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ABSTRACT. Building on work of Dubickas and Smyth regarding the metric
Mahler measure and the authors regarding extremal norms associated to the
Mahler measure, the authors introduce a new set of norms associated to the
Mahler measure of algebraic numbers which allow for an equivalent reformula-
tion of problems like the Lehmer problem and the Schinzel-Zassenhaus conjec-
ture on a single spectrum. We present several new geometric results regarding
the space of algebraic numbers modulo torsion using the LP Weil height in-
troduced by Allcock and Vaaler, including an canonical decomposition of an
algebraic number into an orthogonal series with respect to the L? height.
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2 FILI AND MINER

1. INTRODUCTION

Let K be a number field with set of places M. For each v € Mg lying over a
rational prime p, let || - ||, be the absolute value on K extending the usual p-adic
absolute value on Q if v is finite or the usual archimedean absolute value if v is
infinite. Then for o € K*, the absolute logarithmic Weil height h is given by

_ (K = Q] oot lla
h(a)_vezﬂ/[:K [KQ] lg || H’U

where log™t = max{0,logt}. As the expression on the right hand side of this
equation does not depend on the choice of field K containing «, h is a well-defined

function mapping @X — [0,00) which vanishes precisely on the roots of unity

Tor(@x). Closely related to the Weil height is the logarithmic Mahler measure,
given by

m(a) = (dega) - h(a)
where deg @ = [Q(«) : Q]. Though seemingly related to the Weil height in a simple
fashion, the Mahler measure is in fact a fair bit more mysterious. Perhaps the most
important open question regarding the Mahler measure is Lehmer’s problem, which
asks if there exists an absolute constant ¢ such that

(1.1) m(a)>c¢>0 forall aeQ" \ Tor(Q").

The question of the existence of algebraic numbers with small Mahler measure was
first posed in 1933 by D.H. Lehmer [§] and since then the conjectured existence
of an absolute lower bound away from zero has come to be known as Lehmer’s
conjecture. The current best known lower bound, due to Dobrowolski [3], is of the
form
log log deg 3 for all T\ Tor(@~
m(a) > (h)gdega> orall aeQ  \Tor(Q")
where the implied constant is absolute.
Recently, Allcock and Vaaler [I] observed that the absolute logarithmic Weil

height h : @X — [0,00) can in fact be viewed in an equivalent fashion as the L!
norm on a certain measure space (Y, \). The points of Y are the places of Q endowed
with a topology which makes Y a totally disconnected locally compact Hausdorff
space, and each equivalence class of the algebraic numbers modulo torsion gives
rise to a unique locally constant real-valued function on Y with compact support.
The purpose of this paper is to construct analogous function space norms in order
to study the Mahler measure. Once we have introduced our new norms, we will
give a general LP formulation of the Lehmer conjecture which is equivalent to the
classical Lehmer conjecture for p = 1 and to the Schinzel-Zassenhaus conjecture [9]
for p = oo.

We first briefly recall here the notation of [I], which we will use throughout this
paper. To each equivalence class a in @X / Tor(@>< ), we can uniquely associate the
function f, : Y — R given by

fa(y) = log||lall,.

(We will often drop the subscript o when convenient.) We denote the space of
functions given by algebraic numbers modulo torsion by F. If « € K, then the
function f,(y) is constant on the sets Y (K,v) = {y € Y : y|v} for v € Mg and
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takes the value log ||||,. The measure A is constructed so that it assigns measure
(K, : Q,]/[K : Q] to the set Y (K, v), so that if & € K* for some number field K,

we have

(Ko - Q]

K Q. = 2h(a).

| falln = /Y Falp)ldA@) = 3 Jlog flall

vEMK

The product formula takes the form fY fa dX = 0. We also have a well-defined inner
product on F given by

(f9) = /Y f(y)g(y) dX\(y)

which satisfies || f|lo = (f, f)'/?. The geometry of the space F will play a significant
role in our study.

The study of the Mahler measure on the vector space of algebraic numbers
modulo torsion F presents several difficulties absent for the Weil height, the first of
which is that m, unlike h, is not well-defined modulo torsion. Recent attempts to
find topologically better-behaved objects related to the Mahler measure include the
introduction of the metric Mahler measure, a well-defined metric on F by Dubickas
and Smyth [5] and the introduction of the ultrametric Mahler measure by the first
author and Samuels [7]. Both metrics induce the discrete topology if (and only
if) Lehmer’s conjecture is true. Later, the authors introduced vector space norms
associated to the Mahler measure [6] which satisfied an extremal condition akin to
those in the papers of Dubickas and Smyth and of the first author and Samuels.
The norms introduced in this paper do not satisfy the same extremal condition,
however, they allow the introduction of much advantageous geometry which allows
for stronger results.

In order to construct our norms related to the Mahler measure, we first construct
an orthogonal decomposition of the space F of algebraic numbers modulo torsion.
We fix our algebraic closure Q of Q and let K denote the set of finite extensions of
Q. We let G = Gal(Q/Q) be the absolute Galois group, and let K& = {K € K :
oK = K for all 0 € G}. Let Vi denote the Q-vector space span of the functions
given by

Vi = spang({fo : @ € K™/ Tor(K™)}).

We first prove the following result, which gives the orthogonal decomposition by
Galois field:

Theorem 1. There exist projection operators Ty : F — F for each K € K& such
that T (F) C Vi, Ti(F) L Tr(F) for all K # L € K€ with respect to the inner
product on F, and

F= B Tx(F)

KeKe

The notation F = @ j-c e Tr (F) is a direct sum in the usual Q-vector space sense,
specifically, that every element of the Q-vector space F is uniquely expressible as
a finite sum of elements from the Q-vector spaces Tk (F) as K ranges over the set
K. The term projection means an idempotent linear operator which is continuous
(here, with respect to the LP? norm for any 1 < p < o0). It is of note in this
theorem that our projections are defined on the underlying Q-vector space F (as
well as extending by continuity to each of the closures).
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In particular, it follows from Theorem [I] that the projection operators Tk are
orthogonal projections with respect to the inner product on F, and thus, in the
completion with respect to the L? norm, this gives a Hilbert space decomposition in
the usual sense of a Hilbert space direct sum (in which each element of the Hilbert
space has a unique expansion as a series of vectors, one from each summand). A
decomposition by Galois field alone, however, does not give enough information
about the degree of a specific number in order to bound the Mahler measure of the
number (and further, as we will see in Remark a canonical decomposition along
the entire collection of number fields is not possible because of linear dependence
between conjugate fields). We therefore define the vector subspace

v = 3 v

KeK
[K:Q]<n
(where the sum indicates a usual sum of Q-vector spaces) and determine the fol-
lowing decomposition:

Theorem 2. There exist projections T : F — F for each n € N such that
TC(F) c v, 7(F) L TM(F) for all m # n, and

F= é T (F).
n=1

These decompositions are independent of each other in the following sense:

Theorem 3. The projections Tx and T™ commute with each other for each K €
K¢ and n € N.

In particular, as a result of commutativity, we can form projections TI((") = TxT™
and so we have an orthogonal decomposition

F= é P 1.

n=1 KeckKC

Again, when we pass to the completion in the L? norm, the projections extend by
continuity and the above decomposition extends to the respective closures and the
direct sum becomes a direct sum in the usual Hilbert space sense.

As a simple example of how natural this orthogonal decomposition is, we note
that the 2-height of a =2 + V2 can be decomposed as:

1245113 = 1 5ll3 + 11 f14 13

as the numbers v/2 and 1 + v/2 will be seen to be orthogonal to each other. We
refer the reader to Example 2:20] below for more details.

This geometric structure within the algebraic numbers allows us to define linear
operators, for all L? norms with 1 < p < oo, which capture the contribution of the
degree to the Mahler measure in such a way that we can define our Mahler norms.
Specifically, we define the operator

M:F—F

[ i nT™ f.
n=1
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The sum is finite for each f € F. M is a well-defined, unbounded (in any LP norm,
1 < p < ), invertible linear map defined on the incomplete vector space F. We
define the Mahler p-norm on F for 1 < p < oo to be

£ llm.p = 1M flp
where || - ||, denotes the usual L”? norm on the incomplete vector space F. The
Mahler p-norm is, in fact, a well-defined vector space norm on F, and hence the
completion F,, , with respect to | - ||mp is a Banach space.

In order to see that these norms form a suitable generalization of the Mahler
measure of algebraic numbers, we will show that the Lehmer conjecture can be
reformulated in terms of these norms. First, let us address what form the Lehmer
conjecture takes inside F. For any a € Q , let hp(a) = [|fallp- (Recall that
hi(a) =2h(a).)

Conjecture 1 (LP Lehmer conjectures). For 1 < p < oo, there exists an absolute
constant ¢, such that the LP Mahler measure satisfies the following equation:

(%p) my(a) = (dega) - hp(a) > ¢, >0 forall o€ @X \Tor(@x).

From the fact that hi(«) = 2h(«) it is clear that when p = 1 this statement is
equivalent to the Lehmer conjecture. For p = oo, we will show in Proposition |4.6
below that the statement is equivalent to the Schinzel-Zassenhaus conjecture.

In order to translate the Lehmer conjecture into a bound on function space
norms which, unlike the metric Mahler measure, cannot possibly be discrete, it
is necessary to reduce the Lehmer problem to a sufficiently small set of numbers
which we can expect to be bounded away from zero in norm. This requires the
introduction in Section [3| of two classes of algebraic numbers modulo torsion in F,
the representable elements R and the projection irreducible elements P. Let U C F
denote the subspace of algebraic units. We prove the following theorem:

Theorem 4. For each 1 < p < o0, equation holds if and only if
(%) | fllmp=>cp >0 forall 0#feRNPNU

where R denotes the set of representable elements, P the set of projection irreducible
elements, and U the subspace of algebraic units. Further, for 1 < p < q < oo, if
(x%p,) holds then (x4) holds as well.

The last statement of the theorem, which is proven by reducing to a place of measure
1 and applying the usual inequality for the LP and L7 norms on a probability space,
generalizes the well-known fact that Lehmer’s conjecture implies the conjecture of
Schinzel-Zassenhaus.

