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We introduce decompositions determined by Galois field and degree of

the space of algebraic numbers modulo torsion and the space of algebraic points

on an elliptic curve over a number field. These decompositions are orthogonal

with respect to the natural inner product associated to the L2 Weil height

recently introduced by Allcock and Vaaler in the case of algebraic numbers

and the inner product naturally associated to the Néron-Tate canonical height

on an elliptic curve. Using these decompositions, we then introduce vector

space norms associated to the Mahler measure. For algebraic numbers, we

formulate Lp Lehmer conjectures involving lower bounds on these norms and

prove that these new conjectures are equivalent to their classical counterparts,

specifically, the classical Lehmer conjecture in the p = 1 case and the Schinzel-

Zassenhaus conjecture in the p =∞ case.
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Chapter 1

Introduction

1.1 Background

Heights have played an important role in Diophantine geometry since

Weil first introduced his height in order to generalize Mordell’s theorem (see

[BG06] or [HS00] for a general reference on heights and Diophantine geome-

try). Closely related to the Weil height is the Mahler measure of an algebraic

number. Mahler measure is connected to a diverse range of topics, includ-

ing special values of L-functions [Smy81, Vil99, Lal07], algebraic dynamics

[EW99], hyperbolic manifolds [MR03], and growth rates for Coxeter groups

and knot theory [GH01].

The central question regarding the Mahler measure is Lehmer’s prob-

lem, posed by D.H. Lehmer in 1933 [Leh33], which asks if there exist num-

bers of arbitrarily small Mahler measure. Such numbers necessarily have small

height, a subject of interest in itself (see e.g. [Bil97, Zha98, BP05]). It is widely

believed that there do not exist numbers of arbitrarily small Mahler measure,

and that the minimum value is attained by a particular number discovered

by D.H. Lehmer in his 1933 paper [Leh33] (extensive computer searches have

revealed no number smaller than Lehmer’s number [MRW08, Mos]). Partial
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results towards Lehmer’s problem exist (major results include [Smy71, Dob79,

BDM07]; see [Smy08] for a detailed survey), but the problem remains open.

Lehmer’s problem has also been extensively studied for algebraic points on el-

liptic curves defined over number fields using the Néron-Tate canonical height

(see [HS90] for the best known current result).

Recently, Allcock and Vaaler [AV09] observed that the absolute loga-

rithmic Weil height can in fact be viewed as the L1 norm on a certain measure

space (Y, λ). The points of Y are the places of Q endowed with a topology

which makes Y a totally disconnected locally compact Hausdorff space, and

each equivalence class of the algebraic numbers modulo torsion gives rise to a

unique, continuous, locally constant real-valued function on Y with compact

support. Their work also introduces Lp analogues of the Weil height.

The aim of this thesis is to construct analogous function space norms

in order to study the Mahler measure, both on algebraic numbers as well as

on elliptic curves. These norms are constructed via the aid of new geometric

structure within the space of algebraic numbers modulo torsion (geometry

intimately associated to the L2 norm and the pre-Hilbert space structure on

the space of algebraic numbers modulo torsion). Once we have introduced our

new norms, we will give a general Lp formulation of the Lehmer conjecture

which is equivalent to the classical Lehmer conjecture for p = 1 and to the

Schinzel-Zassenhaus conjecture [SZ65] for p =∞.

The study of the Mahler measure on the vector space of algebraic num-

bers modulo torsion presents several difficulties absent for the Weil height,
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first of which is that the Mahler measure, unlike the Weil height, is not well-

defined modulo torsion. Recent attempts to find topologically better-behaved

objects related to the Mahler measure include the introduction of the metric

Mahler measure, a well-defined metric on F , by Dubickas and Smyth [DS01],

and later the introduction of the ultrametric Mahler measure by the author

and Samuels [FS09] and the introduction of the vector space norms extremal

to the Mahler measure by the author and Miner [FMa].

Both the metric and ultrametric Mahler measure induce the discrete

topology on the space of algebraic numbers modulo torsion if and only if

Lehmer’s conjecture is true, so they bear an obvious relevance to the Lehmer

problem. These constructions result in metrics that satisfy an extremal prop-

erty but which are typically difficult to compute explicitly except on special

classes of algebraic numbers such as the rational numbers, surds, and Pisot or

Salem numbers (even in the case of the rational numbers, the computation of

the metric Mahler measure is somewhat nontrivial).

The norms (which we term the “Mahler p-norms”) introduced in this

thesis, in contrast, induce a vector space topology and so the completions are,

typically, Banach spaces, and so techniques from Banach space theory may be

brought to bear on these problems. We establish in Theorem 7. p. 16, for

example, the existence of an additive subgroup within the space of algebraic

numbers modulo torsion which is closed in the Banach space determined by the

Mahler p-norm if and only if the Lp Lehmer conjecture (Conjecture 5 below,

p. 15) is true.
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The Mahler p-norms are constructed with the aid of two new decompo-

sitions of the space of algebraic numbers modulo torsion which are orthogonal

with respect to the L2 geometry of the space. As a result, the norms intro-

duced in this thesis tend to be somewhat easier to compute than the metric

versions of the Mahler measure since these norms are essentially constructed

with the aid of projections associated to certain subspaces. However, explicit

computations for algebraic numbers of large degree remain difficult to achieve

in the general case.

We note that portions of this thesis have been submitted for publication

in a paper of the author and Miner [FMb].

Before we give precise statements of the results of this thesis in Sec-

tion 1.4 below, we begin by reviewing the constructions and main conjectures

surrounding Lehmer’s problem and the space of algebraic numbers modulo

torsion.

1.2 Basic height constructions

Let us begin by recalling the definition of the Weil height and the

Mahler measure. Let K be a number field and let MK denote the set of places

of K (recall that a place of a field K is an equivalence class of a nontrivial

absolute value, where two absolute values on K are considered equivalent if

they induce the same topology on K). We say that a place v of K lies over the

place p of Q, denoted v|p, if there exists an absolute value in the equivalence

class of v which restricts to Q to give an absolute value in the class of p. For
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each v ∈MK lying over the rational place p, let ‖·‖v be the particular absolute

value on K extending the usual p-adic absolute value on Q if v is finite or the

usual archimedean absolute value if v is infinite. Then for α ∈ K×, the absolute

logarithmic Weil height h is given by

h(α) =
∑
v∈MK

[Kv : Qv]

[K : Q]
log+ ‖α‖v (1.2.1)

where log+ t = max{0, log t}. By the degree extension formula, which tells us

that for any finite extension L/K and place v ∈MK we have∑
w∈ML
w|v

[Lw : Qw]

[L : Q]
=

[Kv : Qv]

[K : Q]
, (1.2.2)

we see that the expression on the right hand side of this equation does not

depend on the choice of field K containing α. The Weil height h is thus a

well-defined function mapping Q× → [0,∞) which vanishes precisely on the

roots of unity, Tor(Q×).

The logarithmic Mahler measure of an algebraic number α is defined

to be

m(α) = (degα) · h(α) (1.2.3)

where degα = [Q(α) : Q]. The Mahler measure is often studied for polynomi-

als f ∈ C[x], and is defined as

M(f) = exp

(∫ 1

0

log|f(e2πit)| dt
)
.

The Mahler measure is multiplicative, in the sense given f, g ∈ C[x], we have

M(fg) = M(f)M(g).
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Thus, if we restrict our attention to polynomials with rational integral coeffi-

cients (the case typically of interest in applications to number theory), then it

suffices to consider the value of the Mahler measure on irreducible polynomials

f ∈ Z[x]. Such a polynomial f ∈ Z[x] is therefore the minimal polynomial

of an algebraic number α, and in fact, it is not difficult to show via Jensen’s

theorem that

logM(f) = m(α).

Thus, the study of bounding the Mahler measure of polynomials with rational

integral coefficients is equivalent to bounding the Mahler measure of algebraic

numbers.

Though related to the Weil height in a simple fashion, the Mahler

measure exhibits rather more erratic and mysterious behavior because of its

dependence on the degree of the number over the field of rationals. The ques-

tion of the existence of algebraic numbers of arbitrarily small Mahler measure

is called Lehmer’s problem. The question was first posed in 1933 by D.H.

Lehmer [Leh33] and since then the conjectured existence of an absolute lower

bound away from zero has come to be known as Lehmer’s conjecture:

Conjecture 1 (Lehmer’s conjecture). There exists an absolute constant c such

that

m(α) ≥ c > 0 for all α ∈ Q× \ Tor(Q×). (1.2.4)

The current best known lower bound, due to Dobrowolski [Dob79], is of the
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form

m(α)�
(

log log degα

log degα

)3

for all α ∈ Q× \ Tor(Q×)

where the implied constant is absolute.

1.3 The space of algebraic numbers modulo torsion F

We will here recall the constructions of [AV09] which we will use through-

out this thesis. For proofs of the assertions given here we refer the reader to

[AV09]. We fix once and for all our algebraic closure Q of Q and let K denote

the set of finite extensions of Q. Let G = Gal(Q/Q) be the absolute Galois

group, and let

KG = {K ∈ K : σK = K for all σ ∈ G}

denote the collection of finite Galois extensions of Q.

Let Y denote the set of places of Q, that is, the set of nontrivial absolute

values on Q modulo equivalence. For any K ∈ K, let MK denote the set of

places of K, endowed with the discrete topology. Observe that, as a set,

Y = lim←−
K∈K

MK = lim←−
K∈KG

MK (1.3.1)

where the second equality follows from the fact that the collection KG is cofinal

in the collection K as each K ∈ K is contained in its Galois closure, which

is also a finite extension and thus in KG. We will take our limits over KG in

general as this allows us to keep track of the Galois action on places (we will

discuss the action on places more explicitly at the start of Chapter 2). We
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endow Y with the inverse limit topology and claim that Y is a locally compact

Hausdorff space. Let MK,p = {v ∈MK : v|p} where p is a rational prime. Each

MK,p is a finite set which we also endow with the discrete topology. Then we

let

Y (Q, p) = lim←−
K∈KG

MK,p. (1.3.2)

be the usual profinite limit, and thus Y (Q, p) is a totally disconnected compact

Hausdorff space which is a subspace of Y . In fact, it is not hard to see that

the space Y is the disjoint union

Y =
⋃
p∈MQ

Y (Q, p), (1.3.3)

and in particular Y (Q, p) is a compact open set. Thus we have endowed the

set Y of places of Q with a topology which makes it a totally disconnected,

locally compact, and Hausdorff space. A basis for the topology of Y is given

by compact open sets of the form

Y (K, v) = {y ∈ Y : y|v}, where K ∈ K and v ∈MK . (1.3.4)

In fact, the subcollection {Y (K, v) : KG ∈ K and v ∈ MK} forms another

basis for the topology of Y , as if v ∈ MK and K ∈ K, then K ⊂ L for some

L ∈ KG, and

Y (K, v) =
⋃

w∈ML
w|v

Y (L,w)

as a disjoint union.
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To each equivalence class α in Q×/Tor(Q×), we can uniquely associate

the function fα : Y → R (we will often drop the subscript α when convenient)

given by

fα(y) = log ‖α‖y,

where the absolute value ‖ · ‖y is normalized as above. In the topology of Y ,

such a function has finite support and is locally constant and continuous. Let

us denote the collection of continuous real-valued functions on Y with compact

support by Cc(Y ). Then the map

Q×/Tor(Q×)→ Cc(Y )

αTor(Q×) 7→ (fα : Y → R)

is in fact a vector space isomorphism, that is:

1. fα(y) + fβ(y) = fαβ(y) for all α, β ∈ Q×/Tor(Q×) and y ∈ Y ,

2. rfα(y) = fαr(y) for all r ∈ Q and α ∈ Q×/Tor(Q×), and

3. fα(y) = 0 for all y ∈ Y if and only if α ∈ Tor(Q×) (Kronecker’s theorem).

We denote the image of this map, which we thereby identify with the space of

algebraic numbers modulo torsion, by F . Specifically,

F = {fα ∈ Cc(Y ) : α ∈ Q×/Tor(Q×)}. (1.3.5)

Notice that, as was the case for Q×/Tor(Q×), the space F is a vector space

over the rationals Q.
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Allcock and Vaaler [AV09, Theorem 4] prove the existence of a Borel

measure λ on the space Y which satisfies

λ(Y (K, v)) =
[Kv : Qv]

[K : Q]
. (1.3.6)

If α ∈ K×, then the function fα(y) is constant on the sets Y (K, v) = {y ∈ Y :

y|v} for v ∈MK and takes the value log ‖α‖v. Therefore we have

‖fα‖1 =

∫
Y

|fα(y)| dλ(y) =
∑
v∈MK

| log ‖α‖v|
[Kv : Qv]

[K : Q]
= 2h(α),

where the last equality follows from the general fact that if for some finite set

of real numbers {an} we have
∑

n an = 0, then
∑

n |an| = 2
∑

n max{an, 0}.

In this formulation, the product formula now takes the form∫
Y

fα dλ = 0. (1.3.7)

We also have a well-defined inner product on F given by

〈f, g〉 =

∫
Y

f(y)g(y) dλ(y)

which satisfies ‖f‖2 = 〈f, f〉1/2. As we noted above, the geometry of the space

F will play a significant role in our study.

Remark 1.3.1 (Note on the choice of base field). Before we continue let us

remark that while we choose Q to be our base field because of its relevance

to Lehmer’s problem, any number field k/Q could serve just as well and the

proofs would not change substantially as is discussed in [AV09]. When dealing

with elliptic curves in Chapter 5, however, we shall work over a number field

k.

10



1.4 Main results and conjectures

Our constructions and ideas can be applied to both the space of alge-

braic numbers modulo torsion as well as the space of algebraic points on an

elliptic curve modulo torsion. We begin with the problem for algebraic num-

bers modulo torsion and then discuss our results on the generalization of these

techniques to elliptic curves.

1.4.1 Algebraic numbers modulo torsion

In order to construct our norms related to the Mahler measure, we first

construct an orthogonal decomposition of the space F of algebraic numbers

modulo torsion. Let VK denote the Q-vector space span of the functions given

by

VK = spanQ〈{fα : α ∈ K×/Tor(K×)}〉.

We first prove the following result which gives the orthogonal decomposition

by Galois field:

Theorem 2. There exist projection operators TK : F → F for each K ∈ KG

such that TK(F) ⊂ VK, TK(F) ⊥ TL(F) for all K 6= L ∈ KG with respect to

the inner product on F , and

F =
⊕
K∈KG

TK(F).

The notation F =
⊕

K∈KG TK(F) indicates a direct sum in the usual Q-vector

space sense, specifically, that every element of the Q-vector space F is uniquely

11



expressible as a finite sum of elements from the Q-vector spaces TK(F) as K

ranges over the set KG.

In particular, it follows from Theorem 2 that the projection operators

TK are orthogonal projections with respect to the inner product on F , and

thus in the completion with respect to the L2 norm, this gives a Hilbert space

decomposition in the usual sense of a Hilbert space direct sum (in which each

element of the Hilbert space has a unique expansion as a series of vectors, one

from each summand).

It is interesting to note what this decomposition implies, and why in

particular we cannot have a decomposition along the set of all number fields K

rather than all finite Galois extensions KG. Conjugate number fields exhibit a

linear dependence which arises from the conjugacy of elements in those fields.

Suppose for example that α ∈ Q× was a cubic algebraic unit with nonsquare

discriminant, with conjugates β, γ. The fields Q(α),Q(β) and Q(γ) (and thus

the corresponding vector spaces VQ(α), etc.) would all be distinct. However,

the relation

αβγ = ±1 implies that fα + fβ + fγ = 0.

In fact, it is not hard to see (Remark 2.5.2, p. 42) that

VQ(α) + VQ(β) = VQ(α) + VQ(β) + VQ(γ).

Thus any attempt to determine a unique orthogonal decomposition amongst

these three subspaces, which assigns to an algebraic number modulo torsion

12



its unique component arising from each field, would be impossible. Our result

above demonstrates that this is the only obstruction to such a decomposition.

A decomposition by Galois field alone, however, does not give enough

information about the degree of a specific number in order to bound the Mahler

measure of the number, as in general a number of degree n may lie in a Galois

field of degree n!. We therefore define the vector subspace

V (n) =
∑
K∈K

[K:Q]≤n

VK

(where the sum indicates a usual sum of Q-vector spaces) and determine the

following decomposition:

Theorem 3. There exist projections T (n) : F → F for each n ∈ N such that

T (n)(F) ⊂ V (n), T (m)(F) ⊥ T (n)(F) for all m 6= n, and

F =
∞⊕
n=1

T (n)(F).

These decompositions are independent of each other in the following

sense:

Theorem 4. The projections TK and T (n) commute with each other for each

K ∈ KG and n ∈ N.

In particular, as a result of commutativity, we can form projections T
(n)
K =

TKT
(n) and so we have an orthogonal decomposition

F =
∞⊕
n=1

⊕
K∈KG

T
(n)
K (F).

13



Again, when we pass to the completion in the L2 norm, the projections extend

by continuity and the above decomposition extends to the respective closures

and the direct sum becomes a direct sum in the usual Hilbert space sense.

