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Abstract. Building on work of Dubickas and Smyth regarding the metric

Mahler measure and the authors regarding extremal norms associated to the
Mahler measure, the authors introduce a new set of norms associated to the

Mahler measure of algebraic numbers which allow for an equivalent reformula-

tion of problems like the Lehmer problem and the Schinzel-Zassenhaus conjec-
ture on a single spectrum. We present several new geometric results regarding

the space of algebraic numbers modulo torsion using the Lp Weil height in-

troduced by Allcock and Vaaler, including an canonical decomposition of an
algebraic number into an orthogonal series with respect to the L2 height.
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1. Introduction

Let K be a number field with set of places MK . For each v ∈ MK lying over a
rational prime p, let ‖ · ‖v be the absolute value on K extending the usual p-adic
absolute value on Q if v is finite or the usual archimedean absolute value if v is
infinite. Then for α ∈ K×, the absolute logarithmic Weil height h is given by

h(α) =
∑
v∈MK

[Kv : Qv]
[K : Q]

log+ ‖α‖v

where log+ t = max{0, log t}. As the expression on the right hand side of this
equation does not depend on the choice of field K containing α, h is a well-defined

function mapping Q× → [0,∞) which vanishes precisely on the roots of unity

Tor(Q×). Closely related to the Weil height is the logarithmic Mahler measure,
given by

m(α) = (degα) · h(α)

where degα = [Q(α) : Q]. Though seemingly related to the Weil height in a simple
fashion, the Mahler measure is in fact a fair bit more mysterious. Perhaps the most
important open question regarding the Mahler measure is Lehmer’s problem, which
asks if there exists an absolute constant c such that

(1.1) m(α) ≥ c > 0 for all α ∈ Q× \ Tor(Q×).

The question of the existence of algebraic numbers with small Mahler measure was
first posed in 1933 by D.H. Lehmer [8] and since then the conjectured existence
of an absolute lower bound away from zero has come to be known as Lehmer’s
conjecture. The current best known lower bound, due to Dobrowolski [3], is of the
form

m(α)�
(

log log degα

log degα

)3

for all α ∈ Q× \ Tor(Q×)

where the implied constant is absolute.
Recently, Allcock and Vaaler [1] observed that the absolute logarithmic Weil

height h : Q× → [0,∞) can in fact be viewed in an equivalent fashion as the L1

norm on a certain measure space (Y, λ). The points of Y are the places of Q endowed
with a topology which makes Y a totally disconnected locally compact Hausdorff
space, and each equivalence class of the algebraic numbers modulo torsion gives
rise to a unique locally constant real-valued function on Y with compact support.
The purpose of this paper is to construct analogous function space norms in order
to study the Mahler measure. Once we have introduced our new norms, we will
give a general Lp formulation of the Lehmer conjecture which is equivalent to the
classical Lehmer conjecture for p = 1 and to the Schinzel-Zassenhaus conjecture [9]
for p =∞.

We first briefly recall here the notation of [1], which we will use throughout this

paper. To each equivalence class α in Q×/Tor(Q×), we can uniquely associate the
function fα : Y → R given by

fα(y) = log ‖α‖y.

(We will often drop the subscript α when convenient.) We denote the space of
functions given by algebraic numbers modulo torsion by F . If α ∈ K, then the
function fα(y) is constant on the sets Y (K, v) = {y ∈ Y : y|v} for v ∈ MK and
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takes the value log ‖α‖v. The measure λ is constructed so that it assigns measure
[Kv : Qv]/[K : Q] to the set Y (K, v), so that if α ∈ K× for some number field K,
we have

‖fα‖1 =

∫
Y

|fα(y)| dλ(y) =
∑
v∈MK

| log ‖α‖v|
[Kv : Qv]
[K : Q]

= 2h(α).

The product formula takes the form
∫
Y
fα dλ = 0. We also have a well-defined inner

product on F given by

〈f, g〉 =

∫
Y

f(y)g(y) dλ(y)

which satisfies ‖f‖2 = 〈f, f〉1/2. The geometry of the space F will play a significant
role in our study.

The study of the Mahler measure on the vector space of algebraic numbers
modulo torsion F presents several difficulties absent for the Weil height, the first of
which is that m, unlike h, is not well-defined modulo torsion. Recent attempts to
find topologically better-behaved objects related to the Mahler measure include the
introduction of the metric Mahler measure, a well-defined metric on F by Dubickas
and Smyth [5] and the introduction of the ultrametric Mahler measure by the first
author and Samuels [7]. Both metrics induce the discrete topology if (and only
if) Lehmer’s conjecture is true. Later, the authors introduced vector space norms
associated to the Mahler measure [6] which satisfied an extremal condition akin to
those in the papers of Dubickas and Smyth and of the first author and Samuels.
The norms introduced in this paper do not satisfy the same extremal condition,
however, they allow the introduction of much advantageous geometry which allows
for stronger results.

In order to construct our norms related to the Mahler measure, we first construct
an orthogonal decomposition of the space F of algebraic numbers modulo torsion.
We fix our algebraic closure Q of Q and let K denote the set of finite extensions of
Q. We let G = Gal(Q/Q) be the absolute Galois group, and let KG = {K ∈ K :
σK = K for all σ ∈ G}. Let VK denote the Q-vector space span of the functions
given by

VK = spanQ〈{fα : α ∈ K×/Tor(K×)}〉.
We first prove the following result, which gives the orthogonal decomposition by
Galois field:

Theorem 1. There exist projection operators TK : F → F for each K ∈ KG such
that TK(F) ⊂ VK , TK(F) ⊥ TL(F) for all K 6= L ∈ KG with respect to the inner
product on F , and

F =
⊕
K∈KG

TK(F).

The notation F =
⊕

K∈KG TK(F) is a direct sum in the usual Q-vector space sense,
specifically, that every element of the Q-vector space F is uniquely expressible as
a finite sum of elements from the Q-vector spaces TK(F) as K ranges over the set
KG. The term projection means an idempotent linear operator which is continuous
(here, with respect to the Lp norm for any 1 ≤ p ≤ ∞). It is of note in this
theorem that our projections are defined on the underlying Q-vector space F (as
well as extending by continuity to each of the closures).
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In particular, it follows from Theorem 1 that the projection operators TK are
orthogonal projections with respect to the inner product on F , and thus, in the
completion with respect to the L2 norm, this gives a Hilbert space decomposition in
the usual sense of a Hilbert space direct sum (in which each element of the Hilbert
space has a unique expansion as a series of vectors, one from each summand). A
decomposition by Galois field alone, however, does not give enough information
about the degree of a specific number in order to bound the Mahler measure of the
number (and further, as we will see in Remark 2.21, a canonical decomposition along
the entire collection of number fields is not possible because of linear dependence
between conjugate fields). We therefore define the vector subspace

V (n) =
∑
K∈K

[K:Q]≤n

VK

(where the sum indicates a usual sum of Q-vector spaces) and determine the fol-
lowing decomposition:

Theorem 2. There exist projections T (n) : F → F for each n ∈ N such that
T (n)(F) ⊂ V (n), T (m)(F) ⊥ T (n)(F) for all m 6= n, and

F =

∞⊕
n=1

T (n)(F).

These decompositions are independent of each other in the following sense:

Theorem 3. The projections TK and T (n) commute with each other for each K ∈
KG and n ∈ N.

In particular, as a result of commutativity, we can form projections T
(n)
K = TKT

(n)

and so we have an orthogonal decomposition

F =

∞⊕
n=1

⊕
K∈KG

T
(n)
K (F).

Again, when we pass to the completion in the L2 norm, the projections extend by
continuity and the above decomposition extends to the respective closures and the
direct sum becomes a direct sum in the usual Hilbert space sense.

As a simple example of how natural this orthogonal decomposition is, we note
that the 2-height of α = 2 +

√
2 can be decomposed as:

‖f2+√2‖
2
2 = ‖f√2‖

2
2 + ‖f1+√2‖

2
2

as the numbers
√

2 and 1 +
√

2 will be seen to be orthogonal to each other. We
refer the reader to Example 2.20 below for more details.

This geometric structure within the algebraic numbers allows us to define linear
operators, for all Lp norms with 1 ≤ p ≤ ∞, which capture the contribution of the
degree to the Mahler measure in such a way that we can define our Mahler norms.
Specifically, we define the operator

M : F → F

f 7→
∞∑
n=1

nT (n)f.
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The sum is finite for each f ∈ F . M is a well-defined, unbounded (in any Lp norm,
1 ≤ p ≤ ∞), invertible linear map defined on the incomplete vector space F . We
define the Mahler p-norm on F for 1 ≤ p ≤ ∞ to be

‖f‖m,p = ‖Mf‖p
where ‖ · ‖p denotes the usual Lp norm on the incomplete vector space F . The
Mahler p-norm is, in fact, a well-defined vector space norm on F , and hence the
completion Fm,p with respect to ‖ · ‖m,p is a Banach space.

In order to see that these norms form a suitable generalization of the Mahler
measure of algebraic numbers, we will show that the Lehmer conjecture can be
reformulated in terms of these norms. First, let us address what form the Lehmer

conjecture takes inside F . For any α ∈ Q×, let hp(α) = ‖fα‖p. (Recall that
h1(α) = 2h(α).)

Conjecture 1 (Lp Lehmer conjectures). For 1 ≤ p ≤ ∞, there exists an absolute
constant cp such that the Lp Mahler measure satisfies the following equation:

(∗p) mp(α) = (degα) · hp(α) ≥ cp > 0 for all α ∈ Q× \ Tor(Q×).

From the fact that h1(α) = 2h(α) it is clear that when p = 1 this statement is
equivalent to the Lehmer conjecture. For p = ∞, we will show in Proposition 4.6
below that the statement is equivalent to the Schinzel-Zassenhaus conjecture.

In order to translate the Lehmer conjecture into a bound on function space
norms which, unlike the metric Mahler measure, cannot possibly be discrete, it
is necessary to reduce the Lehmer problem to a sufficiently small set of numbers
which we can expect to be bounded away from zero in norm. This requires the
introduction in Section 3 of two classes of algebraic numbers modulo torsion in F ,
the representable elements R and the projection irreducible elements P. Let U ⊂ F
denote the subspace of algebraic units. We prove the following theorem:

Theorem 4. For each 1 ≤ p ≤ ∞, equation (∗p) holds if and only if

(∗∗p) ‖f‖m,p ≥ cp > 0 for all 0 6= f ∈ R ∩ P ∩ U
where R denotes the set of representable elements, P the set of projection irreducible
elements, and U the subspace of algebraic units. Further, for 1 ≤ p ≤ q ≤ ∞, if
(∗∗p) holds then (∗∗q) holds as well.

The last statement of the theorem, which is proven by reducing to a place of measure
1 and applying the usual inequality for the Lp and Lq norms on a probability space,
generalizes the well-known fact that Lehmer’s conjecture implies the conjecture of
Schinzel-Zassenhaus.

Let Um,p denote the Banach space which is the completion of the vector space
U of units with respect to the Mahler p-norm ‖ · ‖m,p. The set R ∩ P ∩ U has
another useful property which we will prove, namely, that the additive subgroup it
generates contains a subgroup Γ = Γp,

Γ ≤ 〈R ∩ P ∩ U〉,
which is also a set of equivalence for the Lehmer conjecture, that is, we will show
that the Lp Lehmer conjecture (∗p) is equivalent to the condition that Γ be a
discrete subgroup in Um,p. Specifically, we prove:

Theorem 5. Equation (∗p) holds if and only if the additive subgroup Γ ⊂ Um,p is
closed.
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This leads us to a new conjecture, equivalent to (∗p) for each 1 ≤ p ≤ ∞:

Conjecture 2. The additive subgroup Γ ⊂ Um,p is closed for each 1 ≤ p ≤ ∞.

