to 1 mod n, then Φf,n(x) divides Φf,d(x)− 1. This is a special case of Corollary 3.8.

Corollary 3.8. Let d > 1 and n ≥ 1 be integers such that n - d and suppose that d is divisible
by some prime p ≡ 1 mod n. Then Φf,n(x) divides Φf,d(x)− 1.

Proof. Recall that if d =
∏

p p
kp is the prime factorization of d, then ϕd factors as

ϕd =
∏
p

[pkp−1]([p]− [1]).

Thus if p ≡ 1 mod n, then ϕd ≡ 0 [mod n]. The proof of Proposition 2.12 shows that this
is equivalent to xn − 1 dividing Md(x). Conditions (1) and (2) of Theorem 3.1 are trivially
satisfied since m, c = 0, hence Theorem 3.1 implies that Φf,n(x) divides Φf,d(x)− 1. �

Note that if all the primes dividing d are 1 mod n, as is assumed in [8, Prop. 7.4(b)], then
d and n are coprime, hence n - d. Thus the Morton-Silverman result follows. In terms of
hyperplanes covering the group of Dirichlet characters (see Section 3.3), the case p ≡ 1 mod n

for some prime p | d corresponds to the situation whereHp = Ûn is the trivial hyperplane.
We can generalize the result of Benedetto in the following fashion:

Proposition 3.9. Suppose that K is a number field with ring of integers OK , f(x) ∈ OK [x] is
monic of degree at least 2, and β ∈ K is a root of Φf,d(x) for some d ≥ 2. Then Φf,1,1(β) is a
dynamical unit satisfying the relation ∏

β
Φf,d(β)=0

Φf,1,1(β) = 1 (3.3)

where the product is taken over the roots of Φf,d with multiplicity.

Proof. We begin by noting that if m = n = 1 and c = 0 and d ≥ 2, then the indices meet the
conditions (1)-(3) of Theorem 3.1: The first two conditions are obvious, and the third follows
from observing that

Md(1) =
1

d

∑
e|d

µ(e)1d/e = 0
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for all d ≥ 2, so (x − 1) | Md(x) in Q[x]. Thus Theorem 1.1 guarantees that Φf,1,1(x) divides
Φf,d(x)− 1. This means that if α is any root of Φf,1,1(x), then

Φf,d(α) =
∏
β

Φf,d(β)=0

(α− β) = 1 (3.4)

where the roots of β of Φf,d are counted with multiplicity. Taking the product of the identities
(3.4) as α varies over the roots of Φf,1,1(x) with multiplicity gives

Res(Φf,1,1,Φf,d) =
∏
α

Φf,1,1(α)=0

∏
β

Φf,d(β)=0

(α− β) = 1.

This resultant may also be expressed as,

Res(Φf,1,1,Φf,d) =
∏
β

Φf,d(β)=0

Φf,1,1(β) = 1

which gives us the desired result. �

To see why this generalizes Benedetto’s result, observe that when f(x) = x2 + c, one can
check that

Φf,1,1(x) =
Φf,1(f(x))

Φf,1(x)
=
f 2(x)− f(x)

f(x)− x
= f(x) + x

and we recover the result that f(α) +α is a dynamical unit, although our multiplicative identity
differs slightly from that of Benedetto, as it is a product over other points of formal period d
(that is, roots of Φf,d(x); for a review of the difference between formal and strict period, we
refer the reader to [12, §4.1]), rather than the points directly in the cycle of α. We can also
easily find further examples of this sort:

Corollary 3.10. Suppose K,OK are as above and f(x) = x2 + b1x + b0 ∈ OK [x]. Then for
any d ≥ 2, ∏

α
Φf,d(α)=0

(f(α) + α + b1) = 1, (3.5)

so f(α) + α + b1 is a dynamical unit for any α ∈ K of formal period d ≥ 2. Likewise, if
f(x) = x3 + 1 ∈ Z[x], then∏

α
Φf,d(α)=0

(1 + α + α2 + 2α3 + α4 + α6) = 1. (3.6)

Thus if α ∈ K is of formal period d ≥ 2, then 1 + α+ α2 + 2α3 + α4 + α6 is a dynamical unit.

3.3. Cyclotomic factors of necklace polynomials. As discussed in the introduction, the most
subtle condition in Theorem 3.1 is xn − 1 dividing Md(x). Theorem 3.12 gives an alternative
characterization of this divisibility in terms of hyperplane arrangements in finite abelian groups.

Definition 3.11. For n ≥ 1, let Un := (Z/(n))× denote the multiplicative group of units modulo
n and let Ûn := Hom(Un,C×) denote the group of Dirichlet characters of modulus n. If q ∈ Un,
then the hyperplaneHq ⊆ Ûn is the set

Hq := {χ ∈ Ûn : χ(q) = 1}.
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Theorem 3.12. Let d, n ≥ 1. Then xn − 1 divides Md(x) if and only if

Ûn ⊆
⋃
p|d
p-n

Hp.