This geometric structure within the algebraic numbers allows us to

define linear operators, for all Lp norms with 1 ≤ p ≤ ∞, which capture the

contribution of the degree to the Mahler measure in such a way that we can

define our Mahler norms. Specifically, we define the operator

M : F → F

f 7→
∞∑
n=1

nT (n)f.

The sum is finite for each f ∈ F . M is a well-defined, unbounded (in any

Lp norm, 1 ≤ p ≤ ∞), invertible linear map defined on the incomplete vector

space F . We define the Mahler p-norm on F for 1 ≤ p ≤ ∞ to be

‖f‖m,p = ‖Mf‖p

where ‖ · ‖p denotes the usual Lp norm on the incomplete vector space F . The

Mahler p-norm is, in fact, a well-defined vector space norm on F , and hence

the completion Fm,p with respect to ‖ · ‖m,p is a Banach space.

In order to see that these norms form a suitable generalization of the

Mahler measure of algebraic numbers, we will show that the Lehmer conjecture

can be reformulated in terms of these norms. First, let us address what form

the Lehmer conjecture takes inside F . For any α ∈ Q×, let hp(α) = ‖fα‖p.

We formulate:
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Conjecture 5 (Lp Lehmer conjectures). For 1 ≤ p ≤ ∞, there exists an

absolute constant cp such that the Lp Mahler measure mp satisfies the following

equation:

mp(α) = (degα) · hp(α) ≥ cp > 0 for all α ∈ Q× \ Tor(Q×). (∗p)

From the fact that h1(α) = 2h(α) it is clear that when p = 1 this statement is

equivalent to the Lehmer conjecture. For p =∞, we will show in Proposition

4.2.4, p. 68 below that the statement is equivalent to the Schinzel-Zassenhaus

conjecture.

In order to translate the Lehmer conjecture into a bound on function

space norms which, unlike the metric Mahler measure, cannot possibly be

discrete, it is necessary to reduce the Lehmer problem to a sufficiently small

set of numbers which we can expect to be bounded away from zero in norm.

This requires the introduction in Chapter 3 of two classes of algebraic numbers

modulo torsion in F , the Lehmer irreducible elements L and the projection

irreducible elements P . Let U ⊂ F denote the subspace of algebraic units.

Then we prove the following theorem:

Theorem 6. For each 1 ≤ p ≤ ∞, equation (∗p) holds if and only if

‖f‖m,p ≥ cp > 0 for all 0 6= f ∈ L ∩ P ∩ U (∗∗p)

where L denotes the set of Lehmer irreducible elements, P the set of projection

irreducible elements, and U the subspace of algebraic units. Further, for 1 ≤

p ≤ q ≤ ∞, if (∗∗p) holds then (∗∗q) holds as well.
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The last statement of the theorem, which is proven by reducing to a place

of measure 1 and applying the usual inequality for the Lp and Lq norms on

a probability space, generalizes the well-known fact that Lehmer’s conjecture

implies the conjecture of Schinzel-Zassenhaus.

Let Um,p denote the Banach space which is the completion of the vector

space U of units with respect to the Mahler p-norm ‖ · ‖m,p. The set L∩P ∩U

has another useful property which we will prove, namely, that the additive

subgroup it generates contains a subgroup Γ = Γp,

Γ ≤ 〈L ∩ P ∩ U〉,

which is also a set of equivalence for the Lehmer conjecture, that is, we will

show that the Lp Lehmer conjecture (∗p) is equivalent to the condition that Γ

be a discrete subgroup in Um,p. Specifically, we prove:

Theorem 7. Equation (∗p) holds if and only if the additive subgroup Γ ⊂ Um,p

is closed.

This leads us to a new conjecture, equivalent to (∗p) for each 1 ≤ p ≤ ∞:

Conjecture 8. The additive subgroup Γ ⊂ Um,p is closed for each 1 ≤ p ≤ ∞.

Lastly, the presence of orthogonal decompositions raises a particular

interest in the study of the L2 norm. In this case, the norm associated to the

Mahler measure has a particularly simple form which is in sympathy with the

geometry of L2.
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Theorem 9. The Mahler 2-norm satisfies

‖f‖2
m,2 =

∞∑
n=1

n2 ‖T (n)(f)‖2
2 =

∑
K∈KG

∞∑
n=1

n2 ‖T (n)
K (f)‖2

2.

Further, the Mahler 2-norm arises from the inner product

〈f, g〉m = 〈Mf,Mg〉 =
∞∑
n=1

n2 〈T (n)f, T (n)g〉 =
∑
K∈KG

∞∑
n=1

n2 〈T (n)
K f, T

(n)
K g〉

where 〈f, g〉 =
∫
Y
fg dλ denotes the usual inner product in L2(Y ), and there-

fore the completion Fm,2 of F with respect to the Mahler 2-norm is a Hilbert

space.

1.4.2 Algebraic points modulo torsion on elliptic curves

Let us consider now the case of an elliptic curve E defined over a number

field k. Let ĥ : E(k) → [0,∞) denote the canonical Néron-Tate height on E,

which is well-known to be a positive definite quadratic form on the finitely

generated abelian group E(K)/Etor(K) for all finite extensions K/k. Observe

further that the abelian group

V = E(k)/Etor(k)

is divisible and torsion-free, and so V is in fact a vector space over the rational

numbers Q, and ĥ is a positive definite quadratic form on V . Since ĥ is a

positive-definite quadratic form on V it defines an inner product 〈·, ·〉 : E →

[0,∞) and thus a vector space norm ‖ξ‖ = 〈ξ, ξ〉1/2 =

√
ĥ(ξ) on V . Let

G = Gal(k/k) and recall that G has a well-defined action G× V → V , which

we will denote by (σ, ξ) 7→ σ(ξ) for ξ ∈ V and σ ∈ G.
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We now think of V as a pre-Hilbert space with norm ‖·‖. Let K denote

the set (in fact, the lattice) of algebraic extensions of k, partially ordered by

inclusion. Let KG denote the sublattice of K given by finite normal extensions

of k. For each K ∈ K we have a natural subspace

VK = spanQ〈E(K)/Etor(K)〉 = E(K)/Etor(K)⊗Q ⊂ V.

Our main theorems regarding the space of algebraic points modulo

torsion on an elliptic curve are the following:

Theorem 10. For each K ∈ KG there exists a continuous projection TK :

V → V such that the space V has an orthogonal direct sum decomposition into

vector subspaces

V =
⊕
K∈KG

TK(V )

and TK(V ) ⊂ VK for each K.

Again, as the decomposition by Galois degree is not quite fine enough,

we define a decomposition using the “degree n” subspaces

V (n) =
∑
K∈K

[K:k]≤n

VK .

Theorem 11. For each n ∈ N there exists a continuous projection T (n) :

V → V such that the space V has an orthogonal direct sum decomposition into

vector subspaces

V =
∞⊕
n=1

T (n)(V )

and T (n)(V ) ⊂ V (n) for each n.
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Exactly as before, the points of the subspaces T (n)(V ) consist of points

which can be written as a sum of elements all arising from subspace VK with

K precisely a degree n extension of k and no lower. These decompositions are

again compatible in the sense that:

Theorem 12. The projections TK and T (n) commute with each other for each

K ∈ KG and n ∈ N.

In particular, as a result of commutativity, we can form projections T
(n)
K =

TKT
(n) and so we have an orthogonal decomposition

V =
∞⊕
n=1

⊕
K∈KG

T
(n)
K (V ).

This allows us to define a “degree decomposition” and therefore a Mahler norm

‖ · ‖m : V → [0,∞) on the vector space V via:

‖ξ‖m = ‖Mξ‖ where M =
∞∑
n=1

√
n · T (n).

We now recall Lehmer’s conjecture for elliptic curves:

Conjecture 13 (Lehmer conjecture for Elliptic Curves). Given an elliptic

curve E/k there exists a constant C > 0 such that

‖P‖2 = ĥ(P ) ≥ C

D(P )
for all P ∈ E(k) \ Etor(k), (1.4.1)

where D(P ) = [k(P ) : k] is the degree of P .

The Lehmer conjecture for elliptic curves remains open (a survey of

best known results can be found in [Sil07, §3.4]). In Chapter 5 we construct a
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subgroup Γ = ΓE ≤ 〈L∩P〉, where L denotes the Lehmer irreducible elements

and P the projection irreducible elements of V , in analogy with Theorem 7

above. This leads to a new conjecture regarding the subgroup Γ within the

completion of V with respect to the norm ‖ · ‖m, which we will denote Vm:

Conjecture 14. Let E/k be an elliptic curve defined over a number field k

and let V = E(k)/Etor and Vm its completion with respect to ‖ · ‖m, as above.

Then the subgroup Γ from Conjecture 13 is closed in the Hilbert space Vm.

We expect that the above conjecture and the Lehmer conjecture for

E/k are equivalent, however, as we will discuss in Chapter 5, there are sev-

eral questions which prove more difficult for elliptic curves than for algebraic

numbers.

The layout of this thesis is as follows. In Chapter 2 we introduce the

basic operators and subspaces of our study, namely, those arising naturally

from number fields and Galois isomorphisms. The proofs of Theorems 2, 3

and 4 regarding the orthogonal decompositions of the space F with respect

to Galois field and degree will then be carried out in Sections 2.4, 2.5, and

2.6. In Chapter 3 we prove our results regarding the reduction of the classical

Lehmer problem and introduce the relevant classes of algebraic numbers which

are essential to our theorems. In Chapter 4 we introduce the Mahler p-norms

and prove Theorems 6, 7, and 9. In Chapter 5 we apply our constructions to

elliptic curves and prove Theorems 10, 11, and 12.
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Chapter 2

Orthogonal Decompositions

2.1 Galois isometries

Let Fp denote the completion of F with respect to the Lp norm. By

[AV09, Theorems 1-3],

Fp =


{f ∈ L1(Y, λ) :

∫
Y
f dλ = 0} if p = 1

Lp(Y, λ) if 1 < p <∞
C0(Y, λ) if p =∞.

We begin by introducing our first class of operators, the isometries arising from

Galois automorphisms. Let us recall how the Galois group acts on the places

of an arbitrary Galois extension K. Suppose α ∈ K, v ∈MK is a place of K,

and σ ∈ G. We define σv to be the place of K given by ‖α‖σv = ‖σ−1α‖v, or

in other words, ‖σα‖v = ‖α‖σ−1v.

Lemma 2.1.1. Each σ ∈ G is a measure-preserving homeomorphism of the

measure space (Y, λ).

Proof. That the map σ : Y → Y is a well-defined bijection follows from the

fact that G gives a well-defined group action. Continuity of σ and σ−1 follow

from [AV09, Lemma 3]. It remains to show that σ is measure-preserving, but

this follows immediately from [AV09, (4.6)].
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In accordance with the action on places, we define for σ ∈ G the oper-

ator

Lσ : Fp → Fp

given by

(Lσf)(y) = f(σ−1y). (2.1.1)

Thus for fα ∈ F , we have Lσfα = fσα, and in particular Lσ(F) ⊆ F for all

σ ∈ G. Further, by our definition of the action on places, we have LσLτ = Lστ .

Let B(Fp) denote the bounded linear maps from Fp to itself, and let

I(Fp) ⊂ B(Fp) denote the subgroup of isometries of Fp. By the construction

of λ, each σ ∈ G is a measure-preserving topological homeomorphism of the

space of places Y , so it follows immediately that Lσ is an isometry for all

1 ≤ p ≤ ∞, that is, ‖Lσf‖p = ‖f‖p for all σ ∈ G. Thus we have a natural

map

ρ : G→ I(Fp)

σ 7→ Lσ

where (Lσf)(y) = f(σ−1y). We will show that ρ gives an injective infinite-

dimensional representation of the absolute Galois group (which is unitary in

the case of L2) and furthermore that the map ρ is continuous if G is endowed

with its natural profinite topology and I is endowed with the strong operator

topology inherited from B(Fp). Recall that the strong operator topology,

which is weaker than the norm topology, is the weakest topology such that the

evaluation maps A 7→ ‖Af‖p are continuous for every f ∈ Lp.
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Proposition 2.1.2. The map ρ : G → I is injective, and it is continuous if

I is endowed with the strong operator topology and G has the usual profinite

topology.

Proof. First we will observe that the image ρ(G) is discrete in the norm topol-

ogy so that ρ is injective. To see this, fix σ 6= τ ∈ G, so that there exists

some finite Galois extension K and an element α ∈ K× such that σα 6= τα.

By [Dub05, Theorem 3], we can find a rational integer n such that β = n+ α

is torsion-free, that is, if β/β′ 6= 1 then β/β′ 6∈ Tor(Q×) for any conjugate β′

of β, and in particular, the conjugates of β give rise to distinct functions

in F . Thus Lσfβ 6= Lτfβ, so there exists some place v of K such that

σ(Y (K, v)) 6= τ(Y (K, v)) and are therefore disjoint sets. Choose a Galois

extension L/K with distinct places w1, w2|v. Since L/K is Galois, the local

degrees agree and so λ(Y (L,w1)) = λ(Y (L,w2)) by [AV09, Theorem 5]. Define

f(y) =


1 if y ∈ Y (L,w1)

−1 if y ∈ Y (L,w2)

0 otherwise.

Clearly f ∈ Fp for all 1 ≤ p ≤ ∞ and Lσf and Lτf have disjoint support.

Thus,

‖(Lσ − Lτ )f‖p =
(
‖Lσf‖pp + ‖Lτf‖pp

)1/p
= 21/p‖f‖p

(where we let 21/p = 1 when p = ∞). But this implies that 1 ≤ 21/p ≤

‖Lσ − Lτ‖ for all σ 6= τ ∈ G, and thus the image ρ(G) is discrete in the norm

topology of I, and ρ is injective.
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Let us now prove continuity. Recall that a basis for the strong operator

topology on I is given by sets of the form

U = {A ∈ I : ‖(A−B)fi‖ < ε for all 1 ≤ i ≤ k}

where B ∈ I, f1, . . . , fk is a finite set of functions in Fp, and ε > 0. Fix such

an open set U for a given B = Lσ for some σ ∈ G. Approximate each fi by

an element gi ∈ F such that ‖fi − gi‖p < ε/21/p. Let VK be a subspace of F

containing g1, . . . , gk. Let

N = {τ ∈ G : σ|K = τ |K}.

Then N is an open subset of G in the profinite topology. We claim that

ρ(N) ⊆ U , and thus that ρ is continuous. To see this, observe that for τ ∈ N ,

‖(Lτ − Lσ)fi‖p ≤ ‖(Lτ − Lσ)gi‖p + ‖(Lτ − Lσ)(fi − gi)‖p

< ‖(Lτ − Lσ)gi‖p + 21/p · ε/21/p = ε

where ‖(Lτ −Lσ)gi‖p = 0 because gi ∈ VK , and thus is locally constant on the

sets Y (K, v) for v a place of K, and τ ∈ N implies that σ and τ agree on K,

so Lτgi = Lσgi.

2.2 Subspaces associated to number fields

We will now prove some lemmas regarding the relationship between the

spaces VK and the Galois group. As in the introduction, let us define

K = {K/Q : [K : Q] <∞} and KG = {K ∈ K : σK = K ∀σ ∈ G}.
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As we shall have occasion to use them, let us recall the combinatorial properties

of the sets K and KG partially ordered by inclusion. Recall that K and KG

are lattices, that is, partially ordered sets for which any two elements have a

unique greatest lower bound called the meet and a unique least upper bound

called the join. Specfically, for any two fields K,L, the meet K ∧ L is given

by K ∩ L and the join K ∨ L is given by KL. If K,L are Galois then both

the meet (the intersection) and the join (the compositum) are Galois as well,

thus KG is a lattice as well. Both lattices have a minimal element, namely Q,

and are locally finite, that is, between any two fixed elements we have a finite

number of intermediate elements.

For each K ∈ K, let

VK = spanQ〈{fα : α ∈ K×/Tor(K×)}〉. (2.2.1)

Then VK is the subspace of F spanned by the functions arising from numbers

of K. Suppose we fix a class of an algebraic number modulo torsion f ∈ F .

Then the set

{K ∈ K : f ∈ VK}

forms a sublattice of K, and by the finiteness properties of K this set must

contain a unique minimal element.

Definition 2.2.1. For any f ∈ F , the minimal field is defined to be the

minimal element of the set {K ∈ K : f ∈ VK}. We denote the minimal field

of f by Kf .
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Lemma 2.2.2. For any f ∈ F , we have StabG(f) = Gal(Q/Kf ) ≤ G.

Notation 2.2.3. By StabG(f) we mean the σ ∈ G such that Lσf = f . As this

tacit identification is convenient we shall use it throughout without further

comment.

Proof. Let f = fα. Then clearly Gal(Q/Kf ) ≤ StabG(f), as α` ∈ Kf for some

` ∈ N by definition of VKf . To see the reverse implication, merely observe that

Kf = Q(α`) for some ` ∈ N, as otherwise, there would be a proper subfield of

Kf which contains a power of α, contradicting the definition of Kf .

Remark 2.2.4. The minimal such exponent ` used above can in fact be uniquely

associated to f ∈ F and this will be vital to the concept of Lehmer irreducibil-

ity developed in Chapter 3.