Let U, , denote the Banach space which is the completion of the vector space
U of units with respect to the Mahler p-norm || - |- The set R NP NU has
another useful property which we will prove, namely, that the additive subgroup it
generates contains a subgroup I' =Ty,

I'<(RNPNU),

which is also a set of equivalence for the Lehmer conjecture, that is, we will show
that the LP Lehmer conjecture is equivalent to the condition that I' be a
discrete subgroup in U, ;. Specifically, we prove:

Theorem 5. FEquation holds if and only if the additive subgroup I' C Uy, p, 15
closed.
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This leads us to a new conjecture, equivalent to for each 1 < p < oo:
Conjecture 2. The additive subgroup I' C Uy, 5, is closed for each 1 < p < oco.

Lastly, the presence of orthogonal decompositions raises a particular interest in
the study of the L? norm. In this case, the norm associated to the Mahler measure
has a particularly simple form which is in sympathy with the geometry of L?.

Theorem 6. The Mahler 2-norm satisfies

1l =D n2 ITANIB= > > w? 1T ()3
n=1

KeKG n=1

Further, the Mahler 2-norm arises from the inner product

(fog)m = (Mf,Mg) =Y 0> (T f,7™g) = S S 02 (T £, 1 g)
n=1

KekG n=1

where (f,g) = fY fgd\ denotes the usual inner product in L*(Y), and therefore
the completion F,, 2 of F with respect to the Mahler 2-norm is a Hilbert space.

The structure of our paper is as follows. In Section [2[ we introduce the basic
operators and subspaces of our study, namely, those arising naturally from number
fields and Galois automorphisms. The proofs of Theorems [I] 2] and [3| regarding the
orthogonal decompositions of the space F with respect to Galois field and degree
will then be carried out in sections and In Section [3] we prove our
results regarding the reduction of the classical Lehmer problem and introduce the
relevant classes of algebraic numbers which are essential to our theorems. Finally
in Section [4 we introduce the Mahler p-norms and prove the remaining results.

2. ORTHOGONAL DECOMPOSITIONS

In this section we will develop the machinery to prove our main decomposition
theorems. First, however, we must introduce several auxiliary constructions and
results which will be needed later. We will start by introducing the basic isometries
of our space associated to Galois automorphisms in Section then exploring
the relationships between the subspaces associated to number fields in Section [2.2
and their associated projection maps in Section We will then prove a general
decomposition for vector spaces in Section [2.4] and apply this to obtain Theorem []
and finally in Sections [2.4] and [2.5] we will prove Theorems [2] and [3] respectively.

2.1. Galois isometries. Let F,, denote the completion of F with respect to the
LP norm. By [Il Theorems 1-3],

{fel' (Y N): [, fdx=0} ifp=1
F, =< (Y, )) if1<p<oo
Co(Y, \) if p = oo.

We begin by introducing our first class of operators, the isometries arising from
Galois automorphisms. Let us recall how the Galois group acts on the places of an
arbitrary Galois extension K. Suppose a € K, v € My is a place of K, and ¢ € G.
We define ov to be the place of K given by ||a|lsy = e~ ], or in other words,
loall = llelo-10-
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Lemma 2.1. Fach o € G is a measure-preserving homeomorphism of the measure
space (Y, \).

Proof. That the map ¢ : Y — Y is a well-defined bijection follows from the fact
that G gives a well-defined group action. Continuity of ¢ and ¢~! follow from
[1, Lemma 3]. It remains to show that ¢ is measure-preserving, but this follows
immediately from [1l (4.6)]. O

In accordance with the action on places, we define for ¢ € G the operator
Lo :Fp—Fp

given by

(Lo f)(y) = flo7"y).
Thus for f, € F, we have L, fo, = foa, and in particular L,(F) C F for all o € G.
Further, by our definition of the action on places, we have L, L, = L.

Let B(F,) denote the bounded linear maps from F, to itself, and let Z(F,) C
B(F,) denote the subgroup of isometries of F,. By the construction of A, each
o € G is a measure-preserving topological homeomorphism of the space of places
Y, so it follows immediately that L, is an isometry for all 1 < p < oo, that is,
|Lsfllp = || f]lp for all ¢ € G. Thus we have a natural map

p:G—=I(Fp)
o Ly

where (L, f)(y) = f(oc~'y). We will show that p gives an injective infinite dimen-
sional representation of the absolute Galois group (which is unitary in the case of
L?), and further, that the map p is continuous if G is endowed with its natural
profinite topology and Z is endowed with the strong operator topology inherited
from B(F,). (Recall that the strong operator topology, which is weaker than the
norm topology, is the weakest topology such that the evaluation maps A — ||Af||,
are continuous for every f € LP.)

Proposition 2.2. The map p : G — I is injective, and it is continuous if T is
endowed with the strong operator topology and G has the usual profinite topology.

Proof. First we will observe that the image p(G) is discrete in the norm topology, so
that p is injective. To see this, fix 0 # 7 € G, so that there exists some finite Galois
extension K and an element a € K* such that ca # 7. By [, Theorem 3], we
can find a rational integer n such that 8 = n+ « is torsion-free, that is, if 8/5" # 1
then 8/0" & Tor(@x) for any conjugate 8’ of 3, and in particular, the conjugates
of B give rise to distinct functions in F. Thus L, fg # L, fg, so in particular, there
exists some place v of K such that o(Y(K,v)) # 7(Y(K,v)) and are therefore
disjoint sets. Choose a Galois extension L/K with distinct places wq, we|v. Since
L/K is Galois, the local degrees agree and so A(Y(L,w;)) = MY (L,w2)) by [I}
Theorem 5]. Define

1 ifyeY(L,u)

fly)=q-1 ifyeY(L,wy)

0 otherwise.

Clearly f € Fp forall 1 <p < oo and L, f and L, f have disjoint support. Thus,

(Lo = L) flly = (1Lo FIE + 1L £112) 7 = 27| £,
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(where we let 2'/7 = 1 when p = oo). But this implies that 1 < 2%/? < ||L, — L,||
for all 0 # 7 € G, and thus the image p(G) is discrete in the norm topology of Z,
and p is injective.

Let us now prove continuity. Recall that a basis for the strong operator topology
on Z is given by sets of the form

U={AeZ:|(A-B)fi]| <eforalll<i<k}

where B € Z, fi,..., fi is a finite set of functions in F,, and € > 0. Fix such
an open set U for a given B = L, for some ¢ € G. Approximate each f; by an
element g; € F such that || f; — g, < ¢/2'/P. Let Vi be a subspace of F containing
g1,---,9k. Let

N={reG:olg =7lk}
Then N is an open subset of G in the profinite topology. We claim that p(N) C U,
and thus that p is continuous. To see this, observe that for 7 € IV,

I(Zr = L) illy < Zr = Lo)gilly + 1 (Lr = Lo) (£ = g0l
< (Lr = Lo)gilly + 27 - ¢/27 = ¢

where ||(L; — Ly)gi|lp, = 0 because g; € Vi, and thus is locally constant on the
sets Y (K, v) for v a place of K, and 7 € N implies that o and 7 agree on K, so
Lrgi = Lo gi. U

2.2. Subspaces associated to number fields. We will now prove some lemmas
regarding the relationship between the spaces Vi and the Galois group. As in the
introduction, let us define

K={K/Q:[K:Q <o} and KY={KeK:0K =K Yo eG}.

As we shall have occasion to use them, let us recall the combinatorial properties
of the sets K and K¢ partially ordered by inclusion. Recall that K and K¢ are
lattices, that is, partially ordered sets for which any two elements have a unique
greatest lower bound, called the meet, and a least upper bound, called the join.
Specfically, for any two fields K, L, the meet K A L is given by K N L and the join
KV Lis given by KL. If K, L are Galois then both the meet (the intersection) and
the join (the compositum) are Galois as well, thus K is a lattice as well. Both
lattices have a minimal element, namely Q, and are locally finite, that is, between
any two fixed elements we have a finite number of intermediate elements.
For each K € K, let

(2.1) Vi = spang({fo : @ € K™/ Tor(K™)}).

Then Vi is the subspace of F spanned by the functions arising from numbers of
K. Suppose we fix a class of an algebraic number modulo torsion f € F. Then the
set

{K ck: f S VK}
forms a sublattice of K, and by the finiteness properties of K this set must contain
a unique minimal element.

Definition 2.3. For any f € F, the minimal field is defined to be the minimal
element of the set {K € K: f € Vix}. We denote the minimal field of f by K.

Lemma 2.4. For any f € F, we have Stabg(f) = Gal(Q/K;) < G.
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Notation 2.5. By Stabg(f) we mean the o € G such that L, f = f. As this tacit
identification is convenient we shall use it throughout without further comment.

Proof. Let f = f,. Then clearly Gal(Q/K;) < Stabg(f), as af € Ky for some
¢ € N by definition of Vi ;- To see the reverse containment, merely observe that
K¢ = Q(at) for some £ € N, as otherwise, there would be a proper subfield of K ¢
which contains a power of «, contradicting the definition of K. (Il

Remark 2.6. The minimal such exponent ¢ used above can in fact be uniquely as-
sociated to f € F and this will be vital to the concept of representability developed
in Section [l below.

Lemma 2.7. For a given f € F, we have f € Vi if and only if L, f = [ for all
o € Gal(Q/K).

Proof. Necessity is obvious. To see that the condition is sufficient, observe that
by definition of Ky, we have f € Vi if and only Ky C K, which is equivalent
to Gal(Q/K) < Gal(Q/Ky) under the Galois correspondence. But by the above
lemma, Gal(Q/K ) = Stabg(f). O

Proposition 2.8. If E, F € K, then we have E = F if and only if Vg = Vp.

Proof. Suppose E # F but Vg = Vp. Let E = Q(«). By [4, Theorem 3] we can
find a rational integer n such that 8 = n + « is torsion-free, that is, if 8/5" # 1
then 5/8" ¢ Tor(@x) for any conjugate 8’ of 3, and in particular, the conjugates
of B give rise to distinct functions in F. Observe therefore that £ = Q(5) and
Stabg(fs) = Gal(Q/FE). By the above if fz € Vi then we must have Gal(Q/F) <
Gal(Q/E), or E C F. Repeating the same argument for a generator of F, we find
that FF C E so E = F, a contradiction. The reverse implication is obvious. O

Remark 2.9. The above proposition is no longer true if we restrict our attention to
the space of units U/ C F. This follows from the well known fact that CM extensions
(totally imaginary quadratic extensions of totally real fields) have the same unit
group modulo torsion as their base fields, the simplest example being Q(i)/Q.