Lastly, the presence of orthogonal decompositions raises a particular interest in
the study of the L2 norm. In this case, the norm associated to the Mahler measure
has a particularly simple form which is in sympathy with the geometry of L2.

Theorem 6. The Mahler 2-norm satisfies

‖f‖2m,2 =

∞∑
n=1

n2 ‖T (n)(f)‖22 =
∑
K∈KG

∞∑
n=1

n2 ‖T (n)
K (f)‖22.

Further, the Mahler 2-norm arises from the inner product

〈f, g〉m = 〈Mf,Mg〉 =

∞∑
n=1

n2 〈T (n)f, T (n)g〉 =
∑
K∈KG

∞∑
n=1

n2 〈T (n)
K f, T

(n)
K g〉

where 〈f, g〉 =
∫
Y
fg dλ denotes the usual inner product in L2(Y ), and therefore

the completion Fm,2 of F with respect to the Mahler 2-norm is a Hilbert space.

The structure of our paper is as follows. In Section 2 we introduce the basic
operators and subspaces of our study, namely, those arising naturally from number
fields and Galois automorphisms. The proofs of Theorems 1, 2 and 3 regarding the
orthogonal decompositions of the space F with respect to Galois field and degree
will then be carried out in sections 2.4, 2.5, and 2.6. In Section 3 we prove our
results regarding the reduction of the classical Lehmer problem and introduce the
relevant classes of algebraic numbers which are essential to our theorems. Finally
in Section 4 we introduce the Mahler p-norms and prove the remaining results.

2. Orthogonal Decompositions

In this section we will develop the machinery to prove our main decomposition
theorems. First, however, we must introduce several auxiliary constructions and
results which will be needed later. We will start by introducing the basic isometries
of our space associated to Galois automorphisms in Section 2.1, then exploring
the relationships between the subspaces associated to number fields in Section 2.2
and their associated projection maps in Section 2.3. We will then prove a general
decomposition for vector spaces in Section 2.4 and apply this to obtain Theorem 1,
and finally in Sections 2.4 and 2.5 we will prove Theorems 2 and 3 respectively.

2.1. Galois isometries. Let Fp denote the completion of F with respect to the
Lp norm. By [1, Theorems 1-3],

Fp =


{f ∈ L1(Y, λ) :

∫
Y
f dλ = 0} if p = 1

Lp(Y, λ) if 1 < p <∞
C0(Y, λ) if p =∞.

We begin by introducing our first class of operators, the isometries arising from
Galois automorphisms. Let us recall how the Galois group acts on the places of an
arbitrary Galois extension K. Suppose α ∈ K, v ∈MK is a place of K, and σ ∈ G.
We define σv to be the place of K given by ‖α‖σv = ‖σ−1α‖v, or in other words,
‖σα‖v = ‖α‖σ−1v.
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Lemma 2.1. Each σ ∈ G is a measure-preserving homeomorphism of the measure
space (Y, λ).

Proof. That the map σ : Y → Y is a well-defined bijection follows from the fact
that G gives a well-defined group action. Continuity of σ and σ−1 follow from
[1, Lemma 3]. It remains to show that σ is measure-preserving, but this follows
immediately from [1, (4.6)]. �

In accordance with the action on places, we define for σ ∈ G the operator

Lσ : Fp → Fp
given by

(Lσf)(y) = f(σ−1y).

Thus for fα ∈ F , we have Lσfα = fσα, and in particular Lσ(F) ⊆ F for all σ ∈ G.
Further, by our definition of the action on places, we have LσLτ = Lστ .

Let B(Fp) denote the bounded linear maps from Fp to itself, and let I(Fp) ⊂
B(Fp) denote the subgroup of isometries of Fp. By the construction of λ, each
σ ∈ G is a measure-preserving topological homeomorphism of the space of places
Y , so it follows immediately that Lσ is an isometry for all 1 ≤ p ≤ ∞, that is,
‖Lσf‖p = ‖f‖p for all σ ∈ G. Thus we have a natural map

ρ : G→ I(Fp)
σ 7→ Lσ

where (Lσf)(y) = f(σ−1y). We will show that ρ gives an injective infinite dimen-
sional representation of the absolute Galois group (which is unitary in the case of
L2), and further, that the map ρ is continuous if G is endowed with its natural
profinite topology and I is endowed with the strong operator topology inherited
from B(Fp). (Recall that the strong operator topology, which is weaker than the
norm topology, is the weakest topology such that the evaluation maps A 7→ ‖Af‖p
are continuous for every f ∈ Lp.)

Proposition 2.2. The map ρ : G → I is injective, and it is continuous if I is
endowed with the strong operator topology and G has the usual profinite topology.

Proof. First we will observe that the image ρ(G) is discrete in the norm topology, so
that ρ is injective. To see this, fix σ 6= τ ∈ G, so that there exists some finite Galois
extension K and an element α ∈ K× such that σα 6= τα. By [4, Theorem 3], we
can find a rational integer n such that β = n+α is torsion-free, that is, if β/β′ 6= 1

then β/β′ 6∈ Tor(Q×) for any conjugate β′ of β, and in particular, the conjugates
of β give rise to distinct functions in F . Thus Lσfβ 6= Lτfβ , so in particular, there
exists some place v of K such that σ(Y (K, v)) 6= τ(Y (K, v)) and are therefore
disjoint sets. Choose a Galois extension L/K with distinct places w1, w2|v. Since
L/K is Galois, the local degrees agree and so λ(Y (L,w1)) = λ(Y (L,w2)) by [1,
Theorem 5]. Define

f(y) =


1 if y ∈ Y (L,w1)

−1 if y ∈ Y (L,w2)

0 otherwise.

Clearly f ∈ Fp for all 1 ≤ p ≤ ∞ and Lσf and Lτf have disjoint support. Thus,

‖(Lσ − Lτ )f‖p =
(
‖Lσf‖pp + ‖Lτf‖pp

)1/p
= 21/p‖f‖p
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(where we let 21/p = 1 when p =∞). But this implies that 1 ≤ 21/p ≤ ‖Lσ − Lτ‖
for all σ 6= τ ∈ G, and thus the image ρ(G) is discrete in the norm topology of I,
and ρ is injective.

Let us now prove continuity. Recall that a basis for the strong operator topology
on I is given by sets of the form

U = {A ∈ I : ‖(A−B)fi‖ < ε for all 1 ≤ i ≤ k}

where B ∈ I, f1, . . . , fk is a finite set of functions in Fp, and ε > 0. Fix such
an open set U for a given B = Lσ for some σ ∈ G. Approximate each fi by an
element gi ∈ F such that ‖fi−gi‖p < ε/21/p. Let VK be a subspace of F containing
g1, . . . , gk. Let

N = {τ ∈ G : σ|K = τ |K}.
Then N is an open subset of G in the profinite topology. We claim that ρ(N) ⊆ U ,
and thus that ρ is continuous. To see this, observe that for τ ∈ N ,

‖(Lτ − Lσ)fi‖p ≤ ‖(Lτ − Lσ)gi‖p + ‖(Lτ − Lσ)(fi − gi)‖p
< ‖(Lτ − Lσ)gi‖p + 21/p · ε/21/p = ε

where ‖(Lτ − Lσ)gi‖p = 0 because gi ∈ VK , and thus is locally constant on the
sets Y (K, v) for v a place of K, and τ ∈ N implies that σ and τ agree on K, so
Lτgi = Lσgi. �

2.2. Subspaces associated to number fields. We will now prove some lemmas
regarding the relationship between the spaces VK and the Galois group. As in the
introduction, let us define

K = {K/Q : [K : Q] <∞} and KG = {K ∈ K : σK = K ∀σ ∈ G}.

As we shall have occasion to use them, let us recall the combinatorial properties
of the sets K and KG partially ordered by inclusion. Recall that K and KG are
lattices, that is, partially ordered sets for which any two elements have a unique
greatest lower bound, called the meet, and a least upper bound, called the join.
Specfically, for any two fields K,L, the meet K ∧ L is given by K ∩ L and the join
K ∨L is given by KL. If K,L are Galois then both the meet (the intersection) and
the join (the compositum) are Galois as well, thus KG is a lattice as well. Both
lattices have a minimal element, namely Q, and are locally finite, that is, between
any two fixed elements we have a finite number of intermediate elements.

For each K ∈ K, let

(2.1) VK = spanQ〈{fα : α ∈ K×/Tor(K×)}〉.

Then VK is the subspace of F spanned by the functions arising from numbers of
K. Suppose we fix a class of an algebraic number modulo torsion f ∈ F . Then the
set

{K ∈ K : f ∈ VK}
forms a sublattice of K, and by the finiteness properties of K this set must contain
a unique minimal element.

Definition 2.3. For any f ∈ F , the minimal field is defined to be the minimal
element of the set {K ∈ K : f ∈ VK}. We denote the minimal field of f by Kf .

Lemma 2.4. For any f ∈ F , we have StabG(f) = Gal(Q/Kf ) ≤ G.
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Notation 2.5. By StabG(f) we mean the σ ∈ G such that Lσf = f . As this tacit
identification is convenient we shall use it throughout without further comment.

Proof. Let f = fα. Then clearly Gal(Q/Kf ) ≤ StabG(f), as α` ∈ Kf for some
` ∈ N by definition of VKf . To see the reverse containment, merely observe that

Kf = Q(α`) for some ` ∈ N, as otherwise, there would be a proper subfield of Kf

which contains a power of α, contradicting the definition of Kf . �

Remark 2.6. The minimal such exponent ` used above can in fact be uniquely as-
sociated to f ∈ F and this will be vital to the concept of representability developed
in Section 3 below.

Lemma 2.7. For a given f ∈ F , we have f ∈ VK if and only if Lσf = f for all
σ ∈ Gal(Q/K).

Proof. Necessity is obvious. To see that the condition is sufficient, observe that
by definition of Kf , we have f ∈ VK if and only Kf ⊆ K, which is equivalent

to Gal(Q/K) ≤ Gal(Q/Kf ) under the Galois correspondence. But by the above

lemma, Gal(Q/Kf ) = StabG(f). �

Proposition 2.8. If E,F ∈ K, then we have E = F if and only if VE = VF .

Proof. Suppose E 6= F but VE = VF . Let E = Q(α). By [4, Theorem 3] we can
find a rational integer n such that β = n + α is torsion-free, that is, if β/β′ 6= 1

then β/β′ 6∈ Tor(Q×) for any conjugate β′ of β, and in particular, the conjugates
of β give rise to distinct functions in F . Observe therefore that E = Q(β) and
StabG(fβ) = Gal(Q/E). By the above if fβ ∈ VF then we must have Gal(Q/F ) ≤
Gal(Q/E), or E ⊆ F . Repeating the same argument for a generator of F , we find
that F ⊆ E so E = F , a contradiction. The reverse implication is obvious. �

Remark 2.9. The above proposition is no longer true if we restrict our attention to
the space of units U ⊂ F . This follows from the well known fact that CM extensions
(totally imaginary quadratic extensions of totally real fields) have the same unit
group modulo torsion as their base fields, the simplest example being Q(i)/Q.

2.3. Orthogonal projections associated to number fields. For K ∈ K, define
the map PK : F → VK via

(PKf)(y) =

∫
HK

(Lσf)(y)dν(σ)

where HK = Gal(Q/K) and ν is the normalized (measure 1) Haar measure of
HK . (Observe that, like G, HK is profinite and thus compact and possesses a
Haar measure.) Let us prove that the map is well-defined. Since f ∈ F , it has a
finite Galois orbit and thus a finite orbit under HK . Let us partition HK into the
k = [HK : StabHK (f)] cosets of equal measure by the translation invariance of the
Haar measure. Denote these cosets by StabHK (f)σ1, . . . ,StabHK (f)σk. Then

PK(f) =
1

k
(Lσ1f + · · ·+ Lσkf) .