Lemma 2.2.5. For a given f ∈ F , we have f ∈ VK if and only if Lσf = f

for all σ ∈ Gal(Q/K).

Proof. Necessity is obvious. To see that the condition is sufficient, observe

that by definition of Kf , we have f ∈ VK if and only Kf ⊆ K, which is

equivalent to Gal(Q/K) ≤ Gal(Q/Kf ) under the Galois correspondence. But

by the above lemma, Gal(Q/Kf ) = StabG(f).

Proposition 2.2.6. If E,F ∈ K, then we have E 6= F if and only if VE 6= VF .

Proof. Suppose E 6= F but VE = VF . Let E = Q(α). By [Dub05, Theorem 3]

we can find a rational integer n such that β = n+ α is torsion-free, that is, if
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β/β′ 6= 1 then β/β′ 6∈ Tor(Q×) for any conjugate β′ of β, and in particular,

the conjugates of β give rise to distinct functions in F . Observe therefore that

E = Q(β) and StabG(fβ) = Gal(Q/E). By the above if fβ ∈ VF then we must

have Gal(Q/F ) ≤ Gal(Q/E), or E ⊆ F . Repeating the same argument for a

generator of F , we find that F ⊆ E so E = F , a contradiction. The reverse

implication is obvious.

Remark 2.2.7. The above proposition is no longer true if we restrict our atten-

tion to the space of units U ⊂ F . This follows from the well known fact that

CM extensions (totally imaginary quadratic extensions of totally real fields)

have the same unit group modulo torsion as their base fields, the simplest

example being Q(i)/Q.

2.3 Orthogonal projections associated to number fields

For K ∈ K, define the map PK : F → VK via

(PKf)(y) =

∫
HK

(Lσf)(y)dν(σ)

where HK = Gal(Q/K) and ν is the normalized (measure 1) Haar measure of

HK . (Observe that, like G, HK is profinite and thus compact and possesses a

Haar measure.) Let us prove that the map is well-defined. Since f ∈ F , it has

a finite Galois orbit and thus a finite orbit under HK . Let us partition HK into

the k = [HK : StabHK (f)] cosets of equal measure by the translation invariance

of the Haar measure. Denote these cosets by StabHK (f)σ1, . . . , StabHK (f)σk.
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Then

PK(f) =
1

k
(Lσ1f + · · ·+ Lσkf) .

But each Lσif ∈ F since F is closed under the action of the Galois isometries.

Thus if f = fα, we have Lσif = fσiα. Since F is a Q-vector space, PK(f) ∈ F

as well. Further, it is stable under the action of HK , and thus, by Lemma

2.2.5, we have PK(f) ∈ VK . The map PK is in fact nothing more than the

familiar algebraic norm down to K, subject to an appropriate normalization,

that is, if fβ = PKfα, then we have

β ≡
(

Norm
K(α)
K α

)1/[K(α):K]

mod Tor(Q×). (2.3.1)

(We note in passing that the norm map Norm
K(α)
K : K(α)× → K×, as a

homomorphism, necessarily maps torsion elements to other torsion elements

and thus descends to a well-defined map modulo torsion.)

The following alternative formulation will also be helpful:

Lemma 2.3.1. Let K ∈ K and let MK denote the places of K. For each

v ∈MK, let χv(y) be the characteristic function of the set Y (K, v). Then

PKf(y) =
∑
v∈MK

(
1

λ(Y (K, v))

∫
Y (K,v)

f(z) dλ(z)

)
χv(y).

In other words, PK is essentially the conditional expectation with respect to

the Borel σ-algebra generated by the set {Y (K, v) : v ∈ MK}. Of course, Y

has infinite measure so this is not a conditional expectation in the usual sense

from probability theory, although it shares many of the same properties. If we
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restrict to the space of units, that is, functions supported on the measure one

space Y (Q,∞), then the restriction of PK to this space is indeed a conditional

expectation.

Proof. Fix a value y ∈ Y . Then there exists a unique v ∈ MK such that

y ∈ Y (K, v) since Y =
⋃
v∈MK

Y (K, v) is a disjoint union. The claim will be

proven if we can show that for this value of y,

PKf(y) =
1

λ(Y (K, v))

∫
Y (K,v)

f(z) dλ(z).

Now,

PKf(y) =

∫
HK

f(σ−1y) dν(σ)

where HK , ν are as above. By the construction of λ (see (4.1) and surrounding

remarks in [AV09]), for any y ∈ Y (K, v),

1

λ(Y (K, v))

∫
Y (K,v)

f(z) dλ(z) =

∫
HK

f(σ−1y) dν(σ)

(where we need the normalization factor 1/λ(Y (K, v)) since (4.1) assumes

λ(K, v) = 1) and so the proof is complete.

Proposition 2.3.2. Let K ⊂ Q be a field of arbitrary degree. Then PK is a

projection onto VK of norm one with respect to the Lp norms for 1 ≤ p ≤ ∞.

Proof. We first prove that P 2
K = PK . Let H = HK as above and ν the

normalized Haar measure on H. Suppose that τ ∈ H. Observe that

PK(f)(τ−1y) =

∫
H

f(σ−1τ−1y)dν(σ) =

∫
τH

f(σ−1y)dν(σ) = PK(f)(y)

29



since τH = H for τ ∈ H. Thus,

(PK
2f)(y) =

∫
H

PKf(σ−1y)dν(σ) =

∫
H

PKf(y)dν(σ) = PKf(y),

or more succinctly, PK
2 = PK . Since linearity is clear we will now prove that

the operator norm ‖PK‖ = 1 in the Lp norm in order to conclude that PK is

a projection. If p = ∞, this is immediate, so let us assume that 1 ≤ p < ∞.

Let f ∈ Lp(Y ). Then first observe that since ν(H) = 1, Jensen’s inequality

implies ∫
H

|f(σ−1y)| dν(σ) ≤
(∫

H

|f(σ−1y)|p dν(σ)

)1/p

.

Now let us consider the Lp norm of PKf :

‖PKf‖p =

(∫
Y

|PK(f)(y)|pdλ(y)

)1/p

=

(∫
Y

∣∣∣∣∫
H

f(σ−1y)dν(σ)

∣∣∣∣p dλ(y)

)1/p

≤
(∫

Y

∫
H

∣∣f(σ−1y)
∣∣p dν(σ)dλ(y)

)1/p

=

(∫
H

∫
Y

∣∣f(σ−1y)
∣∣p dλ(y)dµ(σ)

)1/p

=

(∫
H

‖Lσf‖ppdµ(σ)

)1/p

=

(∫
H

‖f‖ppdµ(σ)

)1/p

= ‖f‖p.

where we have made use of the fact that Lσ is an isometry, and the application

of Fubini’s theorem is justified by the integrability of |f |p. This proves that

‖PK‖ ≤ 1, and to see that the operator norm is not in fact less than 1, observe

that the subspace VQ is fixed for every PK .

As a corollary, if we extend PK by continuity to the completion Fp of

F under the Lp norm, we obtain:

Corollary 2.3.3. The subspace VK ⊂ Fp is complemented in Fp for all 1 ≤

p ≤ ∞.
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As F2 = L2(Y, λ) is a Hilbert space, in fact, we can show that PK is an

orthogonal projection. Specifically, we say P is an orthogonal projection on a

Hilbert space H if P is idempotent, continuous, and if P (H) ⊥ (I − P )(H),

where I denotes the identity operator. Equivalently, P is orthogonal if ‖f‖2 =

‖Pf‖2 + ‖(I − P )f‖2 for all f ∈ H. Let us recall some basic facts about

orthogonality from Hilbert space theory:

Lemma 2.3.4. Let H be a real Hilbert space with norm ‖·‖ and inner product

〈·, ·〉, and let f, g ∈ H. Then ‖f‖ ≤ ‖f + λg‖ for all λ ∈ R if and only if

f ⊥ g.

We have assumed for simplicity that H is a real Hilbert space, although it is

not difficult to see that the result is true in the complex case if we take λ ∈ C

in our hypothesis.

Proof. Observe that the hypothesis can be equivalently written ‖f‖2 ≤ ‖f +

λg‖2, or expanding in terms of the inner product,

〈f, f〉 ≤ 〈f, f〉+ 2λ〈f, g〉+ λ2〈g, g〉,

equivalently,

0 ≤ 2λ〈f, g〉+ λ2〈g, g〉.

But this holds for all λ ∈ R if and only if 〈f, g〉 = 0, which is the desired

condition.

Lemma 2.3.5. If P is a norm one idempotent projection on a Hilbert space

H, then P is an orthogonal projection.
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Proof. Let Q = I − P , where I denotes the identity operator. Then we wish

to show that P (H) ⊥ Q(H). Let f ∈ H and observe that PQ = P − P 2 = 0

by assumption, so P (Pf + λQf) = Pf for all λ ∈ R. Then observe that

‖Pf‖ = ‖P (Pf + λQf)‖ ≤ ‖Pf + λQf‖ for all λ ∈ R.

Thus, by the preceding lemma, we see that Pf ⊥ Qf . Since we can choose f

so that Pf = g and Qf = h for any arbitrary g ∈ P (H), h ∈ Q(H), we have

the desired result.

Proposition 2.3.6. For each K ∈ K, PK is the orthogonal projection onto

the subspace VK ⊂ L2(Y ).

Proof. It suffices to observe that PK is idempotent and has operator norm

‖PK‖ = 1 with respect to the L2 norm, and any such projection in a Hilbert

space is orthogonal by the preceding lemma.

We now explore the relationship between the Galois isometries and the

projection operators PK for K ∈ K.

Lemma 2.3.7. For any field K ⊂ Q of arbitrary degree and any σ ∈ G,

LσPK = PσK Lσ.

Equivalently, PK Lσ = LσPσ−1K.

Proof. We prove the first form, the second obviously being equivalent. By

definition of PK , letting H = Gal(Q/K) and ν be the normalized Haar measure
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on H such that ν(H) = 1,

(LσPKf)(y) = (PKf)(σ−1y) =

∫
H

f(τ−1σ−1y) dν(τ)

=

∫
H

f(σ−1στ−1σ−1y) dν(τ)

=

∫
H

f(σ−1(στσ−1)−1y) dν(τ)

=

∫
H

(Lσf)((στσ−1)−1y) dν(τ)

=

∫
σHσ−1

(Lσf)(τ−1y) dν(τ)

= PσK(Lσf)(y).

We will be particularly interested in the case where the projections

PK , PL commute with each other (and thus PKPL is a projection to the inter-

section of their ranges). To that end, let us determine the intersection of two

distinguished subspaces:

Lemma 2.3.8. Let K,L ⊂ Q be fields of arbitrary degree. Then the intersec-

tion VK ∩ VL = VK∩L.

Proof. Observe that fα ∈ VK if and only if αn ∈ K for some n ∈ N, and

likewise, since fα ∈ VL, we have αm ∈ L for some m ∈ N. Then αnm ∈ K ∩L,

so fα ∈ VK∩L. The reverse inclusion is obvious.

Lemma 2.3.9. Suppose K ∈ K and L ∈ KG. Then PK and PL commute, that

is,

PKPL = PK∩L = PLPK .

In particular, the family of operators {PK : K ∈ KG} is commuting.
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Proof. It suffices to prove PK(VL) ⊂ VL, as this will imply that PK(VL) ⊂

VK∩VL = VK∩L by the above lemma, and thus that PKPL is itself a projection

onto VK∩L. It is norm one as both PK and PL are norm one, and therefore it

is orthogonal, and thus PKPL = PK∩L as the orthogonal projection is unique.

Since PK∩L is an orthogonal projection, it is equal to its adjoint (see e.g.

[Yos80, Theorem III.2]), and so by taking the adjoints of both sides of the

equation we find that

PKPL = PK∩L = P ∗K∩L = P ∗LP
∗
K = PLPK

as well. To prove that PK(VL) ⊂ VL, observe that for f ∈ VL,

PK(f) =
1

k
(Lσ1f + · · ·Lσkf)

where the σi are right coset representatives of Gal(Q/L)∩Gal(Q/K) in Gal(Q/K).

However, Lσ(VL) = VL for σ ∈ G since L is Galois, and thus, PK(f) ∈ VL as

well. But PK(f) ∈ VK by construction and the proof is complete.

2.4 Main decomposition theorem

We will now begin the proof of Theorems 2 and 3, which state that we

can orthogonally decompose the space F of algebraic numbers modulo torsion

by their Galois field and by their degree. These results will be derived from

the following general decomposition theorem, which we will apply to F in the

next two sections.
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Theorem 15. Let V be a vector space over Q with an inner product 〈·, ·〉 and

suppose we have a family of subspaces Vi ⊂ V together with projections Pi

indexed by a partially ordered set I such that:

1. The index set I has a unique minimal element, denoted 0 ∈ I, and I is

locally finite, that is, any interval [i, j] = {k ∈ I : i ≤ k ≤ j} is of finite

cardinality.

2. Any pair of elements i, j ∈ I has a unique greatest lower bound, called

the meet of i and j, and denoted i ∧ j. (Such a poset I is called a

meet-semilattice.)

3. Vi ⊆ Vj if i ≤ j ∈ I.

4. The projection map Pi : V → Vi is orthogonal with respect to the inner

product of V for all i ∈ I.

5. For i, j ∈ I, PiPj = PjPi = Pi∧j, where i ∧ j is the meet of i and j.

6. V =
∑

i∈I Vi (the sum is in the usual Q-vector space sense).

Then there exist mutually orthogonal projections Ti ≤ Pi (that is, satisfying

Ti(V ) ⊆ Vi and Ti(V ) ⊥ Tj(V ) for i 6= j) which form an orthogonal decompo-

sition of V :

V =
⊕
i∈I

Ti(V ), and Ti(V ) ⊥ Tj(V ) for all i 6= j ∈ I.
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(The notation V =
⊕

i∈I Ti(V ) indicates a direct sum in the Q-vector space

sense, that is, that each vector v ∈ V has a unique expression as a finite sum

of vectors, one from each summand.)

We call Ti the essential projection associated to the space Vi, as it gives

the subspace of Vi which is unique to Vi and no other subspace Vj in the given

family.

Remark 2.4.1. Theorem 15 can be stated and proven almost identically if V

is a real Hilbert space rather than an incomplete vector space over Q, the

only changes being that condition (6) is replaced with the condition that the

closure of
∑

i∈I Vi is V , the direct sum is then understood in the usual Hilbert

space sense, and the expansion of each f into
∑

i∈I Tif is to be understood as

a unique series expansion rather than a finite sum. The construction of the Ti

operators and the orthogonality are proven in exactly the same manner, and

indeed, we will make use of the fact that if we complete V , the decomposition

extends by continuity to the completion in the usual Hilbert space sense. The

theorem as stated here and as applied to F is in fact a strictly stronger result

than the statement it implies for the decomposition of L2(Y ) as not only must

such projections and such a decomposition exist, but this decomposition must

also respect the underlying Q-vector space of algebraic numbers F and map

algebraic numbers to algebraic numbers.

Let us begin by recalling the background necessary to define our Ti

projections. Since I is locally finite, it is a basic theorem in combinatorics

that there exists a Möbius function µ : I × I → Z, defined inductively by the
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requirements that µ(i, i) = 1 for all i ∈ I, µ(i, j) = 0 for all i 6≤ j ∈ I, and∑
i≤j≤k µ(i, j) = 0 for all i < k ∈ I (the sums are finite by the assumption

that I is locally finite). Since our set I has a minimal element 0 and is locally

finite, we can sum over i ≤ j as well. The most basic result concerning the

Möbius function is Möbius inversion, which (in one of the several possible

formulations) tells us that given two functions f, g on I,

f(j) =
∑
i≤j

g(i) if and only if g(j) =
∑
i≤j

µ(i, j) f(i).

In order that our Ti capture the unique contribution of each subfield Vi, we

would like our Ti projections to satisfy the condition that:

Pj =
∑
i≤j

Ti.

Möbius inversion leads us to define the Ti operators via the equation:

Tj =
∑
i≤j

µ(i, j)Pi. (2.4.1)

Since each of the above sums is finite and µ takes values in Z, we see that

Tj : V → Vj is well-defined. We will prove that Tj is the desired family of

projections.

Lemma 2.4.2. Let the projections Pi for i ∈ I satisfy the conditions of The-

orem 15 and let Ti be defined as above. Then for all i, j ∈ I, PiTj = TjPi,

and

PjTi =

{
Tj if i ≤ j

0 otherwise.
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Proof. The first claim follows immediately from equation (2.4.1) and condition

(5) of the theorem statement. To prove the second claim, we proceed by

induction. Observe that the statement is trivial for T0 = P0. Now given j ∈ I,

suppose the theorem is true for all i < j. Observe that from (2.4.1) we get

Tj = Pj −
∑
i<j

Ti. (2.4.2)

Then, if i < j, we have

PjTi = PjPi −
∑
k<i

PjTk = Pi −
∑
k<i

Tk = Ti,

applying the induction hypothesis at the second equality.