2.3. Orthogonal projections associated to number fields. For K € K, define
the map Px : F — Vi via

Peh) = [ (Lal)wiv(o)
Hg

where Hix = Gal(Q/K) and v is the normalized (measure 1) Haar measure of
Hg. (Observe that, like G, Hg is profinite and thus compact and possesses a
Haar measure.) Let us prove that the map is well-defined. Since f € F, it has a
finite Galois orbit and thus a finite orbit under Hy. Let us partition Hg into the
k = [Hg : Stabg,. (f)] cosets of equal measure by the translation invariance of the
Haar measure. Denote these cosets by Staby,. (f)o1,...,Stabp, (f)or. Then

PK(f):%(LGf""""i'Lakf)'

But each L,,f € F since F is closed under the action of the Galois isometries.
Thus if f = f,, we have L,,f = f,,o. Since F is a vector space, Px(f) € F as
well. Further, it is stable under the action of Hy, and thus, by Lemma 2.7 we
have Pk (f) € Vk. The map Py is in fact nothing more than the familiar algebraic
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norm down to K, subject to an appropriate normalization, that is, if fg = Pk fa,
then we have

1/[K (a):K] o
(2.2) B= <NI[§(O‘) a) mod Tor(Q ™).

(We note in passing that the norm map Nf(a) : K(a)* — K* descends to a
well-defined map modulo torsion.)
The following alternative formulation will also be helpful:

Lemma 2.10. Let K € K and let Mg denote the places of K. For each v € My,
let x»(y) be the characteristic function of the set Y (K,v). Then

Pefy) = ) <A(Y(1K)) /Y . f(z)dA(z)> Xol®).

vEMEK

In other words, Pk is essentially the conditional expectation with respect to the
Borel o-algebra generated by the collection {Y (K, v) : v € Mg}. Of course, Y has
infinite measure so this is not a conditional expectation in the usual sense from
probability theory, although it shares many of the same properties. If we restrict to
the space of units, that is, functions supported on the measure one space Y (Q, 00),
then the restriction of Pk to this space is indeed a conditional expectation.

Proof. Fix a valuey € Y. Then there exists a unique v € Mg such that y € Y (K, v)

since Y = {U,epr, Y (K, 0) is a disjoint union. The claim will be proven if we can
show that for this value of y,
1
Pt = s | FEDE)
/\(Y(K,U)) Y (K,v)
Now,
Pxfly)= [ flo~'y)dv(o)

Hy
where Hi,v are as above. By the construction of A (see (4.1) and surrounding
remarks in [I]), for any y € Y(K,v),

N z z) = o y)dv(o
ST gy (O = [, 10700t

(where we need the normalization factor 1/A(Y (K, v)) since (4.1) assumes A(Y (K, v)) =
1) and so the proof is complete. |

Proposition 2.11. Let K C Q be a field of arbitrary degree. Then Py is a pro-
jection onto Vi of norm one with respect to the LP norms for 1 < p < oco.

Proof. We first prove that P32 = Pg. Let H = Hy as above and v the normalized
Haar measure on H. Suppose that 7 € H. Observe that

Pelhe) = [ 1ot avie) = [ fe ivlo) = (D)
since TH = H for 7 € H. Thus,

(P )(y) = /H Prcf (o~ y)dv(o) = /H Py f(y)du(o) = Prcf(y),

or more succinctly, Pg? = Pg. Since linearity is clear we will now prove that the
operator norm of Pg, denoted || Pk ||, is equal to 1 with respect to the LP norm in
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order to conclude that Pk is a projection. If p = oo, this is immediate, so let us

assume that 1 < p < oo. Let f € LP(Y). Then first observe that since v(H) = 1,
Jensen’s inequality implies

[ 1t lavto) < ([ If(aly)|pdz/(a)>1/p.

Now let us consider the LP norm of Pk f:

Pt = ([ IPK(f)(y)|pd/\(y)>1/p = ([| [ semavto pdw)>” v
< ([ fperaemm)” = (], [ oo o)
= </H ||Lgf||§d,u(o*)>1/p = (/H ||f||£du(a)>1/p =1 £llp-

where we have made use of the fact that L, is an isometry, and the application of
Fubini’s theorem is justified by the integrability of | f|P. This proves that || Px| < 1,
and to see that the operator norm is not in fact less than 1, observe that the subspace
Vo is fixed for every Pg. O

As a corollary, if we extend Pk by continuity to the completion F, of F under
the LP norm, we obtain:

Corollary 2.12. The subspace Vi C Fp is complemented in F,, for all1 < p < oco.
As Fy = L%(Y, )\) is a Hilbert space, more is in fact true:

Proposition 2.13. For each K € K, Pk is the orthogonal projection onto the
subspace Vig C L*(Y).

Specifically, this means that || f||3 = || Px f||3+||(I — Px) f||3, where I is the identity
operator.

Proof. Tt suffices to observe that Pk is idempotent and has operator norm || Pk || = 1
with respect to the L? norm, and any such projection in a real Hilbert space is
orthogonal [I2, Theorem IIL.3]. O

We now explore the relationship between the Galois isometries and the projection
operators Pk for K € K.

Lemma 2.14. For any field K C Q of arbitrary degree and any o € G,
L,Px = P,k L,.
Equivalently, Px L, = Lo Py-1p.

Proof. We prove the first form, the second obviously being equivalent. By definition
of Pk, letting H = Gal(Q/K) and v be the normalized Haar measure on H such
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that v(H) = 1,
(LoPe D) = (Peho™9) = [ 5oy au(r)
- /H o ora™ ) y) dv(r)
= [ @D dvln) = PoklLo 1)) O

We will be particularly interested in the case where the projections Px, P;, com-
mute with each other (and thus Pk Py, is a projection to the intersection of their
ranges). To that end, we recall the following results from [6]:

Lemma 2.15. Let K, L C Q be fields of arbitrary degree. Then Vg NV = Vinr.
Proof. See [6l Lemma 2.11]. O

Lemma 2.16. Suppose K € K and L € K&. Then Py and P commute, that is,
Py Py, = Pknp = PLPxk.

In particular, the family of operators {Px : K € K¢} is commuting.

Proof. See [0l Lemma 2.12]. O

2.4. Main decomposition theorem. We will now prove a very general decom-
position theorem, which we will then apply to F in the next two sections in order
to obtain the proof of Theorems [I| and [2] which state that we can orthogonally
decompose the space F of algebraic numbers modulo torsion by their Galois field
and by their degree.

Theorem 7. Let V' be a vector space over Q with an inner product (-,-) and suppose
we have a family of subspaces V; C V together with projections P; indexed by a
partially ordered set I such that:

(1) The index set I has a unique minimal element, denoted 0 € I, and I is
locally finite, that is, any interval [i,j] = {k € I : i < k < j} is of finite
cardinality.

(2) Any pair of elements 1,5 € I has a unique greatest lower bound, called
the meet of i and j, and denoted i A\ j. (Such a poset I is called a meet-
semilattice. )

B) ViCV,ifi<jel.

(4) The projection map P; : V. — V; is orthogonal with respect to the inner
product of V' for alli € I.

(5) Fori,je€l, P,P;=P;P, = P,5;, where i\ j is the meet of i and j.

(6) V.=>3c; Vi (the sum is in the usual Q-vector space sense).

Then there exist mutually orthogonal projections T; < P; (that is, satisfying T;(V) C
Vi) which form an orthogonal decomposition of V :

V= @Ti(v)v and T;(V) LT;(V) foralli#j €l
iel
(The notation V' = @, T;(V) indicates a direct sum in the Q-vector space sense,

that is, that each vector v € V' has a unique expression as a finite sum of vectors,
one from each summand.)
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We call T; the essential projection associated to the space V;, as it gives the
subspace of V; which is unique to V; and no other subspace V; in the given family.

Remark 2.17. Theorem [7| can be stated and proven almost identically if V is a
real Hilbert space rather than an incomplete vector space over Q, the only changes
being that condition @ is replaced with the condition that the closure of >, ; Vi
is V, the direct sum is then understood in the usual Hilbert space sense, and the
expansion of each f into )., T;f is to be understood as a unique series expansion
rather than a finite sum. The construction of the 7; operators and the orthogonality
are proven in exactly the same manner, and indeed, we will make use of the fact
that if we complete V', the decomposition extends by continuity to the completion
in the usual Hilbert space sense. The theorem as stated here and as applied to F is
in fact a strictly stronger result than the statement it implies for the decomposition
of L*(Y) as not only must such projections and such a decomposition exist, but
this decomposition must also respect the underlying Q-vector space F of algebraic
numbers modulo torsion.

Let us begin by recalling the background necessary to define our T; projections.
Since I is locally finite, it is a basic theorem in combinatorics that there exists
a Mobius function p : I x I — Z, defined inductively by the requirements that
p(iyi) = 1foralli € I, p(i,j) =0 foralli £ j € I, and 7, p(i,j) = 0 for all
i < k € I (the sums are finite by the assumption that I is locally finite). Since our
set I has a minimal element 0 and is locally finite, we can sum over i < j as well.
The most basic result concerning the Mobius function is Mébius inversion, which
(in one of the several possible formulations) tells us that given two functions f, g
on I,

fG)=> _g(i) ifandonlyif g(j) =Y uli,j) f(i).
i<j 1<j
In order that our T; capture the unique contribution of each subfield V;, we would
like our T; projections to satisfy the condition that:

(2.3) P = Z T;.
i<j
Mobius inversion leads us to define the T; operators via the equation:
(2.4) Ty = uli, )P
1<

Since each of the above sums is finite and j takes values in Z, we see that T, : V —
V; is well-defined. We will prove that the T operators form the desired family of
projections.