But each Lσif ∈ F since F is closed under the action of the Galois isometries.
Thus if f = fα, we have Lσif = fσiα. Since F is a vector space, PK(f) ∈ F as
well. Further, it is stable under the action of HK , and thus, by Lemma 2.7, we
have PK(f) ∈ VK . The map PK is in fact nothing more than the familiar algebraic
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norm down to K, subject to an appropriate normalization, that is, if fβ = PKfα,
then we have

(2.2) β ≡
(

N
K(α)
K α

)1/[K(α):K]

mod Tor(Q×).

(We note in passing that the norm map N
K(α)
K : K(α)× → K× descends to a

well-defined map modulo torsion.)
The following alternative formulation will also be helpful:

Lemma 2.10. Let K ∈ K and let MK denote the places of K. For each v ∈MK ,
let χv(y) be the characteristic function of the set Y (K, v). Then

PKf(y) =
∑
v∈MK

(
1

λ(Y (K, v))

∫
Y (K,v)

f(z) dλ(z)

)
χv(y).

In other words, PK is essentially the conditional expectation with respect to the
Borel σ-algebra generated by the collection {Y (K, v) : v ∈MK}. Of course, Y has
infinite measure so this is not a conditional expectation in the usual sense from
probability theory, although it shares many of the same properties. If we restrict to
the space of units, that is, functions supported on the measure one space Y (Q,∞),
then the restriction of PK to this space is indeed a conditional expectation.

Proof. Fix a value y ∈ Y . Then there exists a unique v ∈MK such that y ∈ Y (K, v)
since Y =

⋃
v∈MK

Y (K, v) is a disjoint union. The claim will be proven if we can
show that for this value of y,

PKf(y) =
1

λ(Y (K, v))

∫
Y (K,v)

f(z) dλ(z).

Now,

PKf(y) =

∫
HK

f(σ−1y) dν(σ)

where HK , ν are as above. By the construction of λ (see (4.1) and surrounding
remarks in [1]), for any y ∈ Y (K, v),

1

λ(Y (K, v))

∫
Y (K,v)

f(z) dλ(z) =

∫
HK

f(σ−1y) dν(σ)

(where we need the normalization factor 1/λ(Y (K, v)) since (4.1) assumes λ(Y (K, v)) =
1) and so the proof is complete. �

Proposition 2.11. Let K ⊂ Q be a field of arbitrary degree. Then PK is a pro-
jection onto VK of norm one with respect to the Lp norms for 1 ≤ p ≤ ∞.

Proof. We first prove that P 2
K = PK . Let H = HK as above and ν the normalized

Haar measure on H. Suppose that τ ∈ H. Observe that

PK(f)(τ−1y) =

∫
H

f(σ−1τ−1y)dν(σ) =

∫
τH

f(σ−1y)dν(σ) = PK(f)(y)

since τH = H for τ ∈ H. Thus,

(PK
2f)(y) =

∫
H

PKf(σ−1y)dν(σ) =

∫
H

PKf(y)dν(σ) = PKf(y),

or more succinctly, PK
2 = PK . Since linearity is clear we will now prove that the

operator norm of PK , denoted ‖PK‖, is equal to 1 with respect to the Lp norm in
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order to conclude that PK is a projection. If p = ∞, this is immediate, so let us
assume that 1 ≤ p < ∞. Let f ∈ Lp(Y ). Then first observe that since ν(H) = 1,
Jensen’s inequality implies∫

H

|f(σ−1y)| dν(σ) ≤
(∫

H

|f(σ−1y)|p dν(σ)

)1/p

.

Now let us consider the Lp norm of PKf :

‖PKf‖p =

(∫
Y

|PK(f)(y)|pdλ(y)

)1/p

=

(∫
Y

∣∣∣∣∫
H

f(σ−1y)dν(σ)

∣∣∣∣p dλ(y)

)1/p

≤
(∫

Y

∫
H

∣∣f(σ−1y)
∣∣p dν(σ)dλ(y)

)1/p

=

(∫
H

∫
Y

∣∣f(σ−1y)
∣∣p dλ(y)dµ(σ)

)1/p

=

(∫
H

‖Lσf‖ppdµ(σ)

)1/p

=

(∫
H

‖f‖ppdµ(σ)

)1/p

= ‖f‖p.

where we have made use of the fact that Lσ is an isometry, and the application of
Fubini’s theorem is justified by the integrability of |f |p. This proves that ‖PK‖ ≤ 1,
and to see that the operator norm is not in fact less than 1, observe that the subspace
VQ is fixed for every PK . �

As a corollary, if we extend PK by continuity to the completion Fp of F under
the Lp norm, we obtain:

Corollary 2.12. The subspace VK ⊂ Fp is complemented in Fp for all 1 ≤ p ≤ ∞.

As F2 = L2(Y, λ) is a Hilbert space, more is in fact true:

Proposition 2.13. For each K ∈ K, PK is the orthogonal projection onto the
subspace VK ⊂ L2(Y ).

Specifically, this means that ‖f‖22 = ‖PKf‖22+‖(I−PK)f‖22, where I is the identity
operator.

Proof. It suffices to observe that PK is idempotent and has operator norm ‖PK‖ = 1
with respect to the L2 norm, and any such projection in a real Hilbert space is
orthogonal [12, Theorem III.3]. �

We now explore the relationship between the Galois isometries and the projection
operators PK for K ∈ K.

Lemma 2.14. For any field K ⊂ Q of arbitrary degree and any σ ∈ G,

LσPK = PσK Lσ.

Equivalently, PK Lσ = LσPσ−1K .

Proof. We prove the first form, the second obviously being equivalent. By definition
of PK , letting H = Gal(Q/K) and ν be the normalized Haar measure on H such
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that ν(H) = 1,

(LσPKf)(y) = (PKf)(σ−1y) =

∫
H

f(τ−1σ−1y) dν(τ)

=

∫
H

f(σ−1(στσ−1)−1y) dν(τ)

=

∫
σHσ−1

(Lσf)(τ−1y) dν(τ) = PσK(Lσf)(y). �

We will be particularly interested in the case where the projections PK , PL com-
mute with each other (and thus PKPL is a projection to the intersection of their
ranges). To that end, we recall the following results from [6]:

Lemma 2.15. Let K,L ⊂ Q be fields of arbitrary degree. Then VK ∩ VL = VK∩L.

Proof. See [6, Lemma 2.11]. �

Lemma 2.16. Suppose K ∈ K and L ∈ KG. Then PK and PL commute, that is,

PKPL = PK∩L = PLPK .

In particular, the family of operators {PK : K ∈ KG} is commuting.

Proof. See [6, Lemma 2.12]. �

2.4. Main decomposition theorem. We will now prove a very general decom-
position theorem, which we will then apply to F in the next two sections in order
to obtain the proof of Theorems 1 and 2, which state that we can orthogonally
decompose the space F of algebraic numbers modulo torsion by their Galois field
and by their degree.

Theorem 7. Let V be a vector space over Q with an inner product 〈·, ·〉 and suppose
we have a family of subspaces Vi ⊂ V together with projections Pi indexed by a
partially ordered set I such that:

(1) The index set I has a unique minimal element, denoted 0 ∈ I, and I is
locally finite, that is, any interval [i, j] = {k ∈ I : i ≤ k ≤ j} is of finite
cardinality.

(2) Any pair of elements i, j ∈ I has a unique greatest lower bound, called
the meet of i and j, and denoted i ∧ j. (Such a poset I is called a meet-
semilattice.)

(3) Vi ⊆ Vj if i ≤ j ∈ I.
(4) The projection map Pi : V → Vi is orthogonal with respect to the inner

product of V for all i ∈ I.
(5) For i, j ∈ I, PiPj = PjPi = Pi∧j, where i ∧ j is the meet of i and j.
(6) V =

∑
i∈I Vi (the sum is in the usual Q-vector space sense).

Then there exist mutually orthogonal projections Ti ≤ Pi (that is, satisfying Ti(V ) ⊆
Vi) which form an orthogonal decomposition of V :

V =
⊕
i∈I

Ti(V ), and Ti(V ) ⊥ Tj(V ) for all i 6= j ∈ I.

(The notation V =
⊕

i∈I Ti(V ) indicates a direct sum in the Q-vector space sense,
that is, that each vector v ∈ V has a unique expression as a finite sum of vectors,
one from each summand.)
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We call Ti the essential projection associated to the space Vi, as it gives the
subspace of Vi which is unique to Vi and no other subspace Vj in the given family.

Remark 2.17. Theorem 7 can be stated and proven almost identically if V is a
real Hilbert space rather than an incomplete vector space over Q, the only changes
being that condition (6) is replaced with the condition that the closure of

∑
i∈I Vi

is V , the direct sum is then understood in the usual Hilbert space sense, and the
expansion of each f into

∑
i∈I Tif is to be understood as a unique series expansion

rather than a finite sum. The construction of the Ti operators and the orthogonality
are proven in exactly the same manner, and indeed, we will make use of the fact
that if we complete V , the decomposition extends by continuity to the completion
in the usual Hilbert space sense. The theorem as stated here and as applied to F is
in fact a strictly stronger result than the statement it implies for the decomposition
of L2(Y ) as not only must such projections and such a decomposition exist, but
this decomposition must also respect the underlying Q-vector space F of algebraic
numbers modulo torsion.

Let us begin by recalling the background necessary to define our Ti projections.
Since I is locally finite, it is a basic theorem in combinatorics that there exists
a Möbius function µ : I × I → Z, defined inductively by the requirements that
µ(i, i) = 1 for all i ∈ I, µ(i, j) = 0 for all i 6≤ j ∈ I, and

∑
i≤j≤k µ(i, j) = 0 for all

i < k ∈ I (the sums are finite by the assumption that I is locally finite). Since our
set I has a minimal element 0 and is locally finite, we can sum over i ≤ j as well.
The most basic result concerning the Möbius function is Möbius inversion, which
(in one of the several possible formulations) tells us that given two functions f, g
on I,

f(j) =
∑
i≤j

g(i) if and only if g(j) =
∑
i≤j

µ(i, j) f(i).

In order that our Ti capture the unique contribution of each subfield Vi, we would
like our Ti projections to satisfy the condition that:

(2.3) Pj =
∑
i≤j

Ti.

Möbius inversion leads us to define the Ti operators via the equation:

(2.4) Tj =
∑
i≤j

µ(i, j)Pi.

Since each of the above sums is finite and µ takes values in Z, we see that Tj : V →
Vj is well-defined. We will prove that the Tj operators form the desired family of
projections.

Lemma 2.18. Let the projections Pi for i ∈ I satisfy the conditions of Theorem 7
and let Ti be defined as above. Then for all i, j ∈ I, PiTj = TjPi, and

PjTi =

{
Ti if i ≤ j
0 otherwise.

Proof. The first claim follows immediately from equation (2.4) and condition (5)
of the theorem statement. To prove the second claim, we proceed by induction.
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Observe that the statement is trivial for T0 = P0. Now given j ∈ I, suppose the
theorem is true for all i < j. Observe that from (2.3) we get

(2.5) Ti = Pi −
∑
k<i

Tk.