Now suppose i 6< j, so that i ∧ j 6= i. Then

PjTi = PjPi −
∑
k<i

PjTk = Pi∧j −
∑
k≤i∧j

PjTk −
∑
k<i
k 6≤i∧j

PjTk

= Pi∧j −
∑
k≤i∧j

Tk − 0 = Pi∧j − Pi∧j = 0

by two applications of the induction hypothesis at the third equality.

Lemma 2.4.3. Let the Ti be as above and let i 6= j for i, j ∈ I. Then

TiTj = TjTi = 0.

Proof. By Lemma 2.4.2, Ti = TiPi and Tj = PjTj. Thus,

TiTj = (TiPi)(PjTj) = Ti(PiPj)Tj = TiPi∧jTj = 0

since i 6= j implies that i∧ j < i or i∧ j < j, so either TiPi∧j = 0 or Pi∧jTj = 0

by Lemma 2.4.2.
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We are now ready to prove the theorem statement.

Proof of Theorem 15. Let the operators Ti for i ∈ I be constructed as above.

Let us first show that each Ti is a projection, a continuous linear operator such

that Ti
2 = Ti. The fact the Ti is a continuous linear operator follows from the

same fact for the Pi operators, since each Ti is a finite linear combination of

Pi projections.

Let us now show that Ti is idempotent. The base case T0 = P0 is trivial.

Assume the lemma is true for all i < j. Using equation (2.4.2), we have

Tj
2 =

(
Pj −

∑
i<j

Ti

)2

= Pj
2 −

∑
i<j

PjTi −
∑
i<j

TiPj +

(∑
i<j

Ti

)2

= Pj −
∑
i<j

Ti −
∑
i<j

Ti +
∑
i<j

Ti = Pj −
∑
i<j

Ti = Tj

where we have used Lemmas 2.4.2 and 2.4.3 to simplify the middle and last

terms.

Now, let us show that the Ti decompose V . To see this, observe that

each element f ∈ V by condition (6) lies in some Vi1 + . . . + Vin . Let I ′ =⋃n
m=1[0, im] ⊂ I, and then observe that

∑
k∈I′ Tk is the projection onto Vi1 +

. . . + Vin and I ′ is finite by construction, so f =
∑

k∈I′ Tkf. In fact, observe

that we can write f =
∑

k∈I Tkf as a formally infinite sum, and all terms

except those satisfying k ≤ i are zero by Lemma 2.4.2. Thus we can write

V =
⊕
i∈I

Ti(V ).
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That the Ti are orthogonal projections now follows from the fact that a con-

tinuous operator is an orthogonal projection if and only if it is idempotent and

self-adjoint [Yos80, Theorem III.2], for, since the Pi are assumed to be orthog-

onal, they are self-adjoint and thus the Ti operators are self-adjoint as well as

an integral linear combination of the Pi operators, and we have demonstrated

that they are continuous and idempotent.

2.5 Decomposition by Galois field and proof of Theo-
rem 2

We will now apply Theorem 15 to F . Recall that KG is simply the set

of finite Galois extensions of Q. As remarked above, it is well known that both

K and KG satisfy all of the axioms of a lattice, that is, for any two fields K,L,

there is a unique meet K ∧L given by K ∩L and a unique join K ∨L given by

KL. If K,L are Galois then both the meet (the intersection) and the join (the

compositum) are Galois as well, thus KG is a lattice as well. Further, both K

and KG are locally finite posets and possess a minimal element, namely, Q.

Our decomposition will be along KG and the associated family of sub-

spaces VK with their canonical projections PK . Since KG is a locally finite

lattice, conditions (1) and (2) of Theorem 15 are satisfied. Clearly the sub-

spaces VK for K ∈ KG satisfy the containment condition (3). By Proposition

2.3.6, the projections are orthogonal and satisfy condition (4). By Lemma

2.3.9, the maps {PK : K ∈ KG} form a commuting family and satisfy condi-

tion (5). Lastly, since any f = fα belongs to VKf ⊂ VK where K ∈ KG is the
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Galois closure of the minimal field Kf , we find that condition (6) is satisfied

as well. Thus Theorem 15 gives us an orthgonal decomposition

F =
⊕
K∈KG

TK(F) (2.5.1)

The relationship between the PK and TK operators is given by:

PK =
∑
F∈KG
F⊆K

TF , and TK =
∑
F∈KG
F⊆K

µ(F,K)PF (2.5.2)

where µ : KG ×KG → Z is the Möbius function associated to KG.

If K is the Galois closure of the minimal field Kf where f = fα, then

PK(f) = f , and so (2.5.2) gives us a unique representation modulo torsion

of the algebraic number α which we call the M-factorization of α, or the

M-expansion of fα in functional notation.

Example 2.5.1. Let α = 2 +
√

2 and let f = fα. Then Kf = Q(
√

2). Since

K ∈ KG, [K : Q] = 2 and it is easy to see that the interval [Q, K] = {Q, K} ⊂

KG, and so µ(Q, K) = −1, and thus

TK = PK − PQ, TQ = PQ.

Thus

TK(fα) = f1+
√

2, TQ(fα) = f√2,

and the M-factorization of α has the form 2 +
√

2 =
√

2 · (1 +
√

2), or in

functional notation,

f2+
√

2 = f√2 + f1+
√

2, and f√2 ⊥ f1+
√

2.
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Remark 2.5.2. We end this section with a remark on why we decompose along

KG but not K. It is not difficult to see that the PK projections for K ∈ K

do not form a commuting family. To see this, suppose α is a cubic algebraic

unit with conjugates β, γ and nonsquare discriminant ∆. Then we have the

following fields:

Q(α, β, γ)

Q(α)

gggggggggggg Q(β)

nnnnn
Q(γ)

Q(
√

∆)

DDDDDDDDDDD

Q

AAAAAAAAAAA

NNNNNNNNNNNNNNNNNN
llllllll

But the projections associated to the fields Q(α) and its conjugates do not

commute. Specifically, we may compute:

PQ(β)fα = −1

2
fβ, and PQ(α)fβ = −1

2
fα

which shows that PQ(α)PQ(β) 6= PQ(β)PQ(α). This noncommutativity is present

precisely because there is a linear dependence among the vector space VQ(α)

and its conjugates, e.g., fα+fβ +fγ = 0 (since we assumed α was an algebraic

unit). In particular, we have

VQ(α) + VQ(β) = VQ(α) + VQ(β) + VQ(γ),

as the projection map down to Q to gives us, for any f ∈ VQ(γ), an expresion

g = PQf = (f + Lσf + Lτf)/3 where Lσf ∈ VQ(α) and Lτf ∈ VQ(β), and

thus f = 3g − Lσf + Lτf ∈ VQ(α) + VQ(β) (since VQ is in common to both

subspaces). Clearly such a dependence would make it impossible to associate
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a unique component TK to each of the three fields. However, the commutavity

of the PK for K ∈ KG implies that there is no such barrier to decomposition

amongst the Galois fields.

2.6 Decomposition by degree and proof of Theorems 3
and 4

In order to associate a notion of degree to a subspace in a meaningful

fashion so that we can define our Mahler p-norms we will determine a second

decomposition of F . Let us define the orbital degree function δ : F → N by

δ(f) = #{Lσf : σ ∈ G} = [G : StabG(f)] (2.6.1)

to be the size of the orbit of f under the action of the Galois isometries.

Observe that by Lemma 2.2.2, we have StabG(f) = Gal(Q/Kf ) where Kf is

the minimal field of f , and so we also have

δ(f) = [Kf : Q]. (2.6.2)

Let

V (n) =
∑
K∈K

[K:Q]≤n

VK (2.6.3)

be the vector space spanned by all elements with orbit in F under G of size

at most n. Let P (n) denote the unique orthogonal projection of the Hilbert

space L2(Y ) onto the closure V (n) of the Q-vector space V (n) inside L2(Y ).

We wish to show that the restriction of this orthogonal projection defined on

the Hilbert space L2(Y ) preserves the Q-vector space F of equivalence classes
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of algebraic numbers modulo torsion, that is, that P (n)(F) ⊂ F , so that the

map

P (n) : F → V (n)

is well-defined. Once this has been demonstrated, we can apply Theorem

15 to obtain projections T (n) : F → V (n) which will give us the orthogonal

decomposition of F into a subspace spanned by elements whose orbit under

G is of order at most n. We begin by first showing that the projections P (n)

and PK for n ∈ N and K ∈ KG commute.

Lemma 2.6.1. If K ∈ KG, then δ(PKf) ≤ δ(f) for all f ∈ F .

Proof. Let F = Kf . Since K ∈ KG, we have by Lemma 2.3.9 that PKf =

PK(PFf) = PK∩Ff . Thus, PKf ∈ VK∩F , and so by (2.6.2) above, we have

δ(PKf) ≤ [K ∩ F : Q] ≤ [F : Q] = δ(f).

Proposition 2.6.2. Let n ∈ N and K ∈ KG. Then the orthogonal projections

P (n) : L2(Y ) → V (n) and PK : L2(Y ) → VK commute (where the closures are

taken in L2), and thus TK and P (n) commute as well.

Proof. Since δ(PKf) ≤ δ(f) for all f ∈ F by Lemma 2.6.1 above, we have

PK(V (n)) ⊂ V (n), and thus by continuity PK(V (n)) ⊂ V (n), so PK(V (n)) ⊂

V (n)∩VK and PKP
(n) is a projection. Therefore they commute. The last part

of the claim now follows from the definition of TK in (2.4.1).

Let WK = TK(F) ⊂ VK for K ∈ KG. By the above proposition, we see

that if we can show that P (n)(WK) ⊆ WK , then we will have the desired result
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since

P (n)(F) =
⊕
K∈KG

P (n)(WK)

by the commutativity of P (n) and TK . Since we will prove this result by

reducing to finite dimensional S-unit subspaces, let us first prove an easy

lemma regarding finite dimensional vector spaces over Q.

Lemma 2.6.3. Suppose we have a finite dimensional vector space A over Q,

and suppose that

A = V1 ⊕ V ′1 = V2 ⊕ V ′2 = · · · = Vn ⊕ V ′n

for some subspaces Vi, V
′
i , 1 ≤ i ≤ n. Then

A = (V1 + · · ·+ Vn)⊕ (V ′1 ∩ · · · ∩ V ′n).

Proof. It suffices to prove the lemma in the case n = 2 as the remaining cases

follow by induction, so suppose A = V1 ⊕ V ′1 = V2 ⊕ V ′2 . It is an easy exercise

that

dimQ V1 + dimQ V2 = dimQ(V1 + V2) + dimQ(V1 ∩ V2),

and likewise,

dimQ V
′

1 + dimQ V
′

2 = dimQ(V ′1 + V ′2) + dimQ(V ′1 ∩ V ′2).

Now,

2 dimQA = dimQ V1 + dimQ V
′

1 + dimQ V2 + dimQ V
′

2

= dimQ(V1 + V2) + dimQ(V1 ∩ V2) + dimQ(V ′1 + V ′2) + dimQ(V ′1 ∩ V ′2).
(2.6.4)
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Notice that (V1 + V2) ⊕ (V ′1 ∩ V ′2) ⊆ A and (V ′1 + V ′2) ⊕ (V1 ∩ V2) ⊆ A, so we

must have

b = dimQ(V1 + V2) + dimQ(V ′1 ∩ V ′2) ≤ dimQA

c = dimQ(V ′1 + V ′2) + dimQ(V1 ∩ V2) ≤ dimQA.

But by (2.6.4), we have b + c = 2 dimQA, so we must have b = c = dimQA,

and in particular b = dimQA proves the claim.

Proposition 2.6.4. With WK = TK(F) as above, P (n)(WK) ⊆ WK for every

n ∈ N and K ∈ KG, and thus P (n)(F) ⊂ F .

Proof. Let f ∈ WK , and let S ⊂ MQ be a finite set of rational primes, con-

taining the infinite prime, such that

suppY (f) ⊂
⋃
p∈S

Y (Q, p).

Let VK,S ⊂ VK denote the subspace spanned by the S-units of K. By Dirich-

let’s S-unit theorem, VK,S is finite dimensional over Q. Let WK,S = TK(VK,S).

Notice that WK,S ⊂ VK,S since each PF projection will preserve the support

of f over each set Y (Q, p) for p ∈MQ by Lemma 2.3.1.

For all fields F ∈ K such that F ⊂ K, let

ZF,S = PF (WK,S) and Z ′F,S = QF (WK,S),

where QF = I−PF is the complementary orthogonal projection. Observe that

for each such F , we have

WK,S = ZF,S ⊕ Z ′F,S.
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Then by Lemma 2.6.3, we have

WK,S =

( ∑
F⊆K

[F :Q]≤n

ZF,S

)
⊕
( ⋂

F⊆K
[F :Q]≤n

Z ′F,S

)
. (2.6.5)

This gives us a decomposition f = fn + f ′n where

fn ∈
∑
F⊆K

[F :Q]≤n

ZF,S = V (n) ∩WK,S,

and

f ′n ∈
⋂
F⊆K

[F :Q]≤n

Z ′F,S = (V (n))⊥ ∩WK,S,

But then fn ∈ V (n) and f ′n ∈ (V (n))⊥, so by the uniqueness of the orthogonal

decomposition, we must in fact have fn = P (n)f and f ′n = Q(n)f = (I−P (n))f .

Since this proof works for any f ∈ F , we have established the desired claim.

Now we observe that the subspaces V (n) with their associated projec-

tions P (n), indexed by N with the usual partial order ≤, satisfy the conditions

of Theorem 15, and thus we have orthogonal projections T (n) and an orthog-

onal decomposition

F =
∞⊕
n=1

T (n)(F). (2.6.6)

The operators T (n) have a particularly simple form in terms of the P (n)

projections. The Möbius function for N under the partial order≤ is well-known

and is merely

µN(m,n) =


1 if m = n,

−1 if m = n− 1, and

0 otherwise.
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Thus, T (1) = P (1) = PQ and

T (n) = P (n) − P (n−1) for all n > 1.

We call T (n)f the degree n component of f . The following proposition is now

obvious from the above constructions:

Proposition 2.6.5. Each f ∈ F has a unique finite expansion into its degree

n components, f (n) = T (n)f ∈ F

f =
∑
n∈N

f (n).

Each f (n) term can be written as a finite sum f (n) =
∑

i f
(n)
i where f

(n)
i ∈ F

and δ(f
(n)
i ) = n for each i, and f (n) cannot be expressed as a finite sum

∑
j f

(n)
j

with δ(f
(n)
j ) ≤ n for each j and δ(f

(n)
j ) < n for some j.

This completes the proof of Theorem 3. It remains to prove Theorem

4.

Proof of Theorem 4. From Proposition 2.6.2, we see that the operators TK

and P (n) commute for K ∈ KG and n ∈ N. But T (n) = P (n) − P (n−1) for

n > 1 and T (1) = P (1), so by the commutativity of TK with P (n) we have

the desired result. In particular, the map T
(n)
K = T (n)TK : F → F is also a

projection, and thus we can combine equations (2.5.1) and (2.6.6) to obtain

the orthogonal decomposition

F =
∞⊕
n=1

⊕
K∈KG

T
(n)
K (F). (2.6.7)
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Chapter 3

Reducing the Lehmer problem

3.1 Lehmer irreducibility

Let us recall that we defined in Section 2.6 the orbital degree function

δ : F → N by

δ(f) = #{Lσf : σ ∈ G} = [G : StabG(f)] = [Kf : Q].

Observe that since nonzero scaling of f does not affect its Q-vector space span

or the minimal field Kf that the function δ is invariant under nonzero scaling

in F , that is,

δ(rf) = δ(f) for all f ∈ F and 0 6= r ∈ Q. (3.1.1)

In order to better understand the relationship between our functions in F and

the algebraic numbers from which they arise, we need to understand when a

function fα ∈ VK has a representative α ∈ K× or is merely an nth root of

an element of K× for some n > 1. Naturally, the choice of coset represen-

tative modulo torsion affects this question, and we would like to avoid such

considerations. Therefore we define the function d : F → N by

d(fα) = min{deg(ζα) : ζ ∈ Tor(Q×)}. (3.1.2)
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Notice that the minimum is invariant by construction under the choice of coset

representative α ∈ Q× for fα ∈ F . In other words, for a given function f ∈ F ,

which is an equivalence class of an algebraic number modulo torsion, d(f) gives

us the minimum degree amongst all of the algebraic numbers which are coset

representatives of the class of f modulo the torsion subgroup.

Notice that a function f ∈ F can then be written as f = fα with

α ∈ K×f if and only if d(f) = δ(f). We therefore make the following definition:

Definition 3.1.1. We define the set of Lehmer irreducible elements of F to

be the set

L = {f ∈ F : δ(f) = d(f)}. (3.1.3)

The set L consists precisely of the functions f such that f = fα for some α of

degree equal to the degree of the minimal field of definition Kf of f .

We recall the terminology from [Dub05] that a number α ∈ Q× is

torsion-free if α/σα 6∈ Tor(Q×) for all distinct Galois conjugates σα. As we

observed above in the proof of Proposition 2.2.6, torsion-free numbers give rise

to distinct functions fσα = Lσfα for each distinct Galois conjugate σα of α.