Lemma 2.18. Let the projections P; for i € I satisfy the conditions of Theorem[7]
and let T; be defined as above. Then for all 1,5 € I, PT; = T;P;, and

T ifi<yg
PT, = fi<i
0  otherwise.

Proof. The first claim follows immediately from equation (2.4) and condition
of the theorem statement. To prove the second claim, we proceed by induction.
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Observe that the statement is trivial for Ty = Fy. Now given j € I, suppose the
theorem is true for all ¢ < j. Observe that from (2.3) we get

(2.5) T, =P, — Z T
k<i
Then, if ¢ < j, we have
PiT;=PPi—Y PTy=P - T, =T,
k<i k<i

applying the induction hypothesis at the second equality.
Now suppose i £ 7, so that i A j # 4. Then

PiT;=P;Pi =Y PTy=Ppj— Y PTi— > P,

k<i k<inj k<i
kLing
=Pipj— Y Ti=0=Pinj—Pip; =0
k<inj
by two applications of the induction hypothesis at the third equality. O

Lemma 2.19. Let the T; be as above and let i # j fori,j € I. Then T;T; =

T;T; = 0.

Proof. Suppose that i A j < j. By Lemma 218} T; = T; P; and T; = P;T;. Thus,
T.T; = (Ti ) (PT;) = Ti(Pi P)T; = TiPip T = 0

since ¢ # j implies that ¢ A j <4 or i Aj < 7, so either T;Pir; = 0 or Pia;T; =0 by

Lemma 2.8 O

We are now ready to prove the theorem statement.

Proof of Theorem[7 Let the operators T; for i € I be constructed as above. Let us
first show that each T; is a projection, a linear operator of bounded norm such that
T;2 = T}. The fact the T} is a continuous linear operator of bounded norm follows
from the same fact for the P; operators, since each T; is a finite linear combination
of P; projections.

Let us now show that T; is idempotent. The base case Ty = P, is trivial. Assume
the lemma is true for all ¢ < j. Using equation , we have

T;? = (Pj—Zn>Z:PjQ—ZPjﬂ—ZTin+ <Zﬂ)2

i<j i<j 1<j i<j
:Pj—ZTz’—ZTﬁ'ZTi:PJ‘_ZTi:Tj
i<j i<j i< i<j

where we have used Lemmas and to simplify the middle and last terms.

Now, let us show that the T; decompose V. To see this, observe that each element
f €V by condition @ lies in some V;, + ...+ V;, . Let I’ =, _[0,4m,] C I, and
then observe that ), _;, Ty is the projection onto V;, +...+V; and I’ is finite by
construction, so f = >, _;, Tif. In fact, observe that we can write f = >, _; Ti f
as a formally infinite sum, and all terms except those satisfying k < ¢ are zero by
Lemma Thus we can write

V=rv).

icl
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That the T; are orthogonal projections now follows from the fact that a continuous
operator is an orthogonal projection if and only if it is idempotent and self-adjoint
[12, Theorem II1.2], for, since the P; are assumed to be orthogonal, they are self-
adjoint and thus the T; operators are self-adjoint as well as an integral linear com-
bination of the P; operators, and we have demonstrated that the T; are continuous
and idempotent. ([l

2.5. Decomposition by Galois field and proof of Theorem We will now
apply Theorem (7| to F and its collection of subspaces {Vx : K € K%} with their
associated projections. (Recall that K¢ is simply the set of finite Galois extensions

of Q.)

Proof of Theorem[]l As remarked above, it is well known that both K and K¢
satisfy all of the axioms of a lattice, that is, for any two fields K, L, there is a
unique meet K A L given by K N L and a unique join K V L given by KL. If K, L
are Galois then both the meet (the intersection) and the join (the compositum) are
Galois as well, thus K@ is a lattice as well. Further, both K and K¢ are locally
finite posets and possess a minimal element, namely, Q.

Our decomposition will be along K¢ and the associated family of subspaces Vi
with their canonical projections Pk . Since K¢ is a locally finite lattice, conditions
and of Theoremare satisfied. Clearly the subspaces Vi for K € K¢ satisfy
the containment condition . By Proposition the projections are orthogonal
and satisfy condition (). By Lemma the maps {Px : K € K¢} form a
commuting family and satisfy condition (5)). Lastly, since any f = f, belongs
to Vi, C Vk where K € K€ is the Galois closure of the minimal field Ky, we
find that condition @ is satisfied as well. Thus Theorem m gives us an orthgonal
decomposition

(2.6) F= P Tx(F)
Kek¢&

and the relationship between the Px and Tk operators is given by:

(2.7) Pg= Y Tp, and Tx= Y p(F K)Pp
Fek® Fek®
FCK FCK
where ;i : K¢ x K¢ — Z is the Mbius function associated to K&. O

If K is the Galois closure of the minimal field Ky where f = f,, then Px(f) = f,
and so gives us a unique representation modulo torsion of the algebraic number
«a which we call the M -factorization of a, or the M -expansion of f, in functional
notation.

Example 2.20. Let @ = 2+ /2 and let f = f,. Then K; = Q(v/2). Since
K € K9, [K : Q] =2 and it is easy to see that the interval [Q, K] = {Q, K} C K9,
and so u(Q, K) = —1, and thus

Tk = Pk — Py, Tg = Pg.
Thus
TK(fa):fl-f-ﬂv TQ(fa):f\/i»
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and the M -factorization of o has the form 2 + /2 = /2-(1 4+ v/2), or in functional
notation,

forvz=Fpathipm wd fslf s

Remark 2.21. We end this section with a remark on why we decompose along K¢
but not K. It is not difficult to see that the Px projections for K € K do not form a
commuting family. To see this, suppose « is a cubic algebraic unit with conjugates
8,7 and discriminant A not a square. Then we have the following fields:

Qe 8,7)
\

Q(a) ™ Q(B) Q)
Q(VA)
Q
But the projections associated to the fields Q

Specifically, we may compute:
1

P fa

1
Py fa = —5fp, and Py fs = =3

which shows that Py Popy # Po)FPoa)- This noncommutativity is present
precisely because there is a linear dependence among the vector space Vg(,) and
its conjugates, e.g., fo + fs + fy = 0 (since we assumed « was an algebraic unit).
In particular, it is not hard to check that

Vo) T Vo) = Vo) + Vas) + Vow)-

Clearly such a dependence would make it impossible to associate a unique com-
ponent Tk to each of the three fields. However, the commutavity of the Py for
K € K implies that there is no such barrier to decomposition amongst the Galois
fields.

() and its conjugates do not commute.

2.6. Decomposition by degree and proof of Theorems [2| and In order to
associate a notion of degree to a subspace in a meaningful fashion so that we can
define our Mahler p-norms we will determine a second decomposition of F. Let us
define the function ¢ : 7 — N by

(2.8) 5(f) = #{Lof 0 € G} =[G : Stabg (/)]

to be the size of the orbit of f under the action of the Galois isometries. Observe
that by Lemma we have Stabg(f) = Gal(Q/Ky) where Ky is the minimal field
of f, and so we also have

(2.9) o(f) = [Kr: QL.
Let
(2.10) v = 3 v
KeK
[K:Q]<n

be the vector space spanned by all elements of whose orbit in F under G is of size
at most n. Let P(") denote the unique orthogonal projection of the Hilbert space
L%(Y) onto the closure V(") of the Q-vector space V(™) inside L?(Y)). We wish to
show that the restriction of this orthogonal projection defined on the Hilbert space
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L2(Y) preserves the Q-vector space F of equivalence classes of algebraic numbers
modulo torsion, that is, that P (F) C F, so that the map

P F 5 vM

is a well-defined. Once this has been demonstrated, we we can apply Theorem
above to obtain projections T : F — V() which will give us the orthogonal
decomposition of F into a subspace spanned by elements whose orbit under G is of
order at most n. We begin by first showing that the projections P and Py for
n €N and K € K¢ commute.

Lemma 2.22. If K € K, then 6(Px f) < d(f) for all f € F.

Proof. Let F = K;. Since K € K% we have by Lemma that P f =
Pr(Prpf) = Pgnrf. Thus, Pk f € Vknr, and so by (2.9)) above, we have §(Px f) <
[KNF:Q]<[F:Q]=4(f)
Proposition 2.23. Let n € N and K € K%. Then the orthogonal projections

P [2(Y) - V™ and Pg : L2(Y) — Vi commute (where the closures are
taken in L?), and thus Ty and P™ commute as well.

Proof. Since §(Pg f) < §(f) forall f € F by Lemmal2.22/above, we have Pr (V™) c
V(™ and thus by continuity Px (V™) ¢ V), so Pr(V(™) ¢ V(W) N Vg and
Pr P™ is a projection. Therefore they commute. The last part of the claim now
follows from the definition of Tk in . O

O

Let Wx = Tk (F) C Vi for K € K. By the above proposition, we see that if
we can show that P(”)(WK) C Wk, then we will have the desired result since

PO(F) = @ PM(Wk)
KeKe

by the commutativity of P("™) and Tx. Since we will prove this by reducing to finite
dimensional S-unit subspaces, let us first prove an easy lemma regarding finite
dimensional vector spaces over Q.

Lemma 2.24. Suppose we have a finite dimensional vector space A over Q, and
suppose that

A=VieoVi=VeVi=--=V, eV,
for some subspaces V;, V!, 1 <i<n. Then

A=WVi+-+Vy)e(Vin---nV,).

Proof. Tt suffices to prove the lemma in the case n = 2 as the remaining cases follow
by induction, so suppose A =V, @& V/ =V, & VJ. It is an easy exercise that

dimg V1 + dimg Vo = dimg (V4 + V2) + dimg(V4 N V2),
and likewise,
dimg V{ + dimg V4 = dimg (V] + V3) + dimg(Vy N V3).
Now,
(2.11) 2dimg A = dimg V; + dimg V{ + dimg Va + dimg V5
= dimg (V4 + Va) + dimg (V4 N Va) + dimg (VY + V3) + dimg(V{ N V3).
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Now, (Vi +V2) & (V/NV;) € Aand (V] +V3) & (ViNV2) C A, so
b= dimQ(V1 + ‘/2) + dimQ(Vl/ n ‘/2/) < dim@ A
¢ = dimg(V{ + V5) + dimg(V1 N V3) < dimg A.