Then, if i < j, we have

PjTi = PjPi −
∑
k<i

PjTk = Pi −
∑
k<i

Tk = Ti,

applying the induction hypothesis at the second equality.
Now suppose i 6< j, so that i ∧ j 6= i. Then

PjTi = PjPi −
∑
k<i

PjTk = Pi∧j −
∑
k≤i∧j

PjTk −
∑
k<i
k 6≤i∧j

PjTk

= Pi∧j −
∑
k≤i∧j

Tk − 0 = Pi∧j − Pi∧j = 0

by two applications of the induction hypothesis at the third equality. �

Lemma 2.19. Let the Ti be as above and let i 6= j for i, j ∈ I. Then TiTj =
TjTi = 0.

Proof. Suppose that i ∧ j < j. By Lemma 2.18, Ti = TiPi and Tj = PjTj . Thus,

TiTj = (TiPi)(PjTj) = Ti(PiPj)Tj = TiPi∧jTj = 0

since i 6= j implies that i∧ j < i or i∧ j < j, so either TiPi∧j = 0 or Pi∧jTj = 0 by
Lemma 2.18. �

We are now ready to prove the theorem statement.

Proof of Theorem 7. Let the operators Ti for i ∈ I be constructed as above. Let us
first show that each Ti is a projection, a linear operator of bounded norm such that
Ti

2 = Ti. The fact the Ti is a continuous linear operator of bounded norm follows
from the same fact for the Pi operators, since each Ti is a finite linear combination
of Pi projections.

Let us now show that Ti is idempotent. The base case T0 = P0 is trivial. Assume
the lemma is true for all i < j. Using equation (2.5), we have

Tj
2 =

(
Pj −

∑
i<j

Ti

)2

= Pj
2 −

∑
i<j

PjTi −
∑
i<j

TiPj +

(∑
i<j

Ti

)2

= Pj −
∑
i<j

Ti −
∑
i<j

Ti +
∑
i<j

Ti = Pj −
∑
i<j

Ti = Tj

where we have used Lemmas 2.18 and 2.19 to simplify the middle and last terms.
Now, let us show that the Ti decompose V . To see this, observe that each element

f ∈ V by condition (6) lies in some Vi1 + . . .+ Vin . Let I ′ =
⋃n
m=1[0, im] ⊂ I, and

then observe that
∑
k∈I′ Tk is the projection onto Vi1 + . . .+ Vin and I ′ is finite by

construction, so f =
∑
k∈I′ Tkf. In fact, observe that we can write f =

∑
k∈I Tkf

as a formally infinite sum, and all terms except those satisfying k ≤ i are zero by
Lemma 2.18. Thus we can write

V =
⊕
i∈I

Ti(V ).
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That the Ti are orthogonal projections now follows from the fact that a continuous
operator is an orthogonal projection if and only if it is idempotent and self-adjoint
[12, Theorem III.2], for, since the Pi are assumed to be orthogonal, they are self-
adjoint and thus the Ti operators are self-adjoint as well as an integral linear com-
bination of the Pi operators, and we have demonstrated that the Ti are continuous
and idempotent. �

2.5. Decomposition by Galois field and proof of Theorem 1. We will now
apply Theorem 7 to F and its collection of subspaces {VK : K ∈ KG} with their
associated projections. (Recall that KG is simply the set of finite Galois extensions
of Q.)

Proof of Theorem 1. As remarked above, it is well known that both K and KG
satisfy all of the axioms of a lattice, that is, for any two fields K,L, there is a
unique meet K ∧L given by K ∩L and a unique join K ∨L given by KL. If K,L
are Galois then both the meet (the intersection) and the join (the compositum) are
Galois as well, thus KG is a lattice as well. Further, both K and KG are locally
finite posets and possess a minimal element, namely, Q.

Our decomposition will be along KG and the associated family of subspaces VK
with their canonical projections PK . Since KG is a locally finite lattice, conditions
(1) and (2) of Theorem 7 are satisfied. Clearly the subspaces VK for K ∈ KG satisfy
the containment condition (3). By Proposition 2.13, the projections are orthogonal
and satisfy condition (4). By Lemma 2.16, the maps {PK : K ∈ KG} form a
commuting family and satisfy condition (5). Lastly, since any f = fα belongs
to VKf ⊂ VK where K ∈ KG is the Galois closure of the minimal field Kf , we
find that condition (6) is satisfied as well. Thus Theorem 7 gives us an orthgonal
decomposition

(2.6) F =
⊕
K∈KG

TK(F)

and the relationship between the PK and TK operators is given by:

(2.7) PK =
∑
F∈KG
F⊆K

TF , and TK =
∑
F∈KG
F⊆K

µ(F,K)PF

where µ : KG ×KG → Z is the Möbius function associated to KG. �

If K is the Galois closure of the minimal field Kf where f = fα, then PK(f) = f ,
and so (2.7) gives us a unique representation modulo torsion of the algebraic number
α which we call the M -factorization of α, or the M -expansion of fα in functional
notation.

Example 2.20. Let α = 2 +
√

2 and let f = fα. Then Kf = Q(
√

2). Since
K ∈ KG, [K : Q] = 2 and it is easy to see that the interval [Q,K] = {Q,K} ⊂ KG,
and so µ(Q,K) = −1, and thus

TK = PK − PQ, TQ = PQ.

Thus

TK(fα) = f1+
√
2, TQ(fα) = f√2,
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and the M -factorization of α has the form 2 +
√

2 =
√

2 · (1 +
√

2), or in functional
notation,

f2+
√
2 = f√2 + f1+

√
2, and f√2 ⊥ f1+√2.

Remark 2.21. We end this section with a remark on why we decompose along KG
but not K. It is not difficult to see that the PK projections for K ∈ K do not form a
commuting family. To see this, suppose α is a cubic algebraic unit with conjugates
β, γ and discriminant ∆ not a square. Then we have the following fields:

Q(α, β, γ)

Q(α) Q(β) Q(γ)

Q(
√

∆)

Q

But the projections associated to the fields Q(α) and its conjugates do not commute.
Specifically, we may compute:

PQ(β)fα = −1

2
fβ , and PQ(α)fβ = −1

2
fα

which shows that PQ(α)PQ(β) 6= PQ(β)PQ(α). This noncommutativity is present
precisely because there is a linear dependence among the vector space VQ(α) and
its conjugates, e.g., fα + fβ + fγ = 0 (since we assumed α was an algebraic unit).
In particular, it is not hard to check that

VQ(α) + VQ(β) = VQ(α) + VQ(β) + VQ(γ).

Clearly such a dependence would make it impossible to associate a unique com-
ponent TK to each of the three fields. However, the commutavity of the PK for
K ∈ KG implies that there is no such barrier to decomposition amongst the Galois
fields.

2.6. Decomposition by degree and proof of Theorems 2 and 3. In order to
associate a notion of degree to a subspace in a meaningful fashion so that we can
define our Mahler p-norms we will determine a second decomposition of F . Let us
define the function δ : F → N by

(2.8) δ(f) = #{Lσf : σ ∈ G} = [G : StabG(f)]

to be the size of the orbit of f under the action of the Galois isometries. Observe
that by Lemma 2.4, we have StabG(f) = Gal(Q/Kf ) where Kf is the minimal field
of f , and so we also have

(2.9) δ(f) = [Kf : Q].

Let

(2.10) V (n) =
∑
K∈K

[K:Q]≤n

VK

be the vector space spanned by all elements of whose orbit in F under G is of size
at most n. Let P (n) denote the unique orthogonal projection of the Hilbert space

L2(Y ) onto the closure V (n) of the Q-vector space V (n) inside L2(Y ). We wish to
show that the restriction of this orthogonal projection defined on the Hilbert space
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L2(Y ) preserves the Q-vector space F of equivalence classes of algebraic numbers
modulo torsion, that is, that P (n)(F) ⊂ F , so that the map

P (n) : F → V (n)

is a well-defined. Once this has been demonstrated, we we can apply Theorem 7
above to obtain projections T (n) : F → V (n) which will give us the orthogonal
decomposition of F into a subspace spanned by elements whose orbit under G is of
order at most n. We begin by first showing that the projections P (n) and PK for
n ∈ N and K ∈ KG commute.

Lemma 2.22. If K ∈ KG, then δ(PKf) ≤ δ(f) for all f ∈ F .

Proof. Let F = Kf . Since K ∈ KG, we have by Lemma 2.16 that PKf =
PK(PF f) = PK∩F f . Thus, PKf ∈ VK∩F , and so by (2.9) above, we have δ(PKf) ≤
[K ∩ F : Q] ≤ [F : Q] = δ(f). �

Proposition 2.23. Let n ∈ N and K ∈ KG. Then the orthogonal projections

P (n) : L2(Y ) → V (n) and PK : L2(Y ) → VK commute (where the closures are
taken in L2), and thus TK and P (n) commute as well.

Proof. Since δ(PKf) ≤ δ(f) for all f ∈ F by Lemma 2.22 above, we have PK(V (n)) ⊂
V (n), and thus by continuity PK(V (n)) ⊂ V (n), so PK(V (n)) ⊂ V (n) ∩ VK and
PKP

(n) is a projection. Therefore they commute. The last part of the claim now
follows from the definition of TK in (2.4). �

Let WK = TK(F) ⊂ VK for K ∈ KG. By the above proposition, we see that if
we can show that P (n)(WK) ⊆WK , then we will have the desired result since

P (n)(F) =
⊕
K∈KG

P (n)(WK)

by the commutativity of P (n) and TK . Since we will prove this by reducing to finite
dimensional S-unit subspaces, let us first prove an easy lemma regarding finite
dimensional vector spaces over Q.

Lemma 2.24. Suppose we have a finite dimensional vector space A over Q, and
suppose that

A = V1 ⊕ V ′1 = V2 ⊕ V ′2 = · · · = Vn ⊕ V ′n
for some subspaces Vi, V

′
i , 1 ≤ i ≤ n. Then

A = (V1 + · · ·+ Vn)⊕ (V ′1 ∩ · · · ∩ V ′n).

Proof. It suffices to prove the lemma in the case n = 2 as the remaining cases follow
by induction, so suppose A = V1 ⊕ V ′1 = V2 ⊕ V ′2 . It is an easy exercise that

dimQ V1 + dimQ V2 = dimQ(V1 + V2) + dimQ(V1 ∩ V2),

and likewise,

dimQ V
′
1 + dimQ V

′
2 = dimQ(V ′1 + V ′2) + dimQ(V ′1 ∩ V ′2).

Now,

(2.11) 2 dimQA = dimQ V1 + dimQ V
′
1 + dimQ V2 + dimQ V

′
2

= dimQ(V1 + V2) + dimQ(V1 ∩ V2) + dimQ(V ′1 + V ′2) + dimQ(V ′1 ∩ V ′2).
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Now, (V1 + V2)⊕ (V ′1 ∩ V ′2) ⊆ A and (V ′1 + V ′2)⊕ (V1 ∩ V2) ⊆ A, so

b = dimQ(V1 + V2) + dimQ(V ′1 ∩ V ′2) ≤ dimQA

c = dimQ(V ′1 + V ′2) + dimQ(V1 ∩ V2) ≤ dimQA.

By (2.11), we have b+ c = 2 dimQA, therefore, we must have b = c = dimQA, and
in particular b = dimQA proves the claim. �

Proposition 2.25. With WK = TK(F) as above, P (n)(WK) ⊆ WK for every
n ∈ N and K ∈ KG, and thus P (n)(F) ⊂ F .

Proof. Let f ∈ WK , and let S ⊂ MQ be a finite set of rational primes, containing
the infinite prime, such that

suppY (f) ⊂
⋃
p∈S

Y (Q, p).

Let VK,S ⊂ VK denote the subspace spanned by the S-units of K. By Dirichlet’s
S-unit theorem, VK,S is finite dimensional over Q. Let WK,S = TK(VK,S). Notice
that WK,S ⊂ VK,S since each PF projection will preserve the support of f over each
set Y (Q, p) for p ∈MQ by Lemma 2.10.