The goal of this section is to prove the following result relating δ and

d:

Proposition 3.1.2. Let 0 6= f ∈ F and r, s ∈ Z with (r, s) = 1. Then the set

R(f) = {q ∈ Q : qf ∈ L} satisfies

R(f) =
`

n
Z
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where `, n ∈ N, (`, n) = 1, and

d((r/s)f) =
`s

(`, r)(n, s)
δ(f). (3.1.4)

In particular, d(f) = ` · δ(f).

The proof of Proposition 3.1.2 consists of showing that R(f) is a frac-

tional ideal of Q which scales according to R(qf) = (1/q)R(f), and that when

f is scaled so that R(f) = Z we have d((r/s)f) = sδ(f). We establish these

results in a series of lemmas below. We begin by demonstrating the most basic

results concerning Lehmer irreducibility:

Lemma 3.1.3. We have the following results:

1. For each f ∈ F , there is a unique minimal exponent ` = `(f) ∈ N such

that `f ∈ L.

2. For any α ∈ Q×, we have δ(fα)| degα.

3. f ∈ L if and only if it has a representative in Q× which is torsion-free.

4. Every torsion-free representative of f ∈ L lies in the same field Kf , the

minimal field of f .

Proof. Choose a representative α ∈ Q× such that f = fα and let

` = lcm{ord(α/σα) : σ ∈ G and α/σα ∈ Tor(Q×)}

where ord(ζ) denotes the order of an element ζ ∈ Tor(Q×). Then observe that

α` is torsion-free. Clearly, Q(α`) ⊂ Q(α) so [Q(α`) : Q]|[Q(α) : Q]. Now if
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a number β ∈ Q× is torsion-free, then since each distinct conjugate σβ gives

rise to a distinct function in F , we have

deg β = [G : StabG(fβ)] = [Kfβ : Q] = δ(fβ).

Thus degα` = δ(fα) and we have proven existence in the first claim. The

existence of a minimum value follows since N is discrete. To prove the second

claim it now suffices to observe that since δ is invariant under scaling, with

the choice of ` as above, we have δ(fα) = δ(f `α)| degα for all α ∈ Q×. The

third claim now follows immediately. Lastly, since any representative of f

differs by a root of unity, each representative has some power which lies in

(and generates) the minimal field, and thus each torsion-free representative

generates the minimal field.

We note the following easy corollary for its independent interest:

Corollary 3.1.4. Let α ∈ Q× have minimal polynomial F (x) ∈ Z[x]. Let

G(x) ∈ Z[x] be an irreducible polynomial of smallest degree in Z[x] such that

there exists some k ∈ N with F (x)|G(xk). Then δ(fα) = degG.

(We observe in passing that δ(f) = 1 if and only if f ∈ VQ, in which case,

f = fα where αn ∈ Q× and so f represents a surd, that is, a root of a rational

number.)

Lemma 3.1.5. If 0 6= f ∈ F , then R(f) = {r ∈ Q : rf ∈ L} is a fractional

ideal of Q, that is, R(f) = rZ for some r ∈ Q.
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Proof. We can assume δ(f) > 1, otherwise f arises from a surd and the proof

is trivial. First we show that R(f) is a Z-module. It is trivial that if r ∈ R(f)

then −r ∈ R(f) as inversion does not affect degree. Suppose now that we have

r, s ∈ R(f) and choose torsion-free representatives β ∈ Q× of rf and γ ∈ Q×

of sf . If r + s = 0 the result is trivial, so suppose not. By Lemma 3.1.3 (4),

we have β, γ ∈ Kf . But then βγ ∈ Kf as well, and hence is a representative

of fβγ = fβ + fγ = rf + sf = (r + s)f of degree [Kf : Q] = δ(f), and thus we

have r + s ∈ R(f) as well.

If we can now show that R(f) is finitely generated the proof will be

complete, as it is easy to check that any finitely generated Z-submodule of

Q is indeed a fractional ideal. But were it to require an infinite number of

generators, we would have to have elements of arbitrarily large denominator.

Further, we could fix an N sufficiently large so that for a sequence of ni →∞,

we would have some ri/ni ∈ R(f) and |ri/ni| ≤ N . (For example, given r1/n1,

we can take N = r1/n1 by appropriately subtracting off multiples of r1/n1 from

any other ri/ni.) But then we would have torsion-free representatives αri/ni

satisfying h(αri/ni) ≤ N h(α), and as Lehmer irreducible representatives, each

representative has the same degree δ(f), and thus we have an infinite number of

algebraic numbers with bounded height and degree, contradicting Northcott’s

theorem.

Lemma 3.1.6. Let 0 6= q ∈ Q. Then R(qf) = 1
q
R(f).

Proof. This is clear from the definition.
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Lemma 3.1.7. Let f ∈ L with R(f) = Z and let m,n ∈ Z where (m,n) = 1

and n > 0. Let α be a torsion-free representative of f and denote by αm/n

any representative of the class of fαm/n = (m/n)f modulo torsion of minimal

degree. Then degαm/n = n degα. In particular, we have

d((m/n)f) = n d(f) = n δ(f) if R(f) = Z. (3.1.5)

Proof. Since R(f) = Z, our choice of torsion-free representative β in Q× has

degree δ(f). Clearly, we can say that d((m/n)f) ≤ n degα = n δ(f) because

any root of xn−αm over Q(α) will be a representative of the class of (m/n)f .

Observe that the minimal field Kf = Q(α) is, as we observed above, unique,

and thus the choice of α differs at most by some torsion element of Q(α)×.

Further, any choice of representative β ∈ Q× of (m/n)f will satisfy Q(α) ⊂

Q(β) since some power of β will make it torsion-free and therefore it will be a

power of α.

Let us show that the degree of β cannot satisfy deg β < n degα if

R(f) = Z. Suppose it did, so that k = [Q(β) : Q(α)] < n. Then observe that

by taking the algebraic norm down to Q(α), we have

Norm
Q(β)
Q(α)(β) = ζαkm/n ∈ Q(α)

where ζ is a root of unity. As [Q(α) : Q] = δ(f) the existence of the represen-

tative ζαkm/n would imply that km/n ∈ R(f), but since (m,n) = 1 and k < n,

we have km/n 6∈ Z. This contradicts our assumption that R(f) = Z.
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Combining the above lemmas, we now see that we have proven Propo-

sition 3.1.2.

3.2 Reduction to Lehmer irreducible numbers

We will now show that we can reduce questions related to lower bounds

for the Lp Mahler measure to the set of Lehmer irreducible elements. We begin

with two lemmas regarding the relationship between the projection operators

PK and the degree functions d and δ which will be used below:

Lemma 3.2.1. If f ∈ F and K ⊂ Kf , then d(PKf) ≤ d(f).

Proof. Let f = fα and let α ∈ Q× be a minimal degree representative of f , and

choose ` ∈ N such that α` is torsion-free. Then Q(α`) = Kf , so in particular,

we see that

K ⊆ Kf ⊆ Q(α).

Observe that the norm N
K(α)
K , as a group homomorphism from K(α)× to K×,

is necessarily well-defined modulo torsion. Taking some 1/[K(α) : K]th root,

we have (N
K(α)
K α)1/[K(α):K] is a representative of PKfα modulo torsion, and it

follows from the fact that N
K(α)
K α ∈ K that

d(PKf) ≤ deg(N
K(α)
K α)1/[K(α):K] ≤ [K(α) : K] · [K : Q]

= [Q(α) : Q] = d(f).

Lemma 3.2.2. If K ∈ K and K ⊂ Kf for f ∈ F , we have δ(PKf) ≤ δ(f).
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Proof. Since we can rescale f without affecting either δ value, we can assume

f ∈ L so d(f) = δ(f). Let F = Kf . Then by Lemma 3.2.1 above, we have

δ(PKf) ≤ d(PKf) ≤ d(f) = δ(f).

From the construction of d above, it is easy to see that:

Proposition 3.2.3. Let mp : F → [0,∞) be given by mp(f) = d(f) · ‖f‖p.

Fix 0 6= f ∈ F . Then

mp(f) = min{(degα) · hp(α) : α ∈ Q×, fα = f}.

The right hand side of this equation is the minimum of the Lp analogue of the

usual logarithmic Mahler measure on Q× taken over all representatives of f

modulo torsion.

We now prove the reduction to L ⊂ F :

Proposition 3.2.4. Let mp(f) = d(f) · ‖f‖p. Then mp(F) = mp(L), so in

particular, inf mp(F \ {0}) > 0 if and only if inf mp(L \ {0}) > 0.

Proof. Let f ∈ F and ` = `(f). Then by Proposition 3.1.2 we have δ(f) =

d(`f) and ` δ(f) = d(f), and thus

mp(`f) = δ(f) · ‖`f‖p = ` δ(f)‖f‖p = d(f) · ‖f‖p = mp(f).

Remark 3.2.5. Proposition 3.2.4, which will be used below in the proof of

Theorem 6, is a key step in constructing equivalent statements of Lehmer’s
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conjecture for heights which scale, such as δ hp and particularly for the norms

we will construct. Consider for example that if α = 21/n then δ(fα) = 1 for all

n ∈ N and h1(21/n) = (2 log 2)/n→ 0.

3.3 Projection irreducibility

In this section we introduce the last criterion which we will require to

reduce the Lehmer conjectures to a small enough set of algebraic numbers to

prove our main results.

Definition 3.3.1. We say f ∈ F is projection irreducible if PK(f) = 0 for

all proper subfields K of the minimal field Kf . We denote the collection of

projection irreducible elements by P ⊂ F .

Remark 3.3.2. Notice that we cannot in general require that PK(f) = 0 for all

K 6= Kf , as an element with a minimal field which is not Galois will typically

have nontrivial projections to the conjugates of its minimal fields. See Remark

2.5.2 above for more details.

We now prove that we can reduce questions about lower bounds on the

Mahler measure mp to elements of P :

Proposition 3.3.3. We have

inf
f∈F\{0}

mp(f) > 0 ⇐⇒ inf
f∈P\{0}

mp(f) > 0.

Proof. Let f ∈ F . Notice that for any K ∈ K that by Lemma 3.2.1 we have

d(PKf) ≤ d(f) and by Lemma 2.3.2 we have hp(PKf) ≤ hp(f), so mp(PKα) ≤
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mp(f). Let suppK(f) = {K ∈ K : PKf 6= 0}. Notice that if K ⊂ L and

K ∈ suppK(f), then L ∈ suppK(f). Let E denote the Galois closure of Kf ,

and observe that PKf = PK(PEf) = PK∩Ef by Lemma 2.3.9, so since we have

only a finite number of subfields of E, we can write suppK(f) =
⋃n
i=1[Ki, )

where [Ki, ) = {L ∈ K : Ki ⊆ L}, and each Ki ⊆ E is minimal in the sense

that [Ki, ) 6⊆ [Kj, ) for all i 6= j. Thus, for each i, PFf = 0 for all F $ Ki,

and so PKif ∈ P \ {0}. Then 0 < mp(PKif) ≤ mp(f), and so we have shown

inff∈P\{0}mp(f) ≤ inff∈F\{0}mp(f). The reverse inequality is trivial.
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Chapter 4

The Mahler p-norm

4.1 An Lp analogue of Northcott’s theorem

We begin by proving an analogue of Northcott’s theorem for the Lp

Weil heights which we will make use of in this chapter. We begin with some

easy lemmas which relate the Lp height to the L1 height.

Lemma 4.1.1. Let f ∈ F and suppose supp(f) ⊆ Y (Q, π) for some rational

prime π (possibly infinity). Then for 1 < p ≤ ∞, we have

‖f‖1 ≤ ‖f‖p ≤ δ(f)1−1/p‖f‖1.

(We follow the usual convention for exponents and let 1/p = 0 when p = ∞

for convenience.)

Proof. The first inequality in fact is a well-known fact of Lp norms on measure

one spaces, however, we will give another proof in this case as it is useful to

do so. Let K = Kf be the minimal field, so in particular, [K : Q] = δ(f). Let

n = δ(f) denote this common value. Then Y (Q, π) can be partitioned into

a disjoint union of the sets Y (K, v) for v|π. Notice that λ(Y (K, v)) = dv/n

for each v, where dv = [Kv : Qv] is the local degree. Enumerate the set of v

lying over π as v1, . . . , vn, counting each place dv times, so that if, for example,
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dv = 3, then there will be three places vk, vk+1, vk+2 corresponding to v (for

some number k). Let ci denote the value of f(y) on Y (K, vi). Let q be the

usual conjugate exponent determined by 1/p+ 1/q = 1. Then observe that:

‖f‖1 =
1

n

n∑
i=1

|ci| ≤
1

n
· n1/q

( n∑
i=1

|ci|p
)1/p

=
1

n1/p

( n∑
i=1

|ci|p
)1/p

= ‖f‖p.

where we have applied Hölder’s inequality. For the upper bound, we compute

‖f‖p =
1

n1/p

( n∑
i=1

|ci|p
)1/p

≤ 1

n1/p

n∑
i=1

|ci| = n1−1/p · 1

n

n∑
i=1

|ci| = n1−1/p‖f‖1

from which the result now follows.

We now bound our heights without assuming that f is supported on a

single prime:

Proposition 4.1.2. Let f ∈ F and 1 < p ≤ ∞. Then we have the following

inequalities:

‖f‖1 ≤ λ(supp f)1−1/p ‖f‖p and ‖f‖p ≤ δ(f)1−1/p‖f‖1. (4.1.1)

Proof. Let q be given by 1/p + 1/q = 1 as usual. Then the first inequality is

just the usual application of Hölder’s inequality:

‖f‖1 =

∫
supp f

|f(y)| dλ(y) ≤
(∫

supp f

1q dλ(y)

)1/q(∫
supp f

|f(y)|p dλ(y)

)1/p

= λ(supp f)1/q‖f‖p.

For the second inequality, let us write f |π for the restriction of f to the set

Y (Q, π). Then f |π is a function on a measure one space, so locally we can
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make use of the above lemma at each place π:

‖f‖p =

( ∑
π∈MQ

‖f |π‖pp
)1/p

≤
( ∑
π∈MQ

δ(f)p/q‖f |π‖p1
)1/p

= δ(f)1/q

( ∑
π∈MQ

‖f |π‖p1
)1/p

≤ δ(f)1/q
∑
π∈MQ

‖f |π‖1 = δ(f)1−1/p‖f‖1.

where we make use of the general fact that for any sequence x ∈ `p(N), we

have ‖x‖`p ≤ ‖x‖`1 . (In fact, each f ∈ F is supported on a finite number of

rational primes, so there is no issue of convergence here.)

The classical Northcott theorem tells us that any set of algebraic num-

bers of bounded height and degree is finite. As 2h(α) = ‖fα‖1, this translates

to a bound on the L1 height. Naturally, as we are working in F , we count

modulo torsion, but even so we must be careful about the choice of our notion

of degree (indeed, it is easy to see that the number of elements of F with

bounded δ and Lp norm is not finite).

Theorem 16 (Lp Northcott). For any C,D > 0, we have

#{f ∈ L : ‖f‖p ≤ C and δ(f) ≤ D} <∞, (4.1.2)

and

#{f ∈ F : ‖f‖p ≤ C and d(f) ≤ D} <∞. (4.1.3)

Proof. Notice that f ∈ L implies that d(f) = δ(f) by definition, so that the

first set is a subset of the second. Thus, it suffices to show that the second

set is finite. Each element fα of the second set gives rise to a representative
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α ∈ Q× with degree d(fα), so if we can show that h(α) is bounded, then

Northcott’s theorem will give us the desired result. Notice that if f ∈ F has

nontrivial support at a rational prime π, then

‖f‖p ≥ ‖f |Y (Q,π)‖p ≥ ‖f |Y (Q,π)‖1 ≥
log π

d(f)
≥ log π

D
.

As we assume that ‖f‖p ≤ C, this tells us that log π ≤ CD. This places a

limit on the possible support of f on nonarchimedean places. In particular,

since the measure λ assigns measure 1 to any rational prime, we see that

λ(supp(f)) ≤ 1 + π(exp(CD))

where π(x) is the usual prime counting function. Thus, by Proposition 4.1.2,

we see that

‖f‖1 ≤ λ(supp(f))1−1/p ‖f‖p ≤ (1 + π(exp(CD)))1−1/p C. (4.1.4)

As 2h(α) = ‖fα‖1, this gives a bound on the classical Weil height for any

representative of an element of our set. Northcott’s theorem then applies and

gives us the desired result, as we find we have a finite number of possible coset

representatives and therefore a finite number of elements of F .

4.2 The Mahler p-norms and proof of Theorem 6

We will now make use of our orthogonal decomposition (2.6.6) to define

one of the main operators of our study. Let

M : F → F

f 7→
∞∑
n=1

nT (n)f.
(4.2.1)
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The M operator serves the purpose of allowing us to scale a function in F

by its appropriate degree while still being linear. As each element of F has a

finite expansion in terms of T (n) components, the above map is well-defined.

Further, it is easily seen to be linear by the linearity of the T (n), and it is also

a bijection. However, it is not a bounded operator (and thus, in particular, M

is not well-defined on the space Lp(Y )):

Proposition 4.2.1. The linear operator M : F → F is unbounded in any Lp

norm.