By (2.11)), we have b+ ¢ = 2dimg A, therefore, we must have b = ¢ = dimg A, and
in particular b = dimg A proves the claim. O

Proposition 2.25. With Wi = Tk (F) as above, P(”)(WK) C Wg for every
n €N and K € K€, and thus P"(F) C F.

Proof. Let f € Wi, and let S C Mg be a finite set of rational primes, containing
the infinite prime, such that

suppy (f) € |J Y(Q, p).

peS
Let Vi s C Vi denote the subspace spanned by the S-units of K. By Dirichlet’s
S-unit theorem, Vi g is finite dimensional over Q. Let Wi ¢ = Tk (Vk,s). Notice

that Wx s C Vi g since each Pr projection will preserve the support of f over each

set Y(Q,p) for p € Mg by Lemma
For all fields F' € K such that F' C K, let

Zps=Pp(Wkys) and Zpg=Qr(Wks),
where Qr = I — Pp is the complementary orthogonal projection. Observe that for
each such F, we have
Wkis=2rs®Zrg.
Then by Lemma, we have

(2.12) WK,S=< > ZF’S)EB( N Z}’S)

FCK FCK
[F:Q]<n [F:Q]<n

This gives us a decomposition f = f, + f/ where

fn € Z ZF,S = V(n) mVVK,Sv
FCK
[F:Q]<n

and

fne () Zes=(VO)' 0 Wis,
FCK
[F:Q]<n
But then f, € V™ and f, € (V™)L so by the uniqueness of the orthogonal
decomposition, we must in fact have f, = P f and f/ = QW f = (I — P™)f.
Since this proof works for any f € F, we have established the desired claim. O

Now we observe that the subspaces V(") with their associated projections P,
indexed by N with the usual partial order <, satisfy the conditions of Theorem
and thus we have orthogonal projections 7 and an orthogonal decomposition

(2.13) F= é T (F).
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The operators T have a particularly simple form in terms of the P(™) projec-
tions. The Mobius function for N under the partial order < is well-known and is
merely

1 if m =n,
pn(m,n) =< -1 ifm=n-—1, and
0 otherwise.
Thus, 7! = PO = Py and
T — p(m) _ p=1 f5rall n > 1.

We call T f the degree n component of f. The following proposition is now
obvious from the above constructions:

Proposition 2.26. Fach f € F has a unique finite expansion into its degree n
components, f") =T f e F
=3

neN

Each ™ term can be written as a finite sum f™ = Do fi(n) where fi(") e F and
J(fi(”)) =n for each i, and f) cannot be expressed as a finite sum > f](") with
6(f;n)) <mn for each j and §(fj(")) < n for some j.

This completes the proof of Theorem [2| It remains to prove Theorem

Proof of Theorem[3 From Proposition we see that the operators Tk and P
commute for K € K¢ and n € N. But 7 = P — P for n > 1 and
TM = PMW 5o by the commutativity of Tx with P(") we have the desired result.
In particular, the map TI(?) =TTy : F — F is also a projection, and thus we
can combine equations and to obtain the orthogonal decomposition

(2.14) ]-‘:é b 1 (). O

n=1 KeK¢?

3. REDUCING THE LEHMER PROBLEM

3.1. Representability. The concept of representability was introduced in [6l, §2.2].
In this section we develop the idea in greater depth. Let us recall that we defined
in Section [2.6] the function § : 7 — N by

5(f) = #{Lof : 0 € G} = G : Staba (f)] = [K : Q.

Observe that since nonzero scaling of f does not affect its Q-vector space span or
the minimal field K that the function ¢ is invariant under nonzero scaling in F,
that is,

§(rf)=406(f) forall feFandO0#reQ.

In order to better understand the relationship between our functions in F and the
algebraic numbers from which they arise, we need to understand when a function
fa € Vi has a representative o € K* or is merely an nth root of an element of
K> for some n > 1. Naturally, the choice of coset representative modulo torsion
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affects this question, and we would like to avoid such considerations. Therefore we
define the function d : F — N by

(3.1) d(f.) = min{deg(Ca) : ¢ € Tor(Q™)}.
Notice that the minimum is invariant under the choice of coset representative o €

@X for f, € F.
Notice that a function f € F can then be written as f = f, with a € fo if and
only if d(f) = 6(f). We therefore make the following definition:

Definition 3.1. We define the set of representable elements of F to be the set
(3:2) R=A{feF:4(f)=d(f)}

The set R consists precisely of the functions f such that f = f, for some a of
degree equal to the degree of the minimal field of definition K of f.

We recall the terminology from [4] that a number o € @X is torsion-free if

ajoa ¢ Tor(@x) for all distinct Galois conjugates oc. As we observed above in
the proof of Proposition torsion-free numbers give rise to distinct functions
foa = Lo fo for each distinct Galois conjugate oo of a.

The goal of this subsection is to prove the following result relating J and d:

Proposition 3.2. Let 0 # f € F and r,s € Z with (r,s) = 1. Then the set
R(f)={q € Q:qf € R} satisfies

where {,n € N, (¢,n) =1, and

(3.3) d((r/s)f) =
In particular, d(f) = £-0(f).

The proof of Proposition consists of showing that R(f) is a fractional ideal
of Q which scales according to R(qf) = (1/q)R(f), and that when f is scaled so
that R(f) = Z we have d((r/s)f) = s0(f). We establish these results in a series
of lemmas below. We begin by demonstrating the most basic results concerning
representability:

ls

T )

Lemma 3.3. We have the following results:

(1) For each f € F, there is a unique minimal exponent £ = {(f) € N such that
lf € R.

(2) For any a € Q”, we have 0(fa)|deg .

(3) f € R if and only if it has a representative in @X which is torsion-free.

(4) Every torsion-free representative of f € R lies in the same field Ky, the
minimal field of f.

Proof. Choose a representative o € @X such that f = f, and let
¢ =lem{ord(a/oa) : 0 € G and a/oa € Tor(@x)}

where ord(¢) denotes the order of an element ( € Tor(@x). Then observe that of
is torsion-free. Clearly, Q(a’) € Q(a) so [Q(af) : Q]|[Q(c) : Q]. Now if a number
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B e @X is torsion-free, then since each distinct conjugate o3 gives rise to a distinct
function in F, we have

deg 3 =[G : Staba(fs)] = [Ky, : Q] = d(fp).

Thus deg o = §(f,) and we have proven existence in the first claim. The existence
of a minimum value follows since N is discrete. To prove the second claim it now
suffices to observe that since § is invariant under scaling, with the choice of ¢ as
above, we have 6(f.) = 0(f)|dega for all & € Q. The third claim now follows
immediately. Lastly, since any representative of f differs by a root of unity, each
representative has some power which lies in (and generates) the minimal field, and
thus each torsion-free representative generates the minimal field. O

We note the following easy corollary for its independent interest:

Corollary 3.4. Let « € Q" have minimal polynomial F(z) € Z[z]. Let G(z) €
Z[z] be an irreducible polynomial of smallest degree in Z[x] such that there exists

some k € N with F(x)|G(z*). Then §(f,) = degG.

(We observe in passing that 6(f) = 1 if and only if f € Vg, in which case, f = f,
where o™ € Q* and so f represents a surd, that is, a root of a rational number.)

Lemma 3.5. If0# f € F, then R(f) ={r € Q:rf € R} is a fractional ideal of
Q, that is, R(f) =rZ for some r € Q.

Proof. We can assume §(f) > 1, otherwise f arises from a surd and the proof is
trivial. First we show that R(f) is a Z-module. It is trivial that if r € R(f)
then —r € R(f) as inversion does not affect degree. Suppose now that we have

r,s € R(f) and choose torsion-free representatives f € @X of rf and v € @X
of sf. If r +s = 0 the result is trivial, so suppose not. By Lemma , we
have 3,7 € Ky. But then 3y € Ky as well, and hence is a representative of
fov=fs+fy=rf+sf=(r+s)f of degree [K; : Q] = 6(f), and thus we have
r+s € R(f) as well.

If we can now show that R(f) is finitely generated the proof will be complete,
as it is easy to check that any finitely generated Z-submodule of Q is indeed a
fractional ideal. But were it to require an infinite number of generators, we would
have to have elements of arbitrarily large denominator. Further, we could fix an IV
sufficiently large so that for a sequence of n; — oo, we would have some r;/n; €
R(f) and |r;/n;|] < N. (For example, given ri/ny, we can take N = ry/ny by
appropriately subtracting off multiples of r1/n; from any other r;/n;.) But then
we would have torsion-free representatives a’i/™ satisfying h(a"/™) < N h(a),
and as representable representatives, each representative has the same degree o(f),
and thus we have an infinite number of algebraic numbers with bounded height and
degree, contradicting Northcott’s theorem. (I

Lemma 3.6. Let 0 # g € Q. Then R(qf) = %R(f).
Proof. This is clear from the definition. O

Lemma 3.7. Let f € R with R(f) = Z and let m,n € Z where (m,n) = 1
and n > 0. Let a be a torsion-free representative of f and denote by o™/™ any
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representative of the class of fymm = (m/n)f modulo torsion of minimal degree.
Then deg a™/™ = n deg ov. In particular, we have

(3.4) d((m/n)f) =nd(f) =ndé(f) i R(f)=2

Proof. Since R(f) = Z, our choice of torsion-free representative /3 in @X has degree
§(f). Clearly, we can say that d((m/n)f) < ndega = nd(f) because any root
of 2™ — a™ over Q(«a) will be a representative of the class of (m/n)f. Observe
that the minimal field Ky = Q(«) is, as we observed above, unique, and thus the
choice of « differs at most by some torsion element of Q(«)*. Further, any choice

of representative 3 € Q" of (m/n)f will satisfy Q(«) C Q(8) since some power of
B will make it torsion-free and therefore it will be a power of a.