For all fields F ∈ K such that F ⊂ K, let

ZF,S = PF (WK,S) and Z ′F,S = QF (WK,S),

where QF = I − PF is the complementary orthogonal projection. Observe that for
each such F , we have

WK,S = ZF,S ⊕ Z ′F,S .
Then by Lemma 2.24, we have

(2.12) WK,S =

( ∑
F⊆K

[F :Q]≤n

ZF,S

)
⊕
( ⋂

F⊆K
[F :Q]≤n

Z ′F,S

)
.

This gives us a decomposition f = fn + f ′n where

fn ∈
∑
F⊆K

[F :Q]≤n

ZF,S = V (n) ∩WK,S ,

and

f ′n ∈
⋂
F⊆K

[F :Q]≤n

Z ′F,S = (V (n))⊥ ∩WK,S ,

But then fn ∈ V (n) and f ′n ∈ (V (n))⊥, so by the uniqueness of the orthogonal
decomposition, we must in fact have fn = P (n)f and f ′n = Q(n)f = (I − P (n))f .
Since this proof works for any f ∈ F , we have established the desired claim. �

Now we observe that the subspaces V (n) with their associated projections P (n),
indexed by N with the usual partial order ≤, satisfy the conditions of Theorem 7,
and thus we have orthogonal projections T (n) and an orthogonal decomposition

(2.13) F =

∞⊕
n=1

T (n)(F).
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The operators T (n) have a particularly simple form in terms of the P (n) projec-
tions. The Möbius function for N under the partial order ≤ is well-known and is
merely

µN(m,n) =


1 if m = n,

−1 if m = n− 1, and

0 otherwise.

Thus, T (1) = P (1) = PQ and

T (n) = P (n) − P (n−1) for all n > 1.

We call T (n)f the degree n component of f . The following proposition is now
obvious from the above constructions:

Proposition 2.26. Each f ∈ F has a unique finite expansion into its degree n
components, f (n) = T (n)f ∈ F

f =
∑
n∈N

f (n).

Each f (n) term can be written as a finite sum f (n) =
∑
i f

(n)
i where f

(n)
i ∈ F and

δ(f
(n)
i ) = n for each i, and f (n) cannot be expressed as a finite sum

∑
j f

(n)
j with

δ(f
(n)
j ) ≤ n for each j and δ(f

(n)
j ) < n for some j.

This completes the proof of Theorem 2. It remains to prove Theorem 3.

Proof of Theorem 3. From Proposition 2.23, we see that the operators TK and P (n)

commute for K ∈ KG and n ∈ N. But T (n) = P (n) − P (n−1) for n > 1 and
T (1) = P (1), so by the commutativity of TK with P (n) we have the desired result.

In particular, the map T
(n)
K = T (n)TK : F → F is also a projection, and thus we

can combine equations (2.6) and (2.13) to obtain the orthogonal decomposition

�(2.14) F =

∞⊕
n=1

⊕
K∈KG

T
(n)
K (F).

3. Reducing the Lehmer problem

3.1. Representability. The concept of representability was introduced in [6, §2.2].
In this section we develop the idea in greater depth. Let us recall that we defined
in Section 2.6 the function δ : F → N by

δ(f) = #{Lσf : σ ∈ G} = [G : StabG(f)] = [Kf : Q].

Observe that since nonzero scaling of f does not affect its Q-vector space span or
the minimal field Kf that the function δ is invariant under nonzero scaling in F ,
that is,

δ(rf) = δ(f) for all f ∈ F and 0 6= r ∈ Q.
In order to better understand the relationship between our functions in F and the
algebraic numbers from which they arise, we need to understand when a function
fα ∈ VK has a representative α ∈ K× or is merely an nth root of an element of
K× for some n > 1. Naturally, the choice of coset representative modulo torsion
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affects this question, and we would like to avoid such considerations. Therefore we
define the function d : F → N by

(3.1) d(fα) = min{deg(ζα) : ζ ∈ Tor(Q×)}.
Notice that the minimum is invariant under the choice of coset representative α ∈
Q× for fα ∈ F .

Notice that a function f ∈ F can then be written as f = fα with α ∈ K×f if and

only if d(f) = δ(f). We therefore make the following definition:

Definition 3.1. We define the set of representable elements of F to be the set

(3.2) R = {f ∈ F : δ(f) = d(f)}.
The set R consists precisely of the functions f such that f = fα for some α of
degree equal to the degree of the minimal field of definition Kf of f .

We recall the terminology from [4] that a number α ∈ Q× is torsion-free if

α/σα 6∈ Tor(Q×) for all distinct Galois conjugates σα. As we observed above in
the proof of Proposition 2.8, torsion-free numbers give rise to distinct functions
fσα = Lσfα for each distinct Galois conjugate σα of α.

The goal of this subsection is to prove the following result relating δ and d:

Proposition 3.2. Let 0 6= f ∈ F and r, s ∈ Z with (r, s) = 1. Then the set
R(f) = {q ∈ Q : qf ∈ R} satisfies

R(f) =
`

n
Z

where `, n ∈ N, (`, n) = 1, and

(3.3) d((r/s)f) =
`s

(`, r)(n, s)
δ(f).

In particular, d(f) = ` · δ(f).

The proof of Proposition 3.2 consists of showing that R(f) is a fractional ideal
of Q which scales according to R(qf) = (1/q)R(f), and that when f is scaled so
that R(f) = Z we have d((r/s)f) = sδ(f). We establish these results in a series
of lemmas below. We begin by demonstrating the most basic results concerning
representability:

Lemma 3.3. We have the following results:

(1) For each f ∈ F , there is a unique minimal exponent ` = `(f) ∈ N such that
`f ∈ R.

(2) For any α ∈ Q×, we have δ(fα)|degα.

(3) f ∈ R if and only if it has a representative in Q× which is torsion-free.
(4) Every torsion-free representative of f ∈ R lies in the same field Kf , the

minimal field of f .

Proof. Choose a representative α ∈ Q× such that f = fα and let

` = lcm{ord(α/σα) : σ ∈ G and α/σα ∈ Tor(Q×)}

where ord(ζ) denotes the order of an element ζ ∈ Tor(Q×). Then observe that α`

is torsion-free. Clearly, Q(α`) ⊂ Q(α) so [Q(α`) : Q]|[Q(α) : Q]. Now if a number
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β ∈ Q× is torsion-free, then since each distinct conjugate σβ gives rise to a distinct
function in F , we have

deg β = [G : StabG(fβ)] = [Kfβ : Q] = δ(fβ).

Thus degα` = δ(fα) and we have proven existence in the first claim. The existence
of a minimum value follows since N is discrete. To prove the second claim it now
suffices to observe that since δ is invariant under scaling, with the choice of ` as

above, we have δ(fα) = δ(f `α)|degα for all α ∈ Q×. The third claim now follows
immediately. Lastly, since any representative of f differs by a root of unity, each
representative has some power which lies in (and generates) the minimal field, and
thus each torsion-free representative generates the minimal field. �

We note the following easy corollary for its independent interest:

Corollary 3.4. Let α ∈ Q× have minimal polynomial F (x) ∈ Z[x]. Let G(x) ∈
Z[x] be an irreducible polynomial of smallest degree in Z[x] such that there exists
some k ∈ N with F (x)|G(xk). Then δ(fα) = degG.

(We observe in passing that δ(f) = 1 if and only if f ∈ VQ, in which case, f = fα
where αn ∈ Q× and so f represents a surd, that is, a root of a rational number.)

Lemma 3.5. If 0 6= f ∈ F , then R(f) = {r ∈ Q : rf ∈ R} is a fractional ideal of
Q, that is, R(f) = rZ for some r ∈ Q.

Proof. We can assume δ(f) > 1, otherwise f arises from a surd and the proof is
trivial. First we show that R(f) is a Z-module. It is trivial that if r ∈ R(f)
then −r ∈ R(f) as inversion does not affect degree. Suppose now that we have

r, s ∈ R(f) and choose torsion-free representatives β ∈ Q× of rf and γ ∈ Q×

of sf . If r + s = 0 the result is trivial, so suppose not. By Lemma 3.3 (4), we
have β, γ ∈ Kf . But then βγ ∈ Kf as well, and hence is a representative of
fβγ = fβ + fγ = rf + sf = (r + s)f of degree [Kf : Q] = δ(f), and thus we have
r + s ∈ R(f) as well.

If we can now show that R(f) is finitely generated the proof will be complete,
as it is easy to check that any finitely generated Z-submodule of Q is indeed a
fractional ideal. But were it to require an infinite number of generators, we would
have to have elements of arbitrarily large denominator. Further, we could fix an N
sufficiently large so that for a sequence of ni → ∞, we would have some ri/ni ∈
R(f) and |ri/ni| ≤ N . (For example, given r1/n1, we can take N = r1/n1 by
appropriately subtracting off multiples of r1/n1 from any other ri/ni.) But then
we would have torsion-free representatives αri/ni satisfying h(αri/ni) ≤ N h(α),
and as representable representatives, each representative has the same degree δ(f),
and thus we have an infinite number of algebraic numbers with bounded height and
degree, contradicting Northcott’s theorem. �

Lemma 3.6. Let 0 6= q ∈ Q. Then R(qf) = 1
qR(f).

Proof. This is clear from the definition. �

Lemma 3.7. Let f ∈ R with R(f) = Z and let m,n ∈ Z where (m,n) = 1
and n > 0. Let α be a torsion-free representative of f and denote by αm/n any
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representative of the class of fαm/n = (m/n)f modulo torsion of minimal degree.
Then degαm/n = n degα. In particular, we have

(3.4) d((m/n)f) = nd(f) = n δ(f) if R(f) = Z.

Proof. Since R(f) = Z, our choice of torsion-free representative β in Q× has degree
δ(f). Clearly, we can say that d((m/n)f) ≤ n degα = n δ(f) because any root
of xn − αm over Q(α) will be a representative of the class of (m/n)f . Observe
that the minimal field Kf = Q(α) is, as we observed above, unique, and thus the
choice of α differs at most by some torsion element of Q(α)×. Further, any choice

of representative β ∈ Q× of (m/n)f will satisfy Q(α) ⊂ Q(β) since some power of
β will make it torsion-free and therefore it will be a power of α.

Let us show that the degree of β cannot satisfy deg β < n degα if R(f) = Z.
Suppose it did, so that k = [Q(β) : Q(α)] < n. Then observe that by taking the
algebraic norm down to Q(α), we have

Norm
Q(β)
Q(α)(β) = ζαkm/n ∈ Q(α)

where ζ is a root of unity. As [Q(α) : Q] = δ(f) the existence of the representative
ζαkm/n would imply that km/n ∈ R(f), but since (m,n) = 1 and k < n, we have
km/n 6∈ Z. This contradicts our assumption that R(f) = Z. �

Combining the above lemmas, we now see that we have proven Proposition 3.2.

3.2. Reduction to representable numbers. We will now show that we can
reduce questions related to lower bounds for the Lp Mahler measure to the set
of representable elements. We begin with two lemmas regarding the relationship
between the projection operators PK and the degree functions d and δ which will
be used below:

Lemma 3.8. If f ∈ F and K ⊂ Kf , then d(PKf) ≤ d(f).

Proof. Let f = fα and let α ∈ Q× be a minimal degree representative of f , and
choose ` ∈ N such that α` is torsion-free. Then Q(α`) = Kf , so in particular, we
see that

K ⊆ Kf ⊆ Q(α).

Observe that the norm N
K(α)
K from K(α) to K is well-defined on the class fα ∈ F .