Proof. Below in Propositions 4.3.1, 4.3.2, and 4.2.3 we will prove that every

Salem number τ > 1 is Lehmer irreducible, projection irreducible, and there-

fore, an eigenvector of the M operator of eigenvalue δ(fτ ), that is, fτ ∈ L∩P ,

Kτ = Q(τ), and Mfτ = δ(fτ ) · fτ = d(fτ ) · fτ . As there exist Salem numbers

of arbitrarily large degree, M has eigenvectors of arbitrarily large eigenvalue

and we obtain the desired result.

We define the Mahler p-norm on F to be

‖f‖m,p = ‖Mf‖p (4.2.2)

where ‖ · ‖p denotes the usual Lp norm as defined above.

Proposition 4.2.2. The map ‖ · ‖m,p : F → [0,∞) is a vector space norm on

F .
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Proof. This follows easily from the fact that M is an invertible linear operator

on F . Specifically, we have for all f, g ∈ F and r ∈ Q,

‖f‖m,p = ‖Mf‖p = 0 ⇐⇒ Mf = 0 ⇐⇒ f = 0

because M is invertible and ‖ · ‖p is a norm on F , and

‖f+g‖m,p = ‖M(f+g)‖p = ‖Mf+Mg‖p ≤ ‖Mf‖p+‖Mg‖p = ‖f‖m,p+‖g‖m,p,

and

‖rf‖m,p = ‖M(rf)‖p = ‖rMf‖p = |r| · ‖Mf‖p = |r| · ‖f‖m,p

by the linearity of M .

The following proposition, interesting in its own right, will be useful to

us below:

Proposition 4.2.3. If f ∈ P, then T (δ(f))f = f , and in particular f is an

eigenvector of the M operator with eigenvalue δ(f).

Proof. Let n = δ(f) and K = Kf be the minimal field of f . Obviously, as

f ∈ VK and [Kf : Q] = δ(f) = n, we have P (n)f = f . Since

P (n) =
n∑
k=1

T (k),

we can find a minimal value 1 ≤ m ≤ n such that T (m)f 6= 0. Then T (m)f =

P (m)f for this value. We claim that if m < n, then f is not projection

irreducible. To see this, observe that from the proof of Proposition 2.6.4, p.

46, we found equation (2.6.5), which, together with the commutativity of P (m)
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and the TK operators and expanding the set of primes S appropriately (every

element of VK is an S-unit for a large enough set of primes S of K) tells us

that in fact, the P (m) projection corresponds to the Q-vector space direct sum

decomposition:

VK = P (m)(VK)⊕Q(m)(VK) =

( ∑
F⊆K

[F :Q]≤m

PF (VK)

)
⊕
( ⋂

F⊆K
[F :Q]≤m

QF (VK)

)
,

(4.2.3)

where Q(m) = I − P (m) and QF = I − PF are the complementary projections.

(Technically, we should replace K with its Galois closure to match the con-

struction in the proof of Proposition 2.6.4, but observe that we can repeat

the construction starting with VK,S for K any number field instead of using

TK(VK,S) for K Galois; the results are the same, as it is only the finite di-

mensionality of the S-unit space VK,S that is essential to the construction).

If PF (f) = 0 then QF (f) = f , so if f had no nontrivial projections to any

proper subfields of f , it would also have decomposition f = 0 ⊕ f and thus

P (m)f = 0. Thus if P (m)f 6= 0 then PF (f) 6= 0 for some F $ K, but this is

a contradiction to the projection irreducibility of f . Hence we must have had

T (n)f = f .

We can complete F with respect to ‖ · ‖m,p to obtain a real Banach

space which we denote Fm,p. We are now ready to prove Theorem 6, which

we restate for the reader’s convenience. First, we recall the Lp analogue of the

Lehmer conjecture (Conjecture 5) from above:

mp(α) = (degα) · hp(α) ≥ cp > 0 for all α ∈ Q× \ Tor(Q×). (∗p)
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Theorem 6. For each 1 ≤ p ≤ ∞, equation (∗p) holds if and only if

‖f‖m,p ≥ cp > 0 for all 0 6= f ∈ L ∩ P ∩ U (∗∗p)

where L denotes the set of Lehmer irreducible elements, P the set of projection

irreducible elements, and U the subspace of algebraic units. Further, for 1 ≤

p ≤ q ≤ ∞, if equation (∗p) holds for p then equation (∗p) holds for q as well.

Proof of Theorem 6. First let us show that it suffices to bound mp(f) away

from zero for f ∈ L ∩ P ∩ U . Let f ∈ F . We begin by reducing to the vector

space U = {f ∈ F : suppY (f) ⊆ Y (Q,∞)}. If 1 ≤ p <∞, observe that

hp(f) = ‖f‖p =

( ∑
π∈MQ

‖f |Y (Q,π)‖pp
)1/p

≥ ‖f |Y (Q,π)‖p ≥ ‖f |Y (Q,π)‖1,

since Y (Q, π) is a space of measure 1. Likewise, it is easy to see that

h∞(f) = max
π∈MQ

‖f |Y (Q,π)‖∞ ≥ ‖f |Y (Q,π)‖∞ ≥ ‖f |Y (Q,π)‖1

for a specific rational prime π, so we can let p = ∞ as well. Let the rational

prime π be chosen above so that the norm of the restriction to Y (Q, π) is

nonzero, which we can do if f 6∈ U . Let α ∈ Q× be a representative of

minimal degree d(f) for f . Then α has a nontrivial valuation over π, and since

the product of α over all of its conjugates must be in Q, we know that we must

have ‖f |Y (Q,p)‖1 ≥ (log π)/d(f). Thus hp(f) ≥ (log 2)/d(f), so mp(f) ≥ log 2

for 1 ≤ p ≤ ∞ if f 6∈ U . Now it remains to show that we can reduce to the

consideration of P as well, but this now follows immediately from the technique

of the proof in Proposition 3.3.3, p. 57 above, specifically, by projecting to a
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minimal field F in the K-support of f to ensure projection irreducibility, and

observing that by Lemma 2.3.1, p. 28, PF (f) ∈ U if f ∈ U . Now observe that

if f ∈ U ∩P , then upon scaling f it remains in U ∩P , so we are free to replace

f by `(f)f as in the proof of Proposition 3.2.4, p. 56 without changing the

value of mp(f), and thus we can assume f ∈ L ∩ P ∩ U , as claimed.

Now let f ∈ L ∩ P ∩ U , and we will show that mp(f) = ‖f‖m,p,

completing the proof of the equivalence. Observe that for such an element,

by Proposition 4.2.3 projection irreducibility, we must have T (n)f = f where

n = δ(f) = [Kf : Q] for Kf the minimal field of f , and in particular, Mf = nf .

Thus

‖f‖m,p = ‖Mf‖p = [Kf : Q] · ‖f‖p = δ(f)hp(f) = d(f)hp(f) = mp(f)

where the second equality follows from the fact that f ∈ P and the fourth

from the fact that f ∈ L. This completes the equivalence of the bounds.

To show that for 1 ≤ p ≤ q ≤ ∞ the result for p implies the result

for q, we observe that having reduced the problem to the study of algebraic

units U = {f ∈ F : supp(f) ⊆ Y (Q,∞)}, and since λ(Y (Q,∞)) = 1, we are

reduced to the consideration of measurable functions on a probability space

(Y (Q,∞), λ). But on such a space one has the usual inequality ‖f‖p ≤ ‖f‖q

(see also Proposition 4.1.2 above) and thus ‖f‖m,p = ‖Mf‖p ≤ ‖Mf‖q =

‖f‖m,q.

Lastly, we note for its own interest:
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Proposition 4.2.4. Equation (∗p) for p = 1 is equivalent to the Lehmer

conjecture, and for p =∞, (∗p) is equivalent to the Schinzel-Zassenhaus con-

jecture.

Proof. Since h = 2h1 it is obvious that m1 = 2m so we exactly have the state-

ment of the Lehmer conjecture when p = 1. Let us now show that when p =∞,

equation (∗p) is equivalent to the Schinzel-Zassenhaus conjecture. Recall that

the house α = max{|σα| : σ : Q(α) ↪→ C} where | · | denotes the usual Eu-

clidean absolute on C. The Schinzel-Zassenhaus conjecture [SZ65] states that

for an algebraic integer α, (degα) · log α is bounded away from zero by an

absolute constant. Observe that by Smyth’s well-known theorem [Smy71], we

have m1(α) ≥ c > 0 for an absolute constant c if α is not reciprocal. Since

‖f‖m,∞ ≥ ‖f‖m,1 = m1(f) for the numbers under consideration, we see that

if α is not reciprocal, then there is nothing more to show by the previous the-

orem. If α is reciprocal, then observe that α and α−1 are conjugate, and so

α = max{α, α−1 }, where max{α, α−1 } is called the symmetric house. Now,

it is easy to see that h∞(α) = log max{α, α−1 } is the logarithmic symmet-

ric house of α for fα ∈ U , so we do indeed recover the Schinzel-Zassenhaus

conjecture when p =∞.1

1We remark in passing that while h∞ agrees with the logarithmic symmetric house on
U , h∞ seems to be a better choice for non-integers as well, as, for example, h∞(3/2) = log 3
while the logarithmic symmetric house of 3/2 is log(3/2).
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4.3 Explicit values

We now evaluate the Mahler p-norms for two classes of algebraic num-

bers, surds and Salem numbers. Salem numbers are conjectured to be of

minimal Mahler measure for the classical Lehmer conjecture. This is in part

due to the fact that the minimal value for the Mahler measure known, dating

back to Lehmer’s original 1933 paper [Leh33], is that of the Salem number

called Lehmer’s τ > 1, the larger positive real root of the irreducible polyno-

mial x10 + x9 − x7 − x6 − x5 − x4 − x3 + x + 1. Here we show that, in fact,

Salem numbers belong to the set L ∩ P ∩ U .

4.3.1 Surds

Recall that a surd is an algebraic number which is a root of a rational

number. In particular, if α ∈ Q× is a surd, then αn ∈ Q× for some n.

Therefore, an element f ∈ F is represented by a surd if and only if f ∈ VQ,

or equivalently δ(f) = 1. As Q has no proper subfields, all surds are trivially

projection irreducible. Thus, for a surd f ,

‖f‖m,p = δ(f)‖f‖p = ‖f‖p = hp(f).

4.3.2 Pisot and Salem numbers

We say that fτ ∈ F is Pisot or Salem number if it has a representative

τ ∈ Q× which is a Pisot or Salem number, respectively. Recall that τ > 1 is

said to be a Pisot number if τ is an algebraic integer whose conjugates in the

complex plane all lie strictly within the unit circle, and that τ > 1 is a Salem
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number if τ is algebraic unit which is reciprocal and has all conjugates except

τ and τ−1 on the unit circle in the complex plane (with at least one pair of

conjugates on the circle).

Proposition 4.3.1. Every Pisot or Salem number fτ is Lehmer irreducible,

that is, fτ ∈ L.

Proof. Observe that for a Pisot or Salem number fτ and its given representa-

tive τ > 1, τ = τ and all other Galois conjugates τ ′ have |τ ′| < |τ |. Therefore

τ is Lehmer irreducible, since if δ(fτ ) < deg τ , then each equivalence class

modulo torsion would have more than one member, and in particular the real

root τ > 1 would not uniquely possess the largest modulus, as ζτ would be

a conjugate for some 1 6= ζ ∈ Tor(Q×) which would have the same modulus,

a contradiction. Since fτ has a representative of degree δ(fτ ), we have by

definition fτ ∈ L.

Proposition 4.3.2. Every Salem number τ is projection irreducible and an

algebraic unit, and therefore fτ ∈ L ∩ U ∩ P.

Proof. That τ is a unit is well-known and follows immediately from being

a reciprocal algebraic integer. Suppose fτ has its distinguished representa-

tive τ ∈ K×, where K = Kf = Q(τ). Then there are precisely two real

places of K, call them v1, v2|∞, where τ has nontrivial valuation, and the

remaining archimedean places are complex. By the definition of projection

irreducibility, we need to show that PF (fτ ) = 0 for all F $ K. Now, since
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λ(Y (K, v1)) = λ(Y (K, v2)) = 1/[K : Q], we know that for our subfield F $ K,

either Y (K, v1) ∪ Y (K, v2) ⊆ Y (F,w) for some place w of F , in which case

PF (fτ ) = 0 because the two valuations sum to zero by the product formula,

or else v1 and v2 lie over distinct places of F , call them w1 and w2. Then

the algebraic norm β = NK
F τ has nontrivial valuations at precisely the two

archimedean places w1, w2. Observe that w1, w2 must be real, as the comple-

tions are Q∞ = R ⊂ Fwi ⊂ Kvi = R for i = 1, 2. Thus β must be a nontrivial

Salem number or a quadratic unit. In either case, if we assume without loss

of generality that log ‖β‖w1 > 0, observe that

β = ‖β‖w1

But it is easy to see that

log ‖β‖w1 =
1

[K : F ]
log ‖τ‖v1

and thus β[K:F ] = τ . But this is a contradiction, as then the minimal field of

fβ must also be K, but β ∈ F $ K. That it is also in L ∩ U follows from the

preceding proposition.

Corollary 4.3.3. Every Salem number τ > 1 gives rise to an eigenvector fτ

of the M operator with eigenvalue δ(fτ ) = [Q(τ) : Q].

Proof. This now follows from the above results and Proposition 4.2.3.

Thus, if τ > 1 is a Salem number, we have fτ ∈ L ∩ P ∩ U , so we can

compute explicitly:

‖fτ‖m,p = δ(fτ )‖fτ‖p = δ(fτ )
1−1/p21/p| log τ |. (4.3.1)
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When p = 1 this is, of course, twice the classical logarithmic Mahler measure

of τ , and when p =∞, this is precisely the degree times the logarithmic house

of τ .

4.4 The group Γ and proof of Theorem 7

We now construct an additive subgroup Γ ≤ 〈L ∩ P ∩ U〉 which is

bounded away from 0 if and only if the Lp Lehmer conjecture is true and

thus establish Theorem 7. For K ∈ KG, let WK = TK(U) ∩ P ∩ L. Notice

first WK is not empty if TK(U) is not empty, as any element f ∈ TK(U) can

be projected to a minimal element of its K-support {F ∈ K : PF (f) 6= 0},

and that by construction such a projected element PF (f) will be an element

of TK(U) ∩ P , and since TK(U) and P are both closed under scaling, we

can ensure such an element is Lehmer irreducible. (We remark in passing

that we may in fact have TK(U) = {0}, for example, when K = Q(i) where

i2 = −1; see Remark 2.2.7, p. 27.) By our Lp Northcott analogue Theorem

16, p. 61, we see that the set {f ∈ WK : ‖f‖p ≤ C} is finite (notice that

f ∈ WK =⇒ δ(f) = [Kf : Q] ≤ [K : Q]) for any C > 0. As WK ⊂ P we

have ‖f‖m,p = δ(f) · ‖f‖p (see Proposition 4.2.3 above), so we may choose an

element fK ∈ WK of minimal Mahler p-norm for each K ∈ KG, letting fK = 0

if TK(U) = {0}. Notice that

mp(fK) = ‖fK‖m,p

by construction (this follows from the usual argument following Proposition

4.2.3 and using L = {d = δ}). We let Γ = Γp be the additive subgroup
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generated by these elements (notice that our choices may depend on p):

Γ = 〈{fK : K ∈ KG}〉 ≤ L ∩ P ∩ U . (4.4.1)

Notice that Γ is, by construction, clearly a free group, as by Theorem 2, p.

11, we have the direct sum Γ =
⊕

K∈KG Z · fK .

Let Um,p denote the completion of U with respect to the Mahler p-norm

‖ · ‖m,p. Our goal is now to prove Theorem 7, which we recall here:

Theorem 7. Equation (∗p) holds if and only if the additive subgroup Γ ⊂ Um,p

is closed.

We begin by proving a basic result about additive subgroups of Banach

spaces, following the remarks and proofs in [Ban91, Remark 5.6] and [Sid77,

Theorem 2 et seq.]. (We only need the second part of this lemma for our

theorem, however, we prove both directions for their own interest.)

Lemma 4.4.1. Let Λ be a countable additive subgroup of a Banach space B.

If Λ is discrete, then it is closed and free abelian. If Λ is closed, then it is

discrete.

Proof. We restrict our attention to real Banach spaces, as this is the case

that interests us, but note that the result continues to be true in the complex

setting under suitable assumptions (see the discussion in [Sid77]).

We will first show that if Λ ⊂ B is countable and discrete then it is

also closed and free. That it is closed is trivial, so let us show that it is free
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by exhibiting a basis as a Z-module. Let {vi}∞i=1 be an enumeration of the

non-zero elements of Λ. Choose b1 = tv1 where t > 0 is the smallest number

such that tv1 ∈ Λ; clearly such a choice exists, else Λ would not be discrete.