Let us show that the degree of 5 cannot satisfy deg S < ndega if R(f) = Z.
Suppose it did, so that &k = [Q(8) : Q(«)] < n. Then observe that by taking the
algebraic norm down to Q(«), we have

Normg(") (8) = (a*™/™ € Q(a)

where ( is a root of unity. As [Q(a) : Q] = (f) the existence of the representative
¢a*™/™ would imply that km/n € R(f), but since (m,n) = 1 and k < n, we have
km/n € 7. This contradicts our assumption that R(f) = Z. O

Combining the above lemmas, we now see that we have proven Proposition [3.2]

3.2. Reduction to representable numbers. We will now show that we can
reduce questions related to lower bounds for the LP Mahler measure to the set
of representable elements. We begin with two lemmas regarding the relationship
between the projection operators Px and the degree functions d and § which will
be used below:

Lemma 3.8. If f € F and K C Ky, then d(Pgk f) < d(f).

Proof. Let f = f, and let o € @X be a minimal degree representative of f, and
choose ¢ € N such that of is torsion-free. Then Q(af) = Ky, so in particular, we
see that

K C Kf - Q(a)
Observe that the norm N;f(a) from K(«) to K is well-defined on the class f, € F.
Since for some choice of root (N;({(a)a)l/[K(o‘):K] is a representative of Px f modulo
torsion, it follows from the fact that N]Ig(a)oz € K that
AP f) < deg(Ny¢ @ o) /IO < [K(a) : K] [K - Q)
=[Qa): Q] =d(f). O
Lemma 3.9. If K € K and K C Ky for f € F, we have 6(Px f) < 46(f).

Proof. Since we can rescale f without affecting either § value, we can assume f € R
so d(f) =6(f). Let F = Ky. Then by Lemma above, we have

(P f) <d(Pgf) <d(f)=4(f)- 0

From the construction of d above, it is easy to see that:
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Proposition 3.10. Let m, : F — [0,00) be given by m,(f) = d(f) - || fllp- Fiz
0# feF. Then

my(f) = min{(dega) - hy(@) s € Q" fo = f}.
The right hand side of this equation is the minimum of the LP analogue of the

usual logarithmic Mahler measure on @X taken over all representatives of f modulo
torsion.

We now prove the reduction to R C F:

Proposition 3.11. Let my(f) =d(f) - ||flp- Then my(F) = my(R), so in partic-
ular, inf m,(F \ {0}) > 0 if and only if inf m,(R \ {0}) > 0.

Proof. Let f € F and £ = {(f). Then by Proposition [3.2] we have §(f) = d({f) and
£6(f) =d(f), and thus

mp(€f) = 6(f) - 1€fllp = LD Nlp = d(f) - [ fllo = mp(f)- O

Remark 3.12. Proposition which will be used below in the proof of Theorem
[ is a key step in constructing equivalent statements of Lehmer’s conjecture for
heights which scale, such as § h, and particularly for the norms we will construct.
Consider for example that if & = 2'/™ then §(f,) = 1 for all n € N and hy(2"/7) =
(2log2)/n — 0.

3.3. Projection irreducibility. In this section we introduce the last criterion
which we will require to reduce the Lehmer conjectures to a small enough set of
algebraic numbers to prove our main results.

Definition 3.13. We say f € F is projection irreducible if Py (f) = 0 for all
proper subfields K of the minimal field K. We denote the collection of projection
irreducible elements by P C F.

Remark 3.14. Notice that we cannot in general require that Pk (f) = 0 for all
K # Ky, as an element with a minimal field which is not Galois will typically have
nontrivial projections to the conjugates of its minimal field. See Remark above
for more details.

We now prove that we can reduce questions about lower bounds on the Mahler
measure my, to elements of P:

Proposition 3.15. We have

f€.17-'n\f{0} my(f) >0 <= fegl\f{o} my(f) > 0.
Proof. Let f € F. Notice that for any K € K that by Lemma[3.§ we have d(Pg f) <
d(f) and by Lemma we have h,(Pr f) < hy(f), so mp(Pra) < m,(f). Let
suppi(f) = {K € K : Pxf # 0}. Notice that if K C L and K € suppg(f),
then L € suppx(f). Let E denote the Galois closure of Ky, and observe that
Prf = Px(Pgf) = Pknrf by Lemma so since we have only a finite number
of subfields of E, we can write suppy(f) = U;—,[K;, ) where [K;, ) ={L € K :
K; C L}, and each K; C E is minimal in the sense that [K;, ) € [K;, ) for all
i # j. Thus, for each i, Prf =0 for all FF G K;, and so P, f € P\ {0}. Then 0 <
my(Pr, f) < my(f), and so we have shown inf rep\ 0y mp(f) < infrerm oy mp(f)-
The reverse inequality is trivial. ([
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4. THE MAHLER p-NORM

4.1. An L? analogue of Northcott’s theorem. We begin by proving an ana-
logue of Northcott’s theorem for the LP Weil heights which we will make use of in
this chapter. We begin with some easy lemmas which relate the LP height to the
L! height.

Lemma 4.1. Let f € F and suppose supp(f) C Y (Q, ) for some rational prime
7 (possibly infinity). Then for 1 < p < oo, we have

£l < £l < 6CH P f -

(We follow the usual convention for exponents and let 1/p = 0 when p = oo for
convenience.)

Proof. The first inequality in fact is a well-known fact of L” norms on measure
one spaces, however, we will give another proof in this case as it is useful to do
so. Let K = Ky be the minimal field, so in particular, [K : Q] = 6(f). Let
n = 6(f) denote this common value. Then Y (Q,7) can be partitioned into a
disjoint union of the sets Y (K, v) for v|w. Notice that A(Y (K, v)) = d,/n for each
v, where d, = [K, : Q,] is the local degree. Enumerate the set of v lying over 7
as vi,..., U, counting each place d, times, so that if, for example, d, = 3, then
there will be three places vk, vg41, Vk4+2 corresponding to v (for some number k).
Let ¢; denote the value of f(y) on Y (K, v;). Let ¢ be the usual conjugate exponent
determined by 1/p 4+ 1/q = 1. Then observe that:

1/p

n n 1/p n
1 1, 1
1l =3 el < /(e ) = () =1l

where we have applied Holder’s inequality. For the upper bound, we compute

1 n 1/p 1 n 1 n
1fllp = W(Zcﬂp) < > el =nt"tr. EZ|C®’| =n'=YP|f|y

i=1 =1 =1

from which the result now follows. O

We now bound our heights without assuming that f is supported on a single
prime:

Proposition 4.2. Let f € F and 1 < p < oo. Then we have the following
inequalities:

(4.1) 11 < Asupp A2 (£l and ([ fll, < 6()VPIf L.

Proof. Let g be given by 1/p+ 1/¢ = 1 as usual. Then the first inequality is just
the usual application of Hélder’s inequality:

I = [ 1wl < ( [ dA<y>)l/q( [ |f<y>|pdx<y>)l/p
= A(supp f) 7| f|,-

For the second inequality, let us write f|, for the restriction of f to the set Y(Q, x).
Then f|, is a function on a measure one space, so locally we can make use of the
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above lemma at each place 7:

= (X |fﬂ||5)1/p <(z 5(f)”/q|f|7r||1f)1/p

reMy w€My

1/p
=5<f>1/q( 3 |f|ﬂ||ff) <S(HYS S N flell = 5052l O

e Mg me Mg

where we make use of the general fact that for any sequence x € ¢P(N), we have
lz]ler < ||z|lea. (In fact, each f € F is supported on a finite number of rational
primes, so there is no issue of convergence here.)

The classical Northcott theorem tells us that any set of algebraic numbers of
bounded height and degree is finite. As 2h(«) = || fo||1, this translates to a bound
on the L' height. Naturally, as we are working in F, we count modulo torsion, but
even so we must be careful about the choice of our notion of degree (indeed, it is
easy to see that the number of elements of F with bounded § and LP norm is not
finite).

Theorem 8 (LP Northcott). For any C,D > 0, we have

(4.2) #{fER:|fllp <C and §(f) < D} < oo,
and
(4.3) #{f € F:||flp < C and d(f) < D} < oo,

Proof. Notice that f € R implies that d(f) = 6(f) by definition, so that the first
set is a subset of the second. Thus, it suffices to show that the second set is finite.

Each element f, of the second set gives rise to a representative o € @X with degree
d(fa), so if we can show that h(«) is bounded, then Northcott’s theorem will give
us the desired result. Notice that if f € F has nontrivial support at a rational
prime 7, then

logm > logm
(f) = D

As we assume that || f||, < C, this tells us that logm < C'D. Since the measure A

1£llp > Ifly@mllp = 1 fly@mll =

assigns measure 1 to any rational prime, we see that
A(supp(f)) < 1+ 7(exp(CD))

where 7(z) is the usual prime counting function. Thus, by Proposition we see
that

(44) £l < Msupp(/) =7 | fll, < (1 + w(exp(CD)))' ™" C.

As 2h(a) = || fall1, this gives a bound on the classical Weil height for any represen-
tative of an element of our set. Northcott’s theorem then applies and gives us the
desired result, as we find we have a finite number of possible coset representatives
and therefore a finite number of elements of F. (]
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4.2. The Mahler p-norms and proof of Theorem We will now make use
of our orthogonal decomposition (2.13]) to define one of the main operators of our
study. Let

M:F—F

(45) f— i nT™f.
n=1

The M operator serves the purpose of allowing us to scale a function in F by
its appropriate degree while still being linear. As each element of F has a finite
expansion in terms of 7™ components, the above map is well-defined. Further,
it is easily seen to be linear by the linearity of the 7™, and it is also a bijection.
However, it is not a bounded operator (and thus, in particular, M is not well-defined
on the space LP(Y)):

Proposition 4.3. The linear operator M : F — F is unbounded in any LP norm.

Proof. Below in Propositions [£.7] [4-8] and [£:5] we will prove that every Salem num-
ber 7 > 1 is representable, projection irreducible, and therefore, an eigenvector
of the M operator of eigenvalue d(f;), that is, fr € RNP, K, = Q(7), and
Mf, =6(f:) - fr = d(f:) - fr. As there exist Salem numbers of arbitrarily large
degree, M has eigenvectors of arbitrarily large eigenvalue and we obtain the desired
result. |

We recall that the Mahler p-norm on F is defined to be

(4.6) [ fllmp = 1M flp
where || - ||, denotes the usual LP norm as defined above.
Proposition 4.4. The map || - ||m,p : F — [0,00) is a vector space norm on F.