Since for some choice of root (N
K(α)
K α)1/[K(α):K] is a representative of PKf modulo

torsion, it follows from the fact that N
K(α)
K α ∈ K that

d(PKf) ≤ deg(N
K(α)
K α)1/[K(α):K] ≤ [K(α) : K] · [K : Q]

= [Q(α) : Q] = d(f). �

Lemma 3.9. If K ∈ K and K ⊂ Kf for f ∈ F , we have δ(PKf) ≤ δ(f).

Proof. Since we can rescale f without affecting either δ value, we can assume f ∈ R
so d(f) = δ(f). Let F = Kf . Then by Lemma 3.8 above, we have

δ(PKf) ≤ d(PKf) ≤ d(f) = δ(f). �

From the construction of d above, it is easy to see that:
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Proposition 3.10. Let mp : F → [0,∞) be given by mp(f) = d(f) · ‖f‖p. Fix
0 6= f ∈ F . Then

mp(f) = min{(degα) · hp(α) : α ∈ Q×, fα = f}.
The right hand side of this equation is the minimum of the Lp analogue of the

usual logarithmic Mahler measure on Q× taken over all representatives of f modulo
torsion.

We now prove the reduction to R ⊂ F :

Proposition 3.11. Let mp(f) = d(f) · ‖f‖p. Then mp(F) = mp(R), so in partic-
ular, inf mp(F \ {0}) > 0 if and only if inf mp(R \ {0}) > 0.

Proof. Let f ∈ F and ` = `(f). Then by Proposition 3.2 we have δ(f) = d(`f) and
` δ(f) = d(f), and thus

mp(`f) = δ(f) · ‖`f‖p = ` δ(f)‖f‖p = d(f) · ‖f‖p = mp(f). �

Remark 3.12. Proposition 3.11, which will be used below in the proof of Theorem
4, is a key step in constructing equivalent statements of Lehmer’s conjecture for
heights which scale, such as δ hp and particularly for the norms we will construct.

Consider for example that if α = 21/n then δ(fα) = 1 for all n ∈ N and h1(21/n) =
(2 log 2)/n→ 0.

3.3. Projection irreducibility. In this section we introduce the last criterion
which we will require to reduce the Lehmer conjectures to a small enough set of
algebraic numbers to prove our main results.

Definition 3.13. We say f ∈ F is projection irreducible if PK(f) = 0 for all
proper subfields K of the minimal field Kf . We denote the collection of projection
irreducible elements by P ⊂ F .

Remark 3.14. Notice that we cannot in general require that PK(f) = 0 for all
K 6= Kf , as an element with a minimal field which is not Galois will typically have
nontrivial projections to the conjugates of its minimal field. See Remark 2.21 above
for more details.

We now prove that we can reduce questions about lower bounds on the Mahler
measure mp to elements of P:

Proposition 3.15. We have

inf
f∈F\{0}

mp(f) > 0 ⇐⇒ inf
f∈P\{0}

mp(f) > 0.

Proof. Let f ∈ F . Notice that for any K ∈ K that by Lemma 3.8 we have d(PKf) ≤
d(f) and by Lemma 2.11 we have hp(PKf) ≤ hp(f), so mp(PKα) ≤ mp(f). Let
suppK(f) = {K ∈ K : PKf 6= 0}. Notice that if K ⊂ L and K ∈ suppK(f),
then L ∈ suppK(f). Let E denote the Galois closure of Kf , and observe that
PKf = PK(PEf) = PK∩Ef by Lemma 2.16, so since we have only a finite number
of subfields of E, we can write suppK(f) =

⋃n
i=1[Ki, ) where [Ki, ) = {L ∈ K :

Ki ⊆ L}, and each Ki ⊆ E is minimal in the sense that [Ki, ) 6⊆ [Kj , ) for all
i 6= j. Thus, for each i, PF f = 0 for all F $ Ki, and so PKif ∈ P \ {0}. Then 0 <
mp(PKif) ≤ mp(f), and so we have shown inff∈P\{0}mp(f) ≤ inff∈F\{0}mp(f).
The reverse inequality is trivial. �
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4. The Mahler p-norm

4.1. An Lp analogue of Northcott’s theorem. We begin by proving an ana-
logue of Northcott’s theorem for the Lp Weil heights which we will make use of in
this chapter. We begin with some easy lemmas which relate the Lp height to the
L1 height.

Lemma 4.1. Let f ∈ F and suppose supp(f) ⊆ Y (Q, π) for some rational prime
π (possibly infinity). Then for 1 < p ≤ ∞, we have

‖f‖1 ≤ ‖f‖p ≤ δ(f)1−1/p‖f‖1.

(We follow the usual convention for exponents and let 1/p = 0 when p = ∞ for
convenience.)

Proof. The first inequality in fact is a well-known fact of Lp norms on measure
one spaces, however, we will give another proof in this case as it is useful to do
so. Let K = Kf be the minimal field, so in particular, [K : Q] = δ(f). Let
n = δ(f) denote this common value. Then Y (Q, π) can be partitioned into a
disjoint union of the sets Y (K, v) for v|π. Notice that λ(Y (K, v)) = dv/n for each
v, where dv = [Kv : Qv] is the local degree. Enumerate the set of v lying over π
as v1, . . . , vn, counting each place dv times, so that if, for example, dv = 3, then
there will be three places vk, vk+1, vk+2 corresponding to v (for some number k).
Let ci denote the value of f(y) on Y (K, vi). Let q be the usual conjugate exponent
determined by 1/p+ 1/q = 1. Then observe that:

‖f‖1 =
1

n

n∑
i=1

|ci| ≤
1

n
· n1/q

( n∑
i=1

|ci|p
)1/p

=
1

n1/p

( n∑
i=1

|ci|p
)1/p

= ‖f‖p.

where we have applied Hölder’s inequality. For the upper bound, we compute

‖f‖p =
1

n1/p

( n∑
i=1

|ci|p
)1/p

≤ 1

n1/p

n∑
i=1

|ci| = n1−1/p · 1

n

n∑
i=1

|ci| = n1−1/p‖f‖1

from which the result now follows. �

We now bound our heights without assuming that f is supported on a single
prime:

Proposition 4.2. Let f ∈ F and 1 < p ≤ ∞. Then we have the following
inequalities:

(4.1) ‖f‖1 ≤ λ(supp f)1−1/p ‖f‖p and ‖f‖p ≤ δ(f)1−1/p‖f‖1.

Proof. Let q be given by 1/p + 1/q = 1 as usual. Then the first inequality is just
the usual application of Hölder’s inequality:

‖f‖1 =

∫
supp f

|f(y)| dλ(y) ≤
(∫

supp f

1q dλ(y)

)1/q(∫
supp f

|f(y)|p dλ(y)

)1/p

= λ(supp f)1/q‖f‖p.

For the second inequality, let us write f |π for the restriction of f to the set Y (Q, π).
Then f |π is a function on a measure one space, so locally we can make use of the
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above lemma at each place π:

‖f‖p =

( ∑
π∈MQ

‖f |π‖pp
)1/p

≤
( ∑
π∈MQ

δ(f)p/q‖f |π‖p1
)1/p

= δ(f)1/q
( ∑
π∈MQ

‖f |π‖p1
)1/p

≤ δ(f)1/q
∑
π∈MQ

‖f |π‖1 = δ(f)1−1/p‖f‖1. �

where we make use of the general fact that for any sequence x ∈ `p(N), we have
‖x‖`p ≤ ‖x‖`1 . (In fact, each f ∈ F is supported on a finite number of rational
primes, so there is no issue of convergence here.)

The classical Northcott theorem tells us that any set of algebraic numbers of
bounded height and degree is finite. As 2h(α) = ‖fα‖1, this translates to a bound
on the L1 height. Naturally, as we are working in F , we count modulo torsion, but
even so we must be careful about the choice of our notion of degree (indeed, it is
easy to see that the number of elements of F with bounded δ and Lp norm is not
finite).

Theorem 8 (Lp Northcott). For any C,D > 0, we have

(4.2) #{f ∈ R : ‖f‖p ≤ C and δ(f) ≤ D} <∞,

and

(4.3) #{f ∈ F : ‖f‖p ≤ C and d(f) ≤ D} <∞.

Proof. Notice that f ∈ R implies that d(f) = δ(f) by definition, so that the first
set is a subset of the second. Thus, it suffices to show that the second set is finite.

Each element fα of the second set gives rise to a representative α ∈ Q× with degree
d(fα), so if we can show that h(α) is bounded, then Northcott’s theorem will give
us the desired result. Notice that if f ∈ F has nontrivial support at a rational
prime π, then

‖f‖p ≥ ‖f |Y (Q,π)‖p ≥ ‖f |Y (Q,π)‖1 ≥
log π

d(f)
≥ log π

D
.

As we assume that ‖f‖p ≤ C, this tells us that log π ≤ CD. Since the measure λ
assigns measure 1 to any rational prime, we see that

λ(supp(f)) ≤ 1 + π(exp(CD))

where π(x) is the usual prime counting function. Thus, by Proposition 4.2, we see
that

(4.4) ‖f‖1 ≤ λ(supp(f))1−1/p ‖f‖p ≤ (1 + π(exp(CD)))
1−1/p

C.

As 2h(α) = ‖fα‖1, this gives a bound on the classical Weil height for any represen-
tative of an element of our set. Northcott’s theorem then applies and gives us the
desired result, as we find we have a finite number of possible coset representatives
and therefore a finite number of elements of F . �
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4.2. The Mahler p-norms and proof of Theorem 4. We will now make use
of our orthogonal decomposition (2.13) to define one of the main operators of our
study. Let

M : F → F

f 7→
∞∑
n=1

nT (n)f.
(4.5)

The M operator serves the purpose of allowing us to scale a function in F by
its appropriate degree while still being linear. As each element of F has a finite
expansion in terms of T (n) components, the above map is well-defined. Further,
it is easily seen to be linear by the linearity of the T (n), and it is also a bijection.
However, it is not a bounded operator (and thus, in particular, M is not well-defined
on the space Lp(Y )):

Proposition 4.3. The linear operator M : F → F is unbounded in any Lp norm.

Proof. Below in Propositions 4.7, 4.8, and 4.5 we will prove that every Salem num-
ber τ > 1 is representable, projection irreducible, and therefore, an eigenvector
of the M operator of eigenvalue δ(fτ ), that is, fτ ∈ R ∩ P, Kτ = Q(τ), and
Mfτ = δ(fτ ) · fτ = d(fτ ) · fτ . As there exist Salem numbers of arbitrarily large
degree, M has eigenvectors of arbitrarily large eigenvalue and we obtain the desired
result. �

We recall that the Mahler p-norm on F is defined to be

(4.6) ‖f‖m,p = ‖Mf‖p
where ‖ · ‖p denotes the usual Lp norm as defined above.

Proposition 4.4. The map ‖ · ‖m,p : F → [0,∞) is a vector space norm on F .

Proof. This follows easily from the fact that M is an invertible linear operator on
F . Specifically, we have for all f, g ∈ F and r ∈ Q,

‖f‖m,p = ‖Mf‖p = 0 ⇐⇒ Mf = 0 ⇐⇒ f = 0

because M is invertible and ‖ · ‖p is a norm on F , and

‖f + g‖m,p = ‖M(f + g)‖p = ‖Mf +Mg‖p ≤ ‖Mf‖p + ‖Mg‖p = ‖f‖m,p + ‖g‖m,p,
and

‖rf‖m,p = ‖M(rf)‖p = ‖rMf‖p = |r| · ‖Mf‖p = |r| · ‖f‖m,p
by the linearity of M . �

The following proposition, interesting in its own right, will be useful to us below:

Proposition 4.5. If f ∈ P, then T (δ(f))f = f , and in particular f is an eigenvector
of the M operator with eigenvalue δ(f).