Let B1 = {b1} and let X1 = spanRB1. Then B1 is a basis for Λ∩X1. Suppose

now we have chosen basis vectors Bn = {b1, . . . , bn} such that Bn is a basis

for Λ ∩ Xn where Xn = spanRBn. If Λ ⊂ Xn, then Λ has finite rank and

we are done, so suppose Λ 6⊂ Xn. Let v = vk be the first element of the

enumeration {vi} which is not in Λ ∩ Xn, so that vi ∈ Λ ∩ Xn for all i < k.

Let Xn+1 = spanR(Bn ∪ {v}). Observe that the set

T = {t ∈ R : tv ∈ Xn + Λ}

is an additive subgroup of R, and further, there must exist a minimal element

t0 > 0, as otherwise, we could find a sequence tn → 0 such that 0 < tn < 1,

xn + tnv ∈ Λ, and xn =
∑n

i=1 ribi ∈ Xn where ri ∈ [0, 1) for each 1 ≤ i ≤ n by

adding appropriate elements of Λ ∩Xn to xn. But then

‖xn + tnv‖ ≤ max
r∈[0,1]n

∥∥∥∥ n∑
i=1

ribi

∥∥∥∥+ ‖v‖

so the vectors xn + tnv give an infinite subset of Λ ∩ Xn+1 of bounded norm

in the finite dimensional vector space Xn+1 (with the norm from B) and this

contradicts the fact that Λ ∩ Xn+1 is discrete (which follows from the fact

that Λ is discrete). Thus, there must exist a minimal positive element t0 ∈ T

such that T = Zt0. Let bn+1 = x0 + t0v where x0 =
∑n

i=1 ribi ∈ Xn for some

ri ∈ [0, 1). We claim that Bn+1 = {b1, . . . , bn+1} is a basis for Λ ∩Xn+1 such

that v = vk ∈ Λ ∩Xn+1. To see this, observe that by our construction of the
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set T , every λ ∈ Λ ∩Xn+1 has the form λ = x+mn+1t0v for some mn+1 ∈ Z.

Then

λ−mn+1bn+1 = x−mn+1x0 ∈ Λ∩Xn =⇒ λ−mn+1bn+1 =
n∑
i=1

mibi (mi ∈ Z).

But then λ =
∑n+1

i=1 mibi and so Bn+1 is indeed a basis for Λ ∩ Xn+1. Now,

either this process continues indefinitely and each nonzero element vk of Λ is

contained in some Bn, in which case
⋃
nBn is a basis for Λ, or else Λ ⊂ Xn for

some n, in which case Λ has a basis Bn. In either case, we have constructed a

basis for Λ as a Z-module, and thus Λ is free.

Now, let us show that if Λ is countable and closed then it must be

discrete. If Λ were not discrete, then we could choose a sequence of vectors

vn → 0 such that ‖vn+1‖ ≤ 1
3
‖vn‖ for all n ∈ N. To every subset S ⊂ N

we associate the vector vS =
∑

n∈S vn. Notice that each vS is an absolutely

convergent series, and belongs to Λ since Λ is closed. We claim that the

elements vS are distinct for distinct subsets of N. To see this, observe that for

S 6= T ⊂ N,

vS − vT =
∑
n∈S\T

vn −
∑

m∈T\S

vm =
∞∑
n=1

εnvn

where εn ∈ {−1, 0,+1}, and for at least one n we have εn 6= 0. Let k be the

first such number. Then if vS − vT = 0 we must have −εkvk =
∑∞

n=k+1 εnvn,

but ∥∥∥∥ ∞∑
n=k+1

εnvn

∥∥∥∥ ≤ ( ∞∑
n=1

1

3n

)
‖vk‖ =

‖vk‖
2

< ‖vk‖ = ‖εkvk‖,

which is impossible. Thus each vS is uniquely associated to S, but this gives

an uncountable number of elements of Λ, a contradiction.
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We remark that countability is essential in the above lemma, as the uncount-

able subgroup {f : [0, 1] → Z : ‖f‖∞ < ∞} ⊂ L∞[0, 1] is discrete and closed

but not free.

We are now prepared to prove Theorem 7:

Proof of Theorem 7. By Proposition 3.2.4 and Theorem 6, we know that (∗p)

holds if and only if there exists a constant cp such that mp(f) ≥ cp > 0 for all

f ∈ L ∩ U ∩ P . Given any f ∈ L ∩ U ∩ P , let A(f) = {K ∈ KG : PK(f) 6=

0}. A(f) clearly contains a minimal element K which satisfies F $ K,F ∈

KG =⇒ PF (f) = 0. Let K be any such minimal element. Then observe that

PK(f) = TK(f), as

PK(f) =
∑
F⊆K
F∈KG

TF (f),

but PF (f) = 0 =⇒ TF (f) = 0 for all F $ K,F ∈ KG. Observe that

mp(PKf) ≤ mp(f) by Proposition 2.3.2 and Lemma 3.2.1. But then, by

construction of Γ, ‖fK‖m,p = mp(fK) ≤ mp(PKf) since PKf = TKf ∈ TK(U)∩

∩P . Thus, if Γ is discrete, we gain (∗∗p) and by Theorem 6 we gain the Lp

Lehmer conjecture (∗p).

Likewise, supposing (∗∗p), we can repeat the same procedure as above

given an arbitrary element f ∈ Γ to obtain PK(f) = fK for some minimal K

in A(f). Now, by the fact that PK is a norm one projection with respect to

the Lp norm (Propositon 2.3.2), and the fact that it commutes with the T (n)

operators (Proposition 2.6.2), we see that it commutes with the M operator
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well, and therefore, by the definition of the Mahler norm,

‖PKf‖m,p = ‖MPKf‖p = ‖PK(Mf)‖p ≤ ‖Mf‖p = ‖f‖m,p.

Since fK ∈ L ∩ U ∩ P , we see that (∗∗p) implies that ‖PKf‖m,p ≥ cp > 0 and

thus Γ is discrete.

Finally, observe that as a countable (free abelian) additive subgroup of

the Banach space Um,p, by Lemma 4.4.1 above, Γ is discrete if and only it is

closed.

4.5 The Mahler 2-norm and proof of Theorem 9

Recall that we define the Mahler 2-norm for f ∈ F to be:

‖f‖m,2 = ‖Tf‖2 =

∥∥∥∥ ∞∑
n=1

nT (n)f

∥∥∥∥
2

.

The goal of this section is to prove Theorem 9, which we recall here for the

convenience of the reader:

Theorem 9. The Mahler 2-norm satisfies

‖f‖2
m,2 =

∞∑
n=1

n2 ‖T (n)(f)‖2
2 =

∑
K∈KG

∞∑
n=1

n2 ‖T (n)
K (f)‖2

2.

Further, the Mahler 2-norm arises from the inner product

〈f, g〉m = 〈Mf,Mg〉 =
∞∑
n=1

n2 〈T (n)f, T (n)g〉 =
∑
K∈KG

∞∑
n=1

n2 〈T (n)
K f, T

(n)
K g〉

where 〈f, g〉 =
∫
Y
fg dλ denotes the usual inner product in L2(Y ), and there-

fore the completion Fm,2 of F with respect to the Mahler 2-norm is a Hilbert

space.
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Proof of Theorem 9. The first part of the theorem follows easily from the fact

that the T
(n)
K form an orthogonal decomposition of F . Indeed, for f ∈ F , we

have:

‖f‖2
m,2 =

∥∥∥∥ ∑
K∈KG

∞∑
n=1

nT
(n)
K (f)

∥∥∥∥2

2

=
∑
K∈KG

∞∑
n=1

n2 ‖T (n)
K (f)‖2

2.

The above sums are, of course, finite for each f ∈ F . That the specified

inner product 〈f, g〉m defines this norm is then likewise immediate. Therefore,

the completion of F with respect to the norm ‖ · ‖m,2 is a Hilbert space, as

claimed.
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Chapter 5

Decompositions on Elliptic Curves

5.1 Projection operators associated to number fields

Most of the constructions in this section mirror those of Chapter 2 and

Chapter 3, with some minor differences necessitated by our lack of a function

space structure for V . Foremost amongst these differences, we shall define

PK in general as a Bochner integral as, lacking a function space structure, we

cannot define it explicitly as a function of any places itself. Most of the proofs,

however, follow the pattern of those in Chapter 2.

As above we fix a number field k and let E/k be an elliptic curve with

canonical Néron-Tate height ĥ : E → [0,∞). Let

V = E(k)/Etor(k),

so V is in fact a vector space over the rational numbers Q. We have an inner

product 〈·, ·〉 : E → [0,∞) given by

2〈ξ, η〉 = ĥ(ξ + η)− ĥ(ξ)− ĥ(η).

where ξ, η ∈ V . Since ĥ is a positive-definite quadratic form on V ,

‖ξ‖ = 〈ξ, ξ〉1/2 =

√
ĥ(ξ)

79



defines a vector space norm on V . Let G = Gal(k/k) and recall that G has

a well-defined action G × V → V , which we will denote by (σ, ξ) 7→ σ(ξ) for

ξ ∈ V and σ ∈ G. Recall that the canonical height is invariant under G, that

is, that ĥ(σ(ξ)) = ĥ(ξ) for all ξ ∈ V, σ ∈ G. Therefore,

‖σ(ξ)‖ = ‖ξ‖ for all ξ ∈ V, σ ∈ G. (5.1.1)

Since σ is linear and bounded, it extends by continuity to a well-defined con-

tinuous operator (in fact, an isometry)

Lσ : V → V (5.1.2)

which satisfies Lσ(V ) = V .

We now think of V as a pre-Hilbert space with norm ‖ · ‖. Let K

denote the set of algebraic extensions of k, partially ordered by inclusion. Let

KG denote the collection of finite Galois extensions of k. For a field K/k with

K ⊂ k, let

H = HK = Gal(k/K) ≤ G = Gal(k/k). (5.1.3)

Recall that H is a compact profinite group with a normalized Haar measure

ν such that ν(H) = 1. Define the map

PK : V → V

ξ 7→
∫
H

Lσ(ξ) dν(σ)
(5.1.4)

where the integral on the right is a Bochner integral. We recall here the

definition of a Bochner integral (for a detailed treatment of Bochner integration

we refer the reader to [Yos80, §V.5]):
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Definition 5.1.1 (Bochner integral). Suppose (Ω, µ) is a measure space and

(B, ‖ · ‖) is a Banach space. We say a function s : Ω → B is simple if

s(x) =
∑n

i=1 χAi(x)bi for some measurable sets Ai ⊆ Ω of finite measure and

bi ∈ B. We define ∫
Ω

s dµ =
n∑
i=1

µ(Ai)bi.

We say a function F : Ω→ B is Bochner integrable if there exists a sequence

of simple functions sn : Ω→ B such that∫
Ω

‖F (x)− sn(x)‖ dµ(x)→ 0. (5.1.5)

In this case we define∫
Ω

F (x) dµ(x) = lim
n→∞

∫
Ω

sn(x) dµ(x) ∈ B.

It is easy to see (using simple functions) that the Bochner integral

satisfies ∥∥∥∥∫
Ω

F (x) dµ(x)

∥∥∥∥ ≤ ∫
Ω

‖F (x)‖ dµ(x). (5.1.6)

Further, notice that the assumption (5.1.5) together with (5.1.6) implies in

fact that the vectors vi =
∫

Ω
si dµ form a Cauchy sequence in the Banach

space B, so convergence is assured by the fact that B is a Banach space and

the Bochner integral is well-defined.

Lemma 5.1.2. The function H = HK → V given by σ 7→ Lσ(ξ) for a given

ξ ∈ V is Bochner integrable, and thus PK : V → V is well-defined.
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Proof. Let ξn ∈ V be a sequence of vectors such that ‖ξ − ξn‖ → 0. We

associate to each ξn the simple function s : H → V given by

sn(σ) = Lσ(ξn) =
N∑
i=1

χAi(σ)Lσi(ξn). (5.1.7)

where N = [H : StabH(ξ)] and the Ai are the right cosets of StabH(ξn) in H

and the σi is a right coset representative of Ai for each i. We wish to show

that the function σ 7→ Lσ(ξ) is approximated by sn(σ) in the sense of (5.1.5).

Since Lσ is an isometry, we compute that∫
H

‖Lσ(ξ)− sn(σ)‖ dν(σ) =

∫
H

‖Lσ(ξ)− Lσ(ξn)‖ dν(σ)

=

∫
H

‖Lσ(ξ − ξn)‖ dν(σ) =

∫
H

‖ξ − ξn‖ dν(σ) = ‖ξ − ξn‖ → 0.

which completes the proof.

From equation (5.1.7) of the proof of the above lemma, we also see that

if ξ ∈ V , then the function σ 7→ Lσ(ξ) is simple and in particular that

PK(ξ) =

∫
H

Lσ(ξ) dν(σ) =
1

N

N∑
i=1

Lσi(ξ) for ξ ∈ V. (5.1.8)

where N = [H : StabH(ξ)] and the σi form a system of a right coset represen-

tatives for StabH(ξ) in H.

We now prove the following lemma regarding Bochner integration which

will be helpful to us below (see also [Yos80, Corollary V.2]):
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Lemma 5.1.3. Suppose (Ω, µ) is a measure space and (B, ‖ · ‖) is a Banach

space. Let L be a continuous linear operator from B to itself. Then L com-

mutes with Bochner integration on Ω, that is,

L

(∫
Ω

F (x) dµ(x)

)
=

∫
Ω

L(F (x)) dµ(x). (5.1.9)

In particular, if F is Bochner integrable then so is L ◦ F .

Proof. Recall that from equation (5.1.5) above that F is Bochner integrable if

there exists a sequence of simple functions sn : Ω→ B such that∫
Ω

‖F (x)− sn(x)‖ dµ(x)→ 0,

and that in this case we defined∫
Ω

F (x) dµ(x) = lim
n→∞

∫
Ω

sn(x) dµ(x) ∈ B.

Now, let the simple function sn(x) =
∑N

i=1 χAi(x)bi, where the sets Ai ⊆ Ω of

measurable and of finite measure and bi ∈ B. Then

L

(∫
Ω

sn dµ

)
= L

( N∑
i=1

µ(Ai)bi

)
=

N∑
i=1

µ(Ai)L(bi) =

∫
Ω

L ◦ sn dµ.

since L ◦ sn(x) =
∑N

i=1 χAi(x)L(bi) is clearly simple as well. Now observe that

L ◦ F is approximated by L ◦ sn:∫
Ω

‖L ◦ F (x)− L ◦ sn(x)‖ dµ(x) =

∫
Ω

‖L(F (x)− sn(x))‖ dµ(x)

≤ ‖L‖ ·
∫

Ω

‖F (x)− sn(x)‖ dµ(x)→ 0.
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But then we have, using the continuity of L to exchange it with the limit,∫
Ω

L ◦ F (x) dµ(x) = lim
n→∞

∫
Ω

L ◦ sn(x) dµ(x) = lim
n→∞

L

(∫
Ω

sn(x) dµ(x)

)
= L

(
lim
n→∞

∫
Ω

sn(x) dµ(x)

)
= L

(∫
Ω

F (x) dµ(x)

)
and the proof is complete.

Lemma 5.1.4. For each field k ⊆ K ⊆ k, the map PK is a norm one projec-

tion.

Proof. We first prove that P 2
K = PK . Let H = HK as above and ν the

normalized Haar measure on H. Suppose that τ ∈ H. Observe that for any

ξ ∈ V , by applying Lemma 5.1.3,

Lτ (PK(ξ)) = Lτ

(∫
H

Lσ(ξ) dν(σ)

)
=

∫
H

Lτ (Lσξ) dν(σ)

=

∫
H

Lτσ(ξ) dν(σ) =

∫
τH

Lσ(ξ)dν(σ) = PK(ξ)

since τH = H for τ ∈ H. Thus,

PK
2(ξ) =

∫
H

Lσ(PK(ξ)) dν(σ) =

∫
H

PK(ξ)dν(σ) = PK(ξ),

proving the first claim. To see that ‖PK‖ = 1, we combine the inequality

(5.1.6) with the fact that Lσ is an isometry:∥∥∥∥∫
H

Lσ(ξ) dν(σ)

∥∥∥∥ ≤ ∫
H

‖Lσ(ξ)‖ dν(σ) =

∫
H

‖ξ‖ dν(σ) = ‖ξ‖.

Corollary 5.1.5. The projection PK is orthogonal, that is, PK(V ) ⊥ (I −

PK)(V ) where I is the identity operator.
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Proof. This now follows from Lemmas 5.1.4 and 5.2.6 above, and the fact that

for a Hilbert space, a norm one projection is orthogonal onto its range (see

Lemma 2.3.5, p. 31).

5.2 Decomposition by Galois field and proof of Theo-
rem 10

As we did for algebraic numbers modulo torsion in the case of the mul-

tiplicative group of a number field modulo torsion K×/Tor(K×), we associate

to each group E(K)/Etor its vector space span:

VK = spanQE(K)/Etor = E(K)/Etor ⊗Q ⊂ V. (5.2.1)

By the Mordell-Weil theorem, dimQ VK < ∞ for all K ∈ K. For N ∈ Z, we

let [N ] : E → E denote the multiplication-by-N endomorphism on E.