Proof. This follows easily from the fact that M is an invertible linear operator on
F. Specifically, we have for all f,g € F and r € Q,

[fllmp =[Mflp=0 <= Mf=0 < f=0
because M is invertible and || - ||, is a norm on F, and
1+ gllmp = IM(f+9)llp = 1Mf +Mgllp < [M[lly+[[Mglly = [l fllm.p + gllm.p
and

17 fllmp = IMf)llp = e M fllp = |r[ - [IMfllp = 7] ([ fllmp
by the linearity of M. O

The following proposition, interesting in its own right, will be useful to us below:

Proposition 4.5. If f € P, then TOU) f = f . and in particular f is an eigenvector
of the M operator with eigenvalue §(f).

Proof. Let n = ¢(f) and K = K be the minimal field of f. Obviously, as f € Vi
and [K; : Q] = 6(f) = n, we have P(") f = f. Since
P — i T(k‘)7
k=1
we can find a minimal value 1 < m < n such that 7™ f #£ 0. Then T(™ f = P(™) f
for this value. We claim that if m < n, then f is not projection irreducible.
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To see this, observe that from the proof of Proposition [2:25 we found equation
, which, together with the commutativity of P(™) and the Tk operators and
expanding the set of primes S appropriately (every element of Vi is an S-unit for
a large enough set of primes S of K) tells us that in fact, the P projection
corresponds to the Q-vector space direct sum decomposition:

(4.7) Vg = P (V) @ QU™ (Vi) = ( > Pr(Vk) > ( (N @r( VK))
FCK FCK
[F:Q]<m [F:Q]<m

where Q™ = I — P(™) and Qp = I — Pp are the complementary projections.
(Technically, we should replace K with its Galois closure to match the construction
in the proof of Proposition but observe that we can repeat the construction
starting with Vi g for K any number field instead of using Tk (Vk,g) for K Galois;
the results are the same, as it is only the finite dimensionality of the S-unit space
Vk,s that is essential to the construction). If Pp(f) = 0 then Qr(f) = f, so if
f had no nontrivial projections to any proper subfields of f, it would also have
decomposition f = 0@ f and thus P f = 0. Thus if P") f # 0 then Pp(f) #0
for some F' G K, but this is a contradiction to the projection irreducibility of f.
Hence we must have had T f = f. O

We can complete F with respect to || - ||, to obtain a real Banach space which
we denote F, . We are now ready to prove Theorem [} which we restate for the
reader’s convenience. First, we recall the LP analogue of the Lehmer conjecture
(Conjecture [1)) from above:

(%p) mp(a) = (dega) - hp(a) > ¢, >0 forall ae Q" \Tor(@x).
Theorem For each 1 < p < o0, equation holds if and only if
(%) | fllmp=>cp >0 forall 0#feRNPNU

where R denotes the set of representable elements, P the set of projection irreducible
elements, and U the subspace of algebraic units. Further, for 1 < p < q < oo, if
equation holds for p then equation holds for q as well.

Proof of Theorem [ First let us show that it suffices to bound m,(f) away from
zero for f € RNPNU. Let f € F. We begin by reducing to the vector space
U={fecF :suppy(f) CY(Q,00)}. If 1 <p < o0, observe that

1/p

ho(f) = 1£1lp = < > ||f|Y(Q,7r)||Z> 2 [1fly@mlle = 1fly@mlhs

me Mg

since Y (Q, 7) is a space of measure 1. Likewise, it is easy to see that
hoo(f) = 125 | fly@mllee 2 Iflyv@mllee 2 Ifly@m

for a specific rational prime 7, so we can let p = 0o as well. Let the rational prime
7 be chosen above so that the norm of the restriction to Y (Q, ) is nonzero, which

we can do if f € U. Let a € @X be a representative of minimal degree d(f) for f.
Then « has a nontrivial valuation over 7, and since the product of « over all of its
conjugates must be in Q, we know that we must have || f|y ()l > (logm)/d(f).
Thus h,(f) > (log2)/d(f), so mp(f) > log2 for 1 < p < oo if f ¢ U. Now it
remains to show that we can reduce to the consideration of P as well, but this
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now follows immediately from the technique of the proof in Proposition [3:15] p. 23]
above, specifically, by projecting to a minimal field F' in the K-support of f to ensure
projection irreducibility, and observing that by Lemma p- Pr(f) el if
f €U. Now observe that if f € Y NP, then upon scaling f it remains in & NP, so
we are free to replace f by £(f)f as in the proof of Proposition p- without
changing the value of m,(f), and thus we can assume f € RNP NU, as claimed.

Now let f € RNP NU, and we will show that m,(f) = || fllm,p, completing
the proof of the equivalence. Observe that for such an element, by Proposition [4.5
projection irreducibility, we must have 7" f = f where n = §(f) = [K; : Q) for
K the minimal field of f, and in particular, M f = nf. Thus

[ fllmp = 1M fllp = 1Ky = Q- [ fllp = 0(S)p(f) = d(f)hp(f) = mp(f)
where the second equality follows from the fact that f € P and the fourth from the
fact that f € R. This completes the equivalence of the bounds.

To show that for 1 < p < ¢ < oo the result for p implies the result for ¢, we
observe that having reduced the problem to the study of algebraic units ¢/, that
these numbers are of the form

U={f€eF:suppy(f) CY(Q,0)}
and since A(Y(Q,00)) = 1, we are reduced to the consideration of measurable
functions on the probability space (Y (Q, o0), A). But on such a space one has the
usual inequality |[f[l, < [|flq and thus [[fllm,, = [Mfllp <M fllg = | fllmq O

Lastly, we note for its own interest:

Proposition 4.6. Fquation for p =1 is equivalent to the Lehmer conjecture,
and for p = oo, is equivalent to the Schinzel-Zassenhaus conjecture.

Proof. Since h = 2h; it is obvious that m; = 2m so we exactly have the statement
of the Lehmer conjecture when p = 1. Let us now show that when p = oo, equation
is equivalent to the Schinzel-Zassenhaus conjecture. Recall that the house
[a] = max{|oa| : 0 : Q(a) < C} where | - | denotes the usual Euclidean absolute
on C. The Schinzel-Zassenhaus conjecture [9] states that for an algebraic integer
«, (dega) - log[al is bounded away from zero by an absolute constant. Observe
that by Smyth’s well-known theorem [11]], we have mq () > ¢ > 0 for an absolute
constant ¢ if « is not reciprocal. Since || f|lm,co = || f|lm.1 = m1(f) for the numbers
under consideration, we see that if « is not reciprocal, then there is nothing more to
show by the previous theorem. If « is reciprocal, then observe that o and o' are
conjugate, and so [a] = max{[a/, W}, where max{|al, 'F‘} is called the symmetric

house. Now, it is easy to see that he.(a) = logmax{[al,|a~!]} is the logarithmic
symmetric house of « for f, € U, so we do indeed recover the Schinzel-Zassenhaus
conjecture when p = ooE| ([

4.3. Explicit values. We now evaluate the Mahler p-norms for two classes of
algebraic numbers, surds and Salem numbers. Salem numbers are conjectured to
be of minimal Mahler measure for the classical Lehmer conjecture. This is in part
due to the fact that the minimal value for the Mahler measure known, dating back
to Lehmer’s original 1933 paper [§], is that of the Salem number called Lehmer’s

1We remark in passing that while ho agrees with the logarithmic symmetric house on U, heo
seems to be a better choice for non-integers as well, as, for example, hoo(3/2) = log3 while the
logarithmic symmetric house of 3/2 is log(3/2).
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7 > 1, the larger positive real root of the irreducible polynomial 20 4 2° — 27 —

2% — 2% — 2* — 2% + £ + 1. Here we show that, in fact, Salem numbers belong to

theset RNPNU.

4.3.1. Surds. Recall that a surd is an algebraic number which is a root of a rational
number. In particular, if a € @X is a surd, then o™ € Q* for some n. Therefore,
an element f € F is represented by a surd if and only if f € Vg, or equivalently
d(f) = 1. As Q has no proper subfields, all surds are trivially projection irreducible.
Thus, for a surd f,

[ Fllmp = SO Fllp = 1 Fllp = Pp(F)-

4.3.2. Pisot and Salem numbers. We say that f, € F is Pisot or Salem number
if it has a representative 7 € @X which is a Pisot or Salem number, respectively.
Recall that 7 > 1 is said to be a Pisot number if 7 is an algebraic integer whose
conjugates in the complex plane all lie strictly within the unit circle, and that 7 > 1
is a Salem number if 7 is algebraic unit which is reciprocal and has all conjugates
except 7 and 7! on the unit circle in the complex plane (with at least one pair of
conjugates on the circle).

Proposition 4.7. Every Pisot or Salem number f. is representable, that is, f. €
R.

Proof. This follows from [6, Prop. 3.10]. O

Proposition 4.8. Fvery Salem number T is projection irreducible and an algebraic
unit, and therefore fr € RNUNP.

Proof. That 7 is a unit is well-known and follows immediately from being a recip-
rocal algebraic integer. Suppose f; has its distinguished representative 7 € K*,
where K = Ky = Q(7). Then there are precisely two real places of K, call them
v1, 2|00, where 7 has nontrivial valuation, and the remaining archimedean places
are complex. By the definition of projection irreducibility, we need to show that
Pr(fr) =0 for all F & K. Now, since (Y (K,v1)) = MY (K,v2)) = 1/[K : Q,
we know that for our subfield F' & K, either Y (K, v1) UY (K, v2) C Y (F,w) for
some place w of F, in which case Pr(f;) = 0 because the two valuations sum to
zero by the product formula, or else v; and v lie over distinct places of F', call
them w; and ws. Then the algebraic norm § = Nﬁf 7 has nontrivial valuations at
precisely the two archimedean places wy,ws. Observe that wi, ws must be real, as
the completions are Q. = R C F,,, C K,, = R for i = 1,2. Thus 8 must be a
nontrivial Salem number or a quadratic unit. In either case, if we assume without
loss of generality that log ||5]|w, > 0, observe that

B =18llw,
But it is easy to see that

1
oz 8, = (7 o8Il
and thus B = 7. But this is a contradiction, as then the minimal field of f5
must also be K, but g € F ; K. That it is also in RNU follows from the preceding
proposition. (I
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Corollary 4.9. Every Salem number T > 1 gives rise to an eigenvector f of the
M operator with eigenvalue §(f;) = [Q(7) : Q].