Proof. As we argued in the proof of Proposition 2.12, Lemma 2.9 implies that ϕd ≡ 0 [mod n]

if and only if ϕdx/d = Md(x) is divisible by xn − 1. Let d̃ be the largest factor of d coprime
to n. The group ring Q[Un] naturally embeds into QΨ0,n as the Q-span of [q] for q ∈ Un, and
ϕd̃ ∈ Q[Un] ⊆ QΨ0,n. Observe that

ϕd̃ =
∑
e|d̃

µ(e)[d̃/e] = [d̃]
∏
p|d̃

(1− [p]−1) ∈ Q[Un],

where the product is taken over all primes p dividing d̃. Recall that each character χ ∈ Ûn
extends to a ring homomorphism χ : Q[Un]→ C. Thus if χ ∈ Ûn, then

χ(ϕd̃) = χ(d̃)
∏
p|d̃

(1− χ(p)).

If χi ∈ Ûn for 1 ≤ i ≤ ϕ(n) are the distinct characters of Un, then the map

α ∈ Q[Un] 7−→ (χ1(α), χ2(α), . . . , χϕ(n)(α)) ∈ Cϕ(n)

is an embedding of rings. Hence α = 0 in Q[Un] if and only if χi(α) = 0 for all χi. Thus
ϕd̃ = 0 in Q[Un] if and only if for each χ ∈ Ûn there is some prime p | d̃ such that χ(p) = 1.
This is equivalent to Ûn ⊆

⋃
p|d̃Hp =

⋃
p|d,p-nHp.

Hence if Ûn ⊆
⋃
p|d̃Hp, then

dMd(x) = ϕdx = (ϕd̃ϕd/d̃)x = ϕd̃ · (ϕd/d̃x) ≡ 0 · (ϕd/d̃x) ≡ 0 mod xn − 1.

Conversely, suppose that xn − 1 divides Md(x). Let U ⊆ Q[x]/(xn − 1) denote the Q-
subspace spanned by xj with j coprime to n, and let Sd(x) := dMd(x). Observe that

Sd(x) = ϕdx = ϕd/d̃Sd̃(x) =
∑
e|d/d̃

µ(d/d̃e)Sd̃(x
e).

Since d̃ is the largest factor of d coprime to n, it follows that each e > 1 dividing d/d̃ shares
a nontrivial common factor with n. Hence the U -component of Sd(x) is ±Sd̃(x). Hence if
Sd(x) ≡ 0 mod xn − 1, then it must be the case that Sd̃(x) ≡ 0 mod xn − 1. As argued above,
this is equivalent to Ûn ⊆

⋃
p|d̃Hp. �

Remark 3.13. Theorem 3.12 is closely related to [5, Thm. 1.13] but with a slightly different
scope. Neither result directly implies the other.

Example 3.14. The following example is adapted from [5, Ex. 2.8]. Let d = 440512358437 =

472·73·79·151·229 and let n = 65. The group Û65
∼= (Z/(65))× decomposes as Û65

∼= Z/(4)2×
Z/(3). Note that each hyperplane Hp ⊆ Û65 is a subgroup, hence factors as Hp

∼= H(4)
p ×H(3)

p

with H(4)
p ⊆ Z/(4)2 and H(3)

p ⊆ Z/(3). In this case, each of the hyperplanes Hp with p | d
is trivial in the 3-torsion H(3)

p = Z/(3). Thus it suffices to consider the 4-torsion H(4)
p of each

hyperplaneHp.
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Identifying the 4-torsion of Û65 with the additive group Z/(4)2, the group U65 := (Z/(65))×

of units modulo 65 has a compatible isomorphism ρ : U65 → 〈x, y : 4x = 4y = 0〉 with the
dual group of Z/(4)2. With respect to such an isomorphism, (the 4-torsion of) each hyperplane
Hp may be realized as the vanishing set of a homogeneous linear form, hence the hyperplane
terminology.

The units 47 and 151 generate a Z/(4)2 subgroup of U65, so we may choose coordinates ρ
such that x := ρ(47) and y := ρ(151). Then the hyperplanes Hp may be visualized as lines
in the “plane” (R/4Z)2. Each of the five distinct primes dividing d corresponds to a different
colored line in the diagram below. For example, since 229 ≡ 472 ·151−1 mod 65, the (4-torsion
of the) hyperplane H229 is the solution set of 2x − y = 0 in Z/(4)2. Figure 3 shows the linear
forms defining each line with respect to this choice of coordinates.

FIGURE 3. The lattice points in (R/4Z)2 may naturally be identified with Z/(4)2.

Since the five lines Hp with p | d cover all of Z/(4)2, it follows that Û65 ⊆
⋃
p|dHp, with

d = 440512358437. The cocore of d is 47. Hence Theorem 1.1 implies that for any polynomial
f(x) ∈ K[x] with degree at least 2 and any m ≤ 47,

Φf,m,65(x) divides Φf,440512358437(x)− 1.

By drawing other arrangements of lines covering Z/(4)2 and finding primes in the corre-
sponding congruence classes modulo 65 (which must exist by Dirichlet’s theorem on primes
in arithmetic progressions) we may construct several other nontrivial examples of d for which
Û65 ⊆

⋃
p|dHp. Three examples are given in Figure 4.

Values of d corresponding to the three arrangements in Figure 4 are, respectively,

d1 = 157 · 181 · 337 · 389

d2 = 79 · 181 · 389

d3 = 47 · 109 · 151 · 157 · 317 · 337.

Each of these di are squarefree and coprime to 65, so it follows that

Φf,m,65(x) divides Φf,di(x)− 1

for each m = 0, 1 and each di.
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FIGURE 4.
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