Lemma 5.2.1. Let K,L ∈ K. Then VK ∩ VL = VK∩L.

Proof. We take a representative of P of ξ such that [N ]P ∈ E(K) and [M ]P ∈

E(L). Then [NM ]P ∈ E(K) ∩ E(L) = E(K ∩ L). The reverse inclusion is

clear.

As above, if we fix some ξ ∈ V then the set

{K ∈ K : ξ ∈ VK}

forms a sublattice of K by the above lemma, and by the finiteness properties

of K this set must contain a unique minimal element.
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Definition 5.2.2. For any ξ ∈ V , the minimal field is defined to be the

minimal element of the sublattice {K ∈ K : ξ ∈ VK}. We denote the minimal

field of ξ by Kξ.

Remark 5.2.3. We already have a notion of minimal field of definition k(P ) for

a point P ∈ E(K) (cf. e.g. [Sil92, §I.2]). Let us emphasize that the minimal

field of definition k(P ) typically differs amongst the representatives P of ξ in

E(K), as each can differ by a torsion point of arbitrarily large degree, and

that the minimal field we have defined here, Kξ, may be distinct from all of

the fields k(P ) for the representatives P of ξ. One can easily see, however,

that

Kξ =
⋂
N∈N

k([N ]P )

for any representative P . Notice that the minimal field of definition of a point

P is the fixed field of all of the elements of the absolute Galois group which

fix P , and while we will soon prove a similar result for ξ and its minimal field,

we must keep in mind that Galois automorphisms which fix ξ may not fix a

particular representative P as we are working modulo torsion (and thus, the

stabilizer groups will sometimes be different).

Lemma 5.2.4. For any ξ ∈ V , we have StabG(ξ) = Gal(k/Kξ) ≤ G.

Proof. Let ξ have a representative P ∈ E(k). Clearly Gal(Q/Kξ) ≤ StabG(ξ),

as [N ]P ∈ Kξ for some N ∈ N by definition of VKξ . To see the reverse impli-

cation, observe that Kξ = k([N ]P ) for some N ∈ N, as otherwise, there would
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be a proper subfield of Kξ which contains some multiple of ξ, contradicting

the definition of Kξ.

We now define, as we had for algebraic numbers modulo torsion, the

orbital degree function δ : V → N by

δ(ξ) = #{Lσξ : σ ∈ G} = [G : StabG(f)] = [Kξ : k] (5.2.2)

to be the size of the orbit of ξ under the action of the Galois isometries, and

where the last equality follows from the above lemma.

Lemma 5.2.5. Let ξ ∈ V . Then the following are equivalent:

1. ξ ∈ VK.

2. Lσ(ξ) = ξ for each σ ∈ HK = Gal(k/K).

3. PK(ξ) = ξ.

Proof. Observe that ξ ∈ VK if and only if HK = Gal(k/K) fixes ξ by applying

Lemma 5.2.4 and noting that ξ ∈ VK if and only if Kξ ⊂ K by construction

of Kξ. This is clearly equivalent to ξ having a representative P such that

[N ]P ∈ E(K) for some N ∈ N, but we claim that Lσ(ξ) = ξ for all σ ∈ HK

if and only if PK(ξ) = ξ. The forward implication is clear, so let us show the

reverse; suppose PK(ξ) = ξ, and then

Lσ(ξ) = Lσ

(∫
HK

Lτ (ξ) dν(τ)

)
=

∫
HK

LσLτ (ξ) dν(τ),
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where we see that we can bring Lσ into the integrand by Lemma 5.1.3 above,

and ∫
HK

LσLτ (ξ) dν(τ) =

∫
σHK

Lτ (ξ) dν(τ) =

∫
HK

Lτ (ξ) dν(τ)

since σHK = HK for σ ∈ HK . We have then established that

Lσ(ξ) =

∫
HK

Lτ (ξ) dν(τ) = PK(ξ) = ξ

where the last equality follows by assumption, and the proof is complete.

Lemma 5.2.6. For K ∈ K, we have PK(V ) = VK and PK(V ) = VK.

Proof. The first claim, that PK(V ) = VK , follows immediately from the idem-

potency of PK , namely, that P 2
K = PK , and the preceding lemma. The second

now follows by the continuity of PK established above.

Lemma 5.2.7. For any field K ⊂ Q of arbitrary degree and any σ ∈ G,

LσPK = PσK Lσ.

Equivalently, PK Lσ = LσPσ−1K.

Proof. We prove the first form, the second obviously being equivalent. As

before, let H = Gal(k/K) and ν be the normalized Haar measure on H. Then

we have

LσPK(ξ) = Lσ

(∫
HK

Lτ (ξ) dν(τ)

)
=

∫
HK

LσLτ (ξ) dν(τ),
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where, as above, we see that we can bring Lσ into the integrand by Lemma

5.1.3, and then∫
HK

LσLτ (ξ) dν(τ) =

∫
HK

LσLτLσ−1Lσ(ξ) dν(τ)

=

∫
σHKσ−1

Lτ (Lσ(ξ)) dν(τ) = PσKLσ(ξ).

As above, we are interested in the case where the projections PK , PL

commute with each other (and thus PKPL is a projection to the intersection

of their ranges).

Lemma 5.2.8. Suppose K ∈ K and L ∈ KG. Then PK and PL commute, that

is,

PKPL = PK∩L = PLPK .

In particular, the family of operators {PK : K ∈ KG} is commuting.

Proof. Notice that if L ∈ KG (i.e., is a finite Galois extension of k), then

Lσ(VL) = VL for all σ ∈ G. Let H = HK as before denote the absolute Galois

group over K with normalized Haar measure ν, and suppose ξ ∈ VK . If we

can show that PL(ξ) ∈ VK for ξ ∈ VK , then the proof will be complete, as

then PLPK will project onto VK ∩ VL = VK∩L and therefore must be PK∩L,

as it is also norm one (as the composition of norm one operators) and would

be idempotent, and therefore the orthogonal projection onto its range. Com-

mutativity then follows by general principles for Hilbert spaces (specifically,

that an orthogonal projection is equal to its adjoint [Yos80, Theorem III.2],
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so by taking adjoints of both sides of the equation PLPK = PK∩L we obtain

commutativity). Thus let us assume ξ ∈ VK . Let τ ∈ HK = Gal(k/K). If

we can show Lτ (PLξ) = PL(ξ), the proof will be complete by Lemma 5.2.5, as

PL(ξ) will be fixed for each τ ∈ HK . But then, using Lemma 5.2.7, we have

LτPL(ξ) = PτLLτ (ξ) = PLLτ (ξ) = PL(ξ)

where Lτ (ξ) = ξ since τ ∈ HK and ξ ∈ VK by assumption, and the proof is

complete.

We now recall the statement of Theorem 10 for the convenience of the

reader:

Theorem 10. For each K ∈ KG there exists a continuous projection TK :

V → V such that the space V has an orthogonal direct sum decomposition into

vector subspaces

V =
⊕
K∈KG

TK(V ) (5.2.3)

and TK(V ) ⊂ VK for each K.

Proof. We apply our main decomposition result, Theorem 15 (p. 34). Let our

index set be KG = {K/k : [K : k] < ∞ and σK = K ∀σ ∈ G}. This poset

and the associated vector spaces VK clearly match criteria (1) - (3) by 5.2.6.

Criterion (4) is precisely from Lemma 5.1.5. Criterion (5) follows from Lemma

5.2.8. Criterion (6) follows from the fact that ξ ∈ V =⇒ ξ ∈ VK for some K

(for example, the minimal field Kξ constructed above). The result now follows

from Theorem 15.
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Let µ be the Möbius function associated to KG. Then by Theorem 15

the operators TK : V → V are given by

TK =
∑
F⊆K
F∈KG

µ(F, P )PF . (5.2.4)

5.3 Decomposition by degree and proof of Theorems 11
and 12

We define, exactly analogous to the construction in Chapter 2, Section

2.6 above the subspace of elements generated by “degree n” points (compare

(2.6.3) above):

V (n) =
∑
K∈K

[K:k]≤n

VK . (5.3.1)

The goal of this section is to prove Theorem 11, which we recall here:

Theorem 11. For each n ∈ N there exists a continuous projection T (n) :

V → V such that the space V has an orthogonal direct sum decomposition into

vector subspaces

V =
∞⊕
n=1

T (n)(V )

and T (n)(V ) ⊂ V (n) for each n.

Let P (n) be the (unique) orthogonal projection from the Hilbert space

V to the closed subspace V (n).

Lemma 5.3.1. Let K ∈ KG and ξ ∈ V . Then δ(PKξ) ≤ δ(ξ).
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Proof. Let F = Kξ. Since K ∈ KG, we have by Lemma 5.2.8 that PKf =

PK(PFf) = PK∩Ff . Thus, PKf ∈ VK∩F , and so by equation (5.2.2) above, we

have δ(PKf) ≤ [K ∩ F : k] ≤ [F : k] = δ(f).

Lemma 5.3.2. The projections P (n) and PK for K ∈ KG commute, and thus

TK and P (n) commute as well.

Proof. Since δ(PKξ) ≤ δ(ξ) for all ξ ∈ V by Lemma 5.3.1 above, we have

PK(V (n)) ⊂ V (n), and thus by continuity PK(V (n)) ⊂ V (n), so PK(V (n)) ⊂

V (n) ∩ VK and PKP
(n) is a projection by the usual Hilbert space arguments.

Therefore P (n) and PK commute. The last part of the claim now follows from

the definition of TK in (5.2.4).

Proposition 5.3.3. The orthogonal projection P (n) takes the underlying Q-

vector space V to itself, that is, P (n)(V ) ⊂ V .

Proof. Let WK = TK(V ) ⊂ VK for K ∈ KG. We know that by commutativity

of P (n) and TK , we have the decomposition

P (n)(V ) =
⊕
K∈KG

P (n)(WK)

and thus if we can show that P (n)(WK) ⊆ WK , then we will have the desired

result. But by the Mordell-Weil theorem we know the subspaces VK have finite

dimension over Q, and thus so do the subspaces WK . As above in the proof of

Proposition 2.6.4, p. 46, we define for all fields F ∈ K such that F ⊂ K the

subspace

ZF = PF (WK) and Z ′F = QF (WK),
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where QF = I−PF is the complementary orthogonal projection. Observe that

for each such F , we have

WK = ZF ⊕ Z ′F .

Then by Lemma 2.6.3, p. 45, we have

WK =

( ∑
F⊆K

[F :k]≤n

ZF

)
⊕
( ⋂

F⊆K
[F :k]≤n

Z ′F

)
.

This gives us for any ξ ∈ WK a decomposition ξ = ξn + ξ′n where

ξn ∈
∑
F⊆K

[F :k]≤n

ZF = V (n) ∩WK ,

and

ξ′n ∈
⋂
F⊆K

[F :k]≤n

Z ′F = (V (n))⊥ ∩WK ,

But then ξn ∈ V (n) and ξ′n ∈ (V (n))⊥, so by the uniqueness of the orthogonal

decomposition, we must in fact have ξn = P (n)ξ and ξ′n = Q(n)ξ. Therefore all

ξ ∈ V have projection P (n)(ξ) ∈ V and the proof is complete.

Now we observe that the subspaces V (n) with their associated projec-

tions P (n), indexed by N with the usual partial order ≤, satisfy the conditions

of Theorem 15, and thus we have orthogonal projections T (n) and an orthog-

onal decomposition

V =
∞⊕
n=1

T (n)(V ). (5.3.2)

As above in Proposition 2.6.5, p. 48, we note what this decomposition

by degree tells us:
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Proposition 5.3.4. Each ξ ∈ V has a unique finite expansion into its degree

n components, ξ(n) = T (n)ξ ∈ V :

ξ =
∑
n∈N

ξ(n).

Each ξ(n) term can be written as a finite sum ξ(n) =
∑

i ξ
(n)
i where ξ

(n)
i ∈ V

and δ(ξ
(n)
i ) = n for each i, and ξ(n) cannot be expressed as a finite sum

∑
j ξ

(n)
j

with δ(ξ
(n)
j ) ≤ n for each j and δ(ξ

(n)
j ) < n for some j.

It now remains to prove Theorem 12.

Theorem 12. The projections TK and T (n) commute with each other for each

K ∈ KG and n ∈ N.

Proof of Theorem 12. From Proposition 5.3.2, we see that the operators TK

and P (n) commute for K ∈ KG and n ∈ N. But T (n) = P (n)−P (n−1) for n > 1

and T (1) = P (1), so by the commutativity of TK with P (n) we have the desired

result. In particular, the map T
(n)
K = T (n)TK : V → V is also a projection.

Thus we can combine equations (5.2.3) and (5.3.2) to obtain the or-

thogonal decomposition

V =
∞⊕
n=1

⊕
K∈KG

T
(n)
K (V ). (5.3.3)
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5.4 Open conjectures on elliptic curve constructions

At this point we have established our orthogonal decompositions, and

thus we could define our Mahler operator M : V → V via

M(ξ) =
∞∑
n=1

√
n · T (n)ξ. (5.4.1)

and our Mahler norm ‖ · ‖m : V → V via

‖ξ‖m = ‖Mξ‖. (5.4.2)

We will now discuss briefly what constructions from Chapters 3 and 4 above

easily follow in the elliptic curve setting and which ones remain open. It is easy

to verify, exactly analogously to verifications for the Mahler p-norm defined in

Section 4.2 above, that M is an invertible linear operator on V and thus that

‖ · ‖m is a well-defined vector space norm, and that we can complete our space

V with respect to ‖ · ‖m to obtain a Hilbert space Vm. Likewise, we can define

the minimal degree of ξ to be

d(ξ) = min
P∈V

P+Etor=ξ

[k(P ) : k] (5.4.3)

and our Lehmer irreducible elements of V to be

L = {ξ ∈ V : δ(ξ) = d(ξ)}. (5.4.4)

Lehmer’s conjecture for elliptic curves, Conjecture 13, p. 19 above, which we

formulated as [k(P ) : k]ĥ(P ) ≥ c for all non-torsion P ∈ E(k), now takes the

equivalent form:
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Conjecture 17 (Reformulation of Lehmer’s conjecture for E/k). There exists

a constant c > 0 such that

d(ξ)ĥ(ξ) = d(ξ)‖ξ‖2 ≥ c for all 0 6= ξ ∈ V. (5.4.5)

It is as yet an open question if we can restrict to ξ ∈ L. We conjecture

that we can do so, and in fact, the following analogue of Proposition 3.1.2, p.

50 should be true:

Conjecture 18. Let ξ ∈ V . Then

d
(r
s
ξ
)

=

(
`s

(`, r)(n, s)

)2

δ(ξ).

where R(ξ) = {q ∈ Q : qξ ∈ L} = `
n
Z is a fractional ideal of Q.

Let us explain for a moment why our scaling factor here is squared,

whereas it is not for algebraic numbers modulo torsion. This proposition states

that, when suitable scaling has occurred so that P “generates” its additive

subgroup over k(P ) and no other multiples of P may be defined over k(P ),

then an “nth root” Q such that [n]Q = P should have [k(Q) : k(P )] of

maximum degree. As the multiplication by n map is a morphism of degree

n2, we expect generically the degree of this extension to be n2 (when torsion

being present in k(P ) is not an issue). Thus, when R(ξ) = Z, we expect that

d((r/s)ξ) = s2δ(ξ) = s2 d(ξ).

For algebraic numbers, the proof of Proposition 3.1.2 consisted primarily of

showing that an nth root α1/n had to have degree at least n over Q(α) in
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the analogous setting, when α was a torsion-free representative of f and f

satisfied R(f) = Z. It is not difficult to see that analogues of Lemma 3.1.3, p.

51 and Lemma 3.1.5, p. 52 are true, and thus R(ξ) is a well-defined fractional

ideal, as claimed. Showing that the minimal degree scales in the same fashion,

however, remains an open question.

As we did for algebraic numbers modulo torsion, we can define the

projection irreducible elements P to be the set of ξ ∈ V such that PKξ = 0

for all K ∈ K, K $ Kξ. As we did in Section 4.4, we can choose for each

K ∈ KG from the finite dimensional subspace TK(V ) ∩ L ∩ P an element ξK

of minimal norm ‖ξK‖m (notice that here we can use the classical Northcott

theorem for elliptic curves and have no need to prove a new Lp analogue as

we did in Chapter 4). Then we can define Γ = ΓE = 〈{ξK : K ∈ KG}〉 ⊂ V to

be the additive subgroup generated by the minimal elements in each TK(V )

subspace which are both Lehmer and projection irreducible. We expect that

Conjecture 17 can be shown to be equivalent to the group Γ being closed, and

so we make the following conjecture, which is equivalent to Conjecture 14, p.

20 by Lemma 4.4.1, p. 73:

Conjecture 19. There exists a constant c > 0 such that

‖ξ‖m ≥ c for all 0 6= ξ ∈ Γ. (5.4.6)

It is easy to see that all of our projections, being orthogonal, are norm

one operators with respect to the norm ‖·‖, and thus the remaining difficulties
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in establishing this conjecture primarily lie in showing that the minimal degree

d and the orbital degree δ behave appropriately.
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