Proof. Let n = δ(f) and K = Kf be the minimal field of f . Obviously, as f ∈ VK
and [Kf : Q] = δ(f) = n, we have P (n)f = f . Since

P (n) =

n∑
k=1

T (k),

we can find a minimal value 1 ≤ m ≤ n such that T (m)f 6= 0. Then T (m)f = P (m)f
for this value. We claim that if m < n, then f is not projection irreducible.
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To see this, observe that from the proof of Proposition 2.25, we found equation
(2.12), which, together with the commutativity of P (m) and the TK operators and
expanding the set of primes S appropriately (every element of VK is an S-unit for
a large enough set of primes S of K) tells us that in fact, the P (m) projection
corresponds to the Q-vector space direct sum decomposition:

(4.7) VK = P (m)(VK)⊕Q(m)(VK) =

( ∑
F⊆K

[F :Q]≤m

PF (VK)

)
⊕
( ⋂

F⊆K
[F :Q]≤m

QF (VK)

)
,

where Q(m) = I − P (m) and QF = I − PF are the complementary projections.
(Technically, we should replace K with its Galois closure to match the construction
in the proof of Proposition 2.25, but observe that we can repeat the construction
starting with VK,S for K any number field instead of using TK(VK,S) for K Galois;
the results are the same, as it is only the finite dimensionality of the S-unit space
VK,S that is essential to the construction). If PF (f) = 0 then QF (f) = f , so if
f had no nontrivial projections to any proper subfields of f , it would also have
decomposition f = 0⊕ f and thus P (m)f = 0. Thus if P (m)f 6= 0 then PF (f) 6= 0
for some F $ K, but this is a contradiction to the projection irreducibility of f .

Hence we must have had T (n)f = f . �

We can complete F with respect to ‖ · ‖m,p to obtain a real Banach space which
we denote Fm,p. We are now ready to prove Theorem 4, which we restate for the
reader’s convenience. First, we recall the Lp analogue of the Lehmer conjecture
(Conjecture 1) from above:

(∗p) mp(α) = (degα) · hp(α) ≥ cp > 0 for all α ∈ Q× \ Tor(Q×).

Theorem 4. For each 1 ≤ p ≤ ∞, equation (∗p) holds if and only if

(∗∗p) ‖f‖m,p ≥ cp > 0 for all 0 6= f ∈ R ∩ P ∩ U
where R denotes the set of representable elements, P the set of projection irreducible
elements, and U the subspace of algebraic units. Further, for 1 ≤ p ≤ q ≤ ∞, if
equation (∗p) holds for p then equation (∗p) holds for q as well.

Proof of Theorem 4. First let us show that it suffices to bound mp(f) away from
zero for f ∈ R ∩ P ∩ U . Let f ∈ F . We begin by reducing to the vector space
U = {f ∈ F : suppY (f) ⊆ Y (Q,∞)}. If 1 ≤ p <∞, observe that

hp(f) = ‖f‖p =

( ∑
π∈MQ

‖f |Y (Q,π)‖pp
)1/p

≥ ‖f |Y (Q,π)‖p ≥ ‖f |Y (Q,π)‖1,

since Y (Q, π) is a space of measure 1. Likewise, it is easy to see that

h∞(f) = max
π∈MQ

‖f |Y (Q,π)‖∞ ≥ ‖f |Y (Q,π)‖∞ ≥ ‖f |Y (Q,π)‖1

for a specific rational prime π, so we can let p =∞ as well. Let the rational prime
π be chosen above so that the norm of the restriction to Y (Q, π) is nonzero, which

we can do if f 6∈ U . Let α ∈ Q× be a representative of minimal degree d(f) for f .
Then α has a nontrivial valuation over π, and since the product of α over all of its
conjugates must be in Q, we know that we must have ‖f |Y (Q,p)‖1 ≥ (log π)/d(f).
Thus hp(f) ≥ (log 2)/d(f), so mp(f) ≥ log 2 for 1 ≤ p ≤ ∞ if f 6∈ U . Now it
remains to show that we can reduce to the consideration of P as well, but this
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now follows immediately from the technique of the proof in Proposition 3.15, p. 23
above, specifically, by projecting to a minimal field F in the K-support of f to ensure
projection irreducibility, and observing that by Lemma 2.10, p. 10, PF (f) ∈ U if
f ∈ U . Now observe that if f ∈ U ∩P, then upon scaling f it remains in U ∩P, so
we are free to replace f by `(f)f as in the proof of Proposition 3.11, p. 23 without
changing the value of mp(f), and thus we can assume f ∈ R ∩ P ∩ U , as claimed.

Now let f ∈ R ∩ P ∩ U , and we will show that mp(f) = ‖f‖m,p, completing
the proof of the equivalence. Observe that for such an element, by Proposition 4.5
projection irreducibility, we must have T (n)f = f where n = δ(f) = [Kf : Q] for
Kf the minimal field of f , and in particular, Mf = nf . Thus

‖f‖m,p = ‖Mf‖p = [Kf : Q] · ‖f‖p = δ(f)hp(f) = d(f)hp(f) = mp(f)

where the second equality follows from the fact that f ∈ P and the fourth from the
fact that f ∈ R. This completes the equivalence of the bounds.

To show that for 1 ≤ p ≤ q ≤ ∞ the result for p implies the result for q, we
observe that having reduced the problem to the study of algebraic units U , that
these numbers are of the form

U = {f ∈ F : suppY (f) ⊆ Y (Q,∞)}
and since λ(Y (Q,∞)) = 1, we are reduced to the consideration of measurable
functions on the probability space (Y (Q,∞), λ). But on such a space one has the
usual inequality ‖f‖p ≤ ‖f‖q and thus ‖f‖m,p = ‖Mf‖p ≤ ‖Mf‖q = ‖f‖m,q. �

Lastly, we note for its own interest:

Proposition 4.6. Equation (∗p) for p = 1 is equivalent to the Lehmer conjecture,
and for p =∞, (∗p) is equivalent to the Schinzel-Zassenhaus conjecture.

Proof. Since h = 2h1 it is obvious that m1 = 2m so we exactly have the statement
of the Lehmer conjecture when p = 1. Let us now show that when p =∞, equation
(∗p) is equivalent to the Schinzel-Zassenhaus conjecture. Recall that the house
α = max{|σα| : σ : Q(α) ↪→ C} where | · | denotes the usual Euclidean absolute
on C. The Schinzel-Zassenhaus conjecture [9] states that for an algebraic integer
α, (degα) · log α is bounded away from zero by an absolute constant. Observe
that by Smyth’s well-known theorem [11], we have m1(α) ≥ c > 0 for an absolute
constant c if α is not reciprocal. Since ‖f‖m,∞ ≥ ‖f‖m,1 = m1(f) for the numbers
under consideration, we see that if α is not reciprocal, then there is nothing more to
show by the previous theorem. If α is reciprocal, then observe that α and α−1 are

conjugate, and so α = max{α , α−1 }, where max{α , α−1 } is called the symmetric

house. Now, it is easy to see that h∞(α) = log max{α , α−1 } is the logarithmic
symmetric house of α for fα ∈ U , so we do indeed recover the Schinzel-Zassenhaus
conjecture when p =∞.1 �

4.3. Explicit values. We now evaluate the Mahler p-norms for two classes of
algebraic numbers, surds and Salem numbers. Salem numbers are conjectured to
be of minimal Mahler measure for the classical Lehmer conjecture. This is in part
due to the fact that the minimal value for the Mahler measure known, dating back
to Lehmer’s original 1933 paper [8], is that of the Salem number called Lehmer’s

1We remark in passing that while h∞ agrees with the logarithmic symmetric house on U , h∞
seems to be a better choice for non-integers as well, as, for example, h∞(3/2) = log 3 while the
logarithmic symmetric house of 3/2 is log(3/2).
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τ > 1, the larger positive real root of the irreducible polynomial x10 + x9 − x7 −
x6 − x5 − x4 − x3 + x + 1. Here we show that, in fact, Salem numbers belong to
the set R∩ P ∩ U .

4.3.1. Surds. Recall that a surd is an algebraic number which is a root of a rational

number. In particular, if α ∈ Q× is a surd, then αn ∈ Q× for some n. Therefore,
an element f ∈ F is represented by a surd if and only if f ∈ VQ, or equivalently
δ(f) = 1. As Q has no proper subfields, all surds are trivially projection irreducible.
Thus, for a surd f ,

‖f‖m,p = δ(f)‖f‖p = ‖f‖p = hp(f).

4.3.2. Pisot and Salem numbers. We say that fτ ∈ F is Pisot or Salem number

if it has a representative τ ∈ Q× which is a Pisot or Salem number, respectively.
Recall that τ > 1 is said to be a Pisot number if τ is an algebraic integer whose
conjugates in the complex plane all lie strictly within the unit circle, and that τ > 1
is a Salem number if τ is algebraic unit which is reciprocal and has all conjugates
except τ and τ−1 on the unit circle in the complex plane (with at least one pair of
conjugates on the circle).

Proposition 4.7. Every Pisot or Salem number fτ is representable, that is, fτ ∈
R.

Proof. This follows from [6, Prop. 3.10]. �

Proposition 4.8. Every Salem number τ is projection irreducible and an algebraic
unit, and therefore fτ ∈ R ∩ U ∩ P.

Proof. That τ is a unit is well-known and follows immediately from being a recip-
rocal algebraic integer. Suppose fτ has its distinguished representative τ ∈ K×,
where K = Kf = Q(τ). Then there are precisely two real places of K, call them
v1, v2|∞, where τ has nontrivial valuation, and the remaining archimedean places
are complex. By the definition of projection irreducibility, we need to show that
PF (fτ ) = 0 for all F $ K. Now, since λ(Y (K, v1)) = λ(Y (K, v2)) = 1/[K : Q],
we know that for our subfield F $ K, either Y (K, v1) ∪ Y (K, v2) ⊆ Y (F,w) for
some place w of F , in which case PF (fτ ) = 0 because the two valuations sum to
zero by the product formula, or else v1 and v2 lie over distinct places of F , call
them w1 and w2. Then the algebraic norm β = NK

F τ has nontrivial valuations at
precisely the two archimedean places w1, w2. Observe that w1, w2 must be real, as
the completions are Q∞ = R ⊂ Fwi ⊂ Kvi = R for i = 1, 2. Thus β must be a
nontrivial Salem number or a quadratic unit. In either case, if we assume without
loss of generality that log ‖β‖w1

> 0, observe that

β = ‖β‖w1

But it is easy to see that

log ‖β‖w1 =
1

[K : F ]
log ‖τ‖v1

and thus β[K:F ] = τ . But this is a contradiction, as then the minimal field of fβ
must also be K, but β ∈ F $ K. That it is also in R∩U follows from the preceding
proposition. �
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Corollary 4.9. Every Salem number τ > 1 gives rise to an eigenvector fτ of the
M operator with eigenvalue δ(fτ ) = [Q(τ) : Q].

Proof. This now follows from the above results and Proposition 4.5. �

Thus, if τ > 1 is a Salem number, we have fτ ∈ R ∩ P ∩ U , so we can compute
explicitly:

(4.8) ‖fτ‖m,p = δ(fτ )‖fτ‖p = δ(fτ )1−1/p21/p| log τ |.

When p = 1 this is, of course, twice the classical logarithmic Mahler measure of τ ,
and when p =∞, this is precisely the degree times the logarithmic house of τ .