Proof. This now follows from the above results and Proposition O

Thus, if 7 > 1 is a Salem number, we have f, € R NP NU, so we can compute
explicitly:

(4.8) 1Frllmp = SNl = 6(F7) /P21  log 7).

When p = 1 this is, of course, twice the classical logarithmic Mahler measure of 7,
and when p = oo, this is precisely the degree times the logarithmic house of 7.

4.4. The group I' and proof of Theorem We now construct an additive
subgroup I' < (R NP NU) which is bounded away from 0 if and only if the
LP Lehmer conjecture is true and thus establish Theorem For K € K€, let
Wx = Tk (U) NP NR. Notice first Wi is not empty if Tk (U) is not empty, as
any element f € Tk (U) can be projected to a minimal element of its K-support
{F € K : Pr(f) # 0}, and that by construction such a projected element Pg(f)
will be an element of Tk (U) NP, and since Tk (U) and P are both closed under
scaling, we can ensure such an element is representable. (We remark in passing that
we may in fact have Tx () = {0}, for example, when K = Q(i) where i = —1;
see Remark ) By our LP Northcott analogue Theorem 8] we see that the set
{f € Wk :||fllp < C} is finite (notice that f € Wx = 0(f) = [K;: Q] < [K :
QJ) for any C' > 0. As Wi C P we have || fllmp = 0(f) - [| fll, (see Proposition
above), so we may choose an element fx € Wy of minimal Mahler p-norm for each
K € K9, letting fr = 0 if T (U) = {0}. Notice that

mp(frc) = [ llm.p

by construction (this follows from the usual argument following Proposition and
using R = {d = ¢}). We let I =T, be the additive subgroup generated by these
elements (notice that our choices may depend on p):

(4.9) I'={fxk:KeK) <RNPNU.

Notice that I' is, by construction, clearly a free group, as by Theorem [1} p. [3} we
have the direct sum I' = P o0 Z - fx.

Let U, , denote the completion of U with respect to the Mahler p-norm || - || p-
Our goal is now to prove Theorem [5| which we recall here:

Theorem Equation holds if and only if the additive subgroup I' C Uy, p, 18
closed.

We begin by proving a basic result about additive subgroups of Banach spaces,
following the remarks and proofs in [2, Remark 5.6] and [I0, Theorem 2 et seq.].
(We only need the second part of this lemma for our theorem, however, we prove
both directions for their own interest.)

Lemma 4.10. Let A be a countable additive subgroup of a Banach space B. If A
is discrete, then it is closed and free abelian. If A is closed, then it is discrete.

Proof. We restrict our attention to real Banach spaces, as this is the case that
interests us, but note that the result continues to be true in the complex setting
under suitable assumptions (see the discussion in [10]).
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We will first show that if A C B is countable and discrete then it is also closed
and free. That it is closed is trivial, so let us show that it is free by exhibiting
a basis as a Z-module. Let {v;}°, be an enumeration of the non-zero elements
of A. Choose by = tv; where t > 0 is the smallest number such that tv; € A;
clearly such a choice exists, else A would not be discrete. Let By = {b1} and let
X1 = spang By. Then B is a basis for AN X;. Suppose now we have chosen basis
vectors B,, = {by,...,b,} such that B, is a basis for AN X,, where X,, = spang B,,.
If A C X,, then A has finite rank and we are done, so suppose A ¢ X,,. Let
v = vy, be the first element of the enumeration {v;} which is not in AN X,,, so that
v; € ANX, for all i < k. Let X,,11 = spang(B, U {v}). Observe that the set

T={teR:tve X, +A}

is an additive subgroup of R, and further, there must exist a minimal element
to > 0, as otherwise, we could find a sequence t,, — 0 such that 0 < ¢, < 1,
T, +t,v € A, and z,, = Y . r;b; € X,, where r; € [0,1) for each 1 < i < n by
adding appropriate elements of A N X, to z,,. But then

n

Z ’I”l‘bi

i=1

|zn + thv]] < max

+ vl
relo,1]m

so the vectors z,, + t,v give an infinite subset of AN X,,;; of bounded norm in the
finite dimensional vector space X,+1 (with the norm from B) and this contradicts
the fact that A N X,,41 is discrete (which follows from the fact that A is discrete).
Thus, there must exist a minimal positive element ty € T such that T" = Zty. Let
bnt1 = xo + tov where zg = > -, 7;b; € X, for some r; € [0,1). We claim that
Bpi1 = {b1,...,bpy1} is a basis for AN X, 41 such that v = v € AN X,,41. To
see this, observe that by our construction of the set T', every A € AN X,, 11 has the
form A\ = z 4+ my, 4 1tov for some m,, 1 € Z. Then

A— mn+1bn+1 =T —Mpy120 € ANX, = A— mn+1bn+1 = Zmzbl (mi S Z)

i=1

But then A = Z?Ll m;b; and so Bj, 41 is indeed a basis for AN X, 1. Now, either
this process continues indefinitely and each nonzero element v of A is contained
in some By, in which case (J,, By is a basis for A, or else A C X, for some n, in
which case A has a basis B,,. In either case, we have constructed a basis for A as
a Z-module, and thus A is free.

Now, let us show that if A is countable and closed then it must be discrete. If
A were not discrete, then we could choose a sequence of vectors v,, — 0 such that
[vnt1ll < [jvn]l for all n € N. To every subset S C N we associate the vector
Vs = Y ,cg Vn- Notice that each vg is an absolutely convergent series, and belongs
to A since A is closed. We claim that the elements vg are distinct for distinct
subsets of N. To see this, observe that for S # T C N,

o
Vs —Ur = § Upn — E Um = § €nUn
n=1

neS\T meT\S
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where €, € {—1,0,+1}, and for at least one n we have ¢, # 0. Let k be the first
such number. Then if vg — v = 0 we must have —epvy = Zfzkﬂ €nUn, but

- o 1 [0
S ewtal| < (30 5 el = L < ol = flepnl
n==k+1 n=1

which is impossible. Thus each vg is uniquely associated to S, but this gives an
uncountable number of elements of A, a contradiction. (I

We remark that countability is essential in the above lemma, as the uncountable
subgroup {f : [0,1] = Z : || flleoc < 00} C L*°[0,1] is discrete and closed but not
free.

We are now prepared to prove Theorem

Proof of Theorem[5 By Propositionand Theorem we know that holds if
and only if there exists a constant ¢, such that m,(f) > ¢, > 0 for all f € RNUNP.
Given any f € RNUNP, let A(f) = {K € K¢ : Px(f) # 0}. A(f) clearly contains
a minimal element K which satisfies F C K,F € K = Pp(f) = 0. Let K be
any such minimal element. Then observe that Pk (f) = Tk (f), as

Pe(f)= 3 Tw(f),

FCK
Fek®

but Pp(f) =0 = Tp(f) =0forall F S K,F € K¢ Observe that m,(Px f) <
m,(f) by Proposition and Lemma But then, by construction of T,
| frllmp = mp(fx) < mp(Pxf) since Pxf = Txf € Tx(U) NNP. Thus, if T
is discrete, we gain and by Theorem [4| we gain the LP Lehmer conjecture
)

Likewise, supposing , we can repeat the same procedure as above given an
arbitrary element f € T to obtain Pk (f) = fk for some minimal K in A(f). Now,
by the fact that Pk is a norm one projection with respect to the LP norm (Proposi-
ton, and the fact that it commutes with the 7(") operators (Proposition,
we see that it commutes with the M operator well, and therefore, by the definition
of the Mahler norm,

1P fllmp = 1M Px fllp = [P (M f)llp < M Fllp = [[fllm.p-

Since fxr € RNUNP, we see that implies that || Pk fl|m.,p > ¢p > 0 and thus
T is discrete.

Finally, observe that as a countable (free abelian) additive subgroup of the Ba-
nach space U, p, by Lemma above, I' is discrete if and only it is closed. ([

4.5. The Mahler 2-norm and proof of Theorem [6] Recall that we define the
Mabhler 2-norm for f € F to be:

[fllm.2 = 1T fll2 =

2

i n T(")f
n=1

The goal of this section is to prove Theorem [ which we recall here for the conve-
nience of the reader:
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Theorem [6l The Mahler 2-norm satisfies

1F1I2,0 = > 02 IT™NHIF= > Zn2||T<”> nIE.
n=1

KeKG n=1
Further, the Mahler 2-norm arises from the inner product

(f,9)m = (M f, Mg) = Zn (T f, Mgy = " Zn (T £,1 g)

KeKG n=1
where (f,g) = [, fgdX\ denotes the usual inner product in L*(Y), and therefore
the completion F,, 2 of F with respect to the Mahler 2-norm is a Hilbert space.

Pmof of Theorem [6 The first part of the theorem follows easily from the fact that
the T ) form an orthogonal decomposition of F. Indeed, for f € F, we have:

DL, H S SR IRl

KeKG n=1 KeKG n=1

112 = \

The above sums are, of course, finite for each f € F. That the specified inner prod-
uct (f, g)m defines this norm is then likewise immediate. Therefore, the completion
of F with respect to the norm || - ||, 2 is a Hilbert space, as claimed. O

Lastly, we note that ||-||;,,2 < 0ha < mg. The authors suspect that this inequality
is not true for general p # 2, but we know of no examples proving such a result.
To see that the desired inequality holds for p = 2, let us recall (Proposition [2.26))
that for a given f E F, we have an expansion into degree n components given by
f=TWOfr .. TW) f with TW) f £ 0. Then observe that §(f) > N, for otherwise,

TW) f = 0 since f itself would have [K;:Q] =n < N and thus f € V() and so
it would have no essential projection to V). Thus

N 1/2 N 1/2
1fllm,2 = <Z nQIIT(”)fH%) < (Z NZIIT(")fH%)

n=1 n=1
= N|[fll2 < 0(N)Ifll2 = Sha(f).
That dhs < mo = d hg follows from the inequality ¢ < d.
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