4.4. The group Γ and proof of Theorem 5. We now construct an additive
subgroup Γ ≤ 〈R ∩ P ∩ U〉 which is bounded away from 0 if and only if the
Lp Lehmer conjecture is true and thus establish Theorem 5. For K ∈ KG, let
WK = TK(U) ∩ P ∩ R. Notice first WK is not empty if TK(U) is not empty, as
any element f ∈ TK(U) can be projected to a minimal element of its K-support
{F ∈ K : PF (f) 6= 0}, and that by construction such a projected element PF (f)
will be an element of TK(U) ∩ P, and since TK(U) and P are both closed under
scaling, we can ensure such an element is representable. (We remark in passing that
we may in fact have TK(U) = {0}, for example, when K = Q(i) where i2 = −1;
see Remark 2.9.) By our Lp Northcott analogue Theorem 8, we see that the set
{f ∈ WK : ‖f‖p ≤ C} is finite (notice that f ∈ WK =⇒ δ(f) = [Kf : Q] ≤ [K :
Q]) for any C > 0. As WK ⊂ P we have ‖f‖m,p = δ(f) · ‖f‖p (see Proposition 4.5
above), so we may choose an element fK ∈WK of minimal Mahler p-norm for each
K ∈ KG, letting fK = 0 if TK(U) = {0}. Notice that

mp(fK) = ‖fK‖m,p
by construction (this follows from the usual argument following Proposition 4.5 and
using R = {d = δ}). We let Γ = Γp be the additive subgroup generated by these
elements (notice that our choices may depend on p):

(4.9) Γ = 〈{fK : K ∈ KG}〉 ≤ R ∩ P ∩ U .

Notice that Γ is, by construction, clearly a free group, as by Theorem 1, p. 3, we
have the direct sum Γ =

⊕
K∈KG Z · fK .

Let Um,p denote the completion of U with respect to the Mahler p-norm ‖ · ‖m,p.
Our goal is now to prove Theorem 5, which we recall here:

Theorem 5. Equation (∗p) holds if and only if the additive subgroup Γ ⊂ Um,p is
closed.

We begin by proving a basic result about additive subgroups of Banach spaces,
following the remarks and proofs in [2, Remark 5.6] and [10, Theorem 2 et seq.].
(We only need the second part of this lemma for our theorem, however, we prove
both directions for their own interest.)

Lemma 4.10. Let Λ be a countable additive subgroup of a Banach space B. If Λ
is discrete, then it is closed and free abelian. If Λ is closed, then it is discrete.

Proof. We restrict our attention to real Banach spaces, as this is the case that
interests us, but note that the result continues to be true in the complex setting
under suitable assumptions (see the discussion in [10]).



ORTHOGONAL DECOMPOSITION AND LEHMER’S PROBLEM 31

We will first show that if Λ ⊂ B is countable and discrete then it is also closed
and free. That it is closed is trivial, so let us show that it is free by exhibiting
a basis as a Z-module. Let {vi}∞i=1 be an enumeration of the non-zero elements
of Λ. Choose b1 = tv1 where t > 0 is the smallest number such that tv1 ∈ Λ;
clearly such a choice exists, else Λ would not be discrete. Let B1 = {b1} and let
X1 = spanRB1. Then B1 is a basis for Λ ∩X1. Suppose now we have chosen basis
vectors Bn = {b1, . . . , bn} such that Bn is a basis for Λ∩Xn where Xn = spanRBn.
If Λ ⊂ Xn, then Λ has finite rank and we are done, so suppose Λ 6⊂ Xn. Let
v = vk be the first element of the enumeration {vi} which is not in Λ∩Xn, so that
vi ∈ Λ ∩Xn for all i < k. Let Xn+1 = spanR(Bn ∪ {v}). Observe that the set

T = {t ∈ R : tv ∈ Xn + Λ}

is an additive subgroup of R, and further, there must exist a minimal element
t0 > 0, as otherwise, we could find a sequence tn → 0 such that 0 < tn < 1,
xn + tnv ∈ Λ, and xn =

∑n
i=1 ribi ∈ Xn where ri ∈ [0, 1) for each 1 ≤ i ≤ n by

adding appropriate elements of Λ ∩Xn to xn. But then

‖xn + tnv‖ ≤ max
r∈[0,1]n

∥∥∥∥ n∑
i=1

ribi

∥∥∥∥+ ‖v‖

so the vectors xn + tnv give an infinite subset of Λ∩Xn+1 of bounded norm in the
finite dimensional vector space Xn+1 (with the norm from B) and this contradicts
the fact that Λ ∩Xn+1 is discrete (which follows from the fact that Λ is discrete).
Thus, there must exist a minimal positive element t0 ∈ T such that T = Zt0. Let
bn+1 = x0 + t0v where x0 =

∑n
i=1 ribi ∈ Xn for some ri ∈ [0, 1). We claim that

Bn+1 = {b1, . . . , bn+1} is a basis for Λ ∩ Xn+1 such that v = vk ∈ Λ ∩ Xn+1. To
see this, observe that by our construction of the set T , every λ ∈ Λ∩Xn+1 has the
form λ = x+mn+1t0v for some mn+1 ∈ Z. Then

λ−mn+1bn+1 = x−mn+1x0 ∈ Λ∩Xn =⇒ λ−mn+1bn+1 =

n∑
i=1

mibi (mi ∈ Z).

But then λ =
∑n+1
i=1 mibi and so Bn+1 is indeed a basis for Λ ∩Xn+1. Now, either

this process continues indefinitely and each nonzero element vk of Λ is contained
in some Bn, in which case

⋃
nBn is a basis for Λ, or else Λ ⊂ Xn for some n, in

which case Λ has a basis Bn. In either case, we have constructed a basis for Λ as
a Z-module, and thus Λ is free.

Now, let us show that if Λ is countable and closed then it must be discrete. If
Λ were not discrete, then we could choose a sequence of vectors vn → 0 such that
‖vn+1‖ ≤ 1

3‖vn‖ for all n ∈ N. To every subset S ⊂ N we associate the vector
vS =

∑
n∈S vn. Notice that each vS is an absolutely convergent series, and belongs

to Λ since Λ is closed. We claim that the elements vS are distinct for distinct
subsets of N. To see this, observe that for S 6= T ⊂ N,

vS − vT =
∑

n∈S\T

vn −
∑

m∈T\S

vm =

∞∑
n=1

εnvn
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where εn ∈ {−1, 0,+1}, and for at least one n we have εn 6= 0. Let k be the first
such number. Then if vS − vT = 0 we must have −εkvk =

∑∞
n=k+1 εnvn, but∥∥∥∥ ∞∑

n=k+1

εnvn

∥∥∥∥ ≤ ( ∞∑
n=1

1

3n

)
‖vk‖ =

‖vk‖
2

< ‖vk‖ = ‖εkvk‖,

which is impossible. Thus each vS is uniquely associated to S, but this gives an
uncountable number of elements of Λ, a contradiction. �

We remark that countability is essential in the above lemma, as the uncountable
subgroup {f : [0, 1] → Z : ‖f‖∞ < ∞} ⊂ L∞[0, 1] is discrete and closed but not
free.

We are now prepared to prove Theorem 5:

Proof of Theorem 5. By Proposition 3.11 and Theorem 4, we know that (∗p) holds if
and only if there exists a constant cp such that mp(f) ≥ cp > 0 for all f ∈ R∩U∩P.
Given any f ∈ R∩U ∩P, let A(f) = {K ∈ KG : PK(f) 6= 0}. A(f) clearly contains
a minimal element K which satisfies F $ K,F ∈ KG =⇒ PF (f) = 0. Let K be
any such minimal element. Then observe that PK(f) = TK(f), as

PK(f) =
∑
F⊆K
F∈KG

TF (f),

but PF (f) = 0 =⇒ TF (f) = 0 for all F $ K,F ∈ KG. Observe that mp(PKf) ≤
mp(f) by Proposition 2.11 and Lemma 3.8. But then, by construction of Γ,
‖fK‖m,p = mp(fK) ≤ mp(PKf) since PKf = TKf ∈ TK(U) ∩ ∩P. Thus, if Γ
is discrete, we gain (∗∗p) and by Theorem 4 we gain the Lp Lehmer conjecture
(∗p).

Likewise, supposing (∗∗p), we can repeat the same procedure as above given an
arbitrary element f ∈ Γ to obtain PK(f) = fK for some minimal K in A(f). Now,
by the fact that PK is a norm one projection with respect to the Lp norm (Proposi-
ton 2.11), and the fact that it commutes with the T (n) operators (Proposition 2.23),
we see that it commutes with the M operator well, and therefore, by the definition
of the Mahler norm,

‖PKf‖m,p = ‖MPKf‖p = ‖PK(Mf)‖p ≤ ‖Mf‖p = ‖f‖m,p.

Since fK ∈ R∩U ∩P, we see that (∗∗p) implies that ‖PKf‖m,p ≥ cp > 0 and thus
Γ is discrete.

Finally, observe that as a countable (free abelian) additive subgroup of the Ba-
nach space Um,p, by Lemma 4.10 above, Γ is discrete if and only it is closed. �

4.5. The Mahler 2-norm and proof of Theorem 6. Recall that we define the
Mahler 2-norm for f ∈ F to be:

‖f‖m,2 = ‖Tf‖2 =

∥∥∥∥ ∞∑
n=1

nT (n)f

∥∥∥∥
2

.

The goal of this section is to prove Theorem 6, which we recall here for the conve-
nience of the reader:
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Theorem 6. The Mahler 2-norm satisfies

‖f‖2m,2 =

∞∑
n=1

n2 ‖T (n)(f)‖22 =
∑
K∈KG

∞∑
n=1

n2 ‖T (n)
K (f)‖22.

Further, the Mahler 2-norm arises from the inner product

〈f, g〉m = 〈Mf,Mg〉 =

∞∑
n=1

n2 〈T (n)f, T (n)g〉 =
∑
K∈KG

∞∑
n=1

n2 〈T (n)
K f, T

(n)
K g〉

where 〈f, g〉 =
∫
Y
fg dλ denotes the usual inner product in L2(Y ), and therefore

the completion Fm,2 of F with respect to the Mahler 2-norm is a Hilbert space.

Proof of Theorem 6. The first part of the theorem follows easily from the fact that

the T
(n)
K form an orthogonal decomposition of F . Indeed, for f ∈ F , we have:

‖f‖2m,2 =

∥∥∥∥ ∑
K∈KG

∞∑
n=1

nT
(n)
K (f)

∥∥∥∥2
2

=
∑
K∈KG

∞∑
n=1

n2 ‖T (n)
K (f)‖22.

The above sums are, of course, finite for each f ∈ F . That the specified inner prod-
uct 〈f, g〉m defines this norm is then likewise immediate. Therefore, the completion
of F with respect to the norm ‖ · ‖m,2 is a Hilbert space, as claimed. �

Lastly, we note that ‖·‖m,2 ≤ δh2 ≤ m2. The authors suspect that this inequality
is not true for general p 6= 2, but we know of no examples proving such a result.
To see that the desired inequality holds for p = 2, let us recall (Proposition 2.26)
that for a given f ∈ F , we have an expansion into degree n components given by
f = T (1)f+· · ·+T (N)f with T (N)f 6= 0. Then observe that δ(f) ≥ N , for otherwise,
T (N)f = 0 since f itself would have [Kf : Q] = n < N and thus f ∈ V (n), and so

it would have no essential projection to V (N). Thus

‖f‖m,2 =

(
N∑
n=1

n2‖T (n)f‖22

)1/2

≤

(
N∑
n=1

N2‖T (n)f‖22

)1/2

= N‖f‖2 ≤ δ(f)‖f‖2 = δh2(f).

That δh2 ≤ m2 = d h2 follows from the inequality δ ≤ d.
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