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Abstract. C.J. Smyth and later Flammang studied the spectrum of the Weil

height in the field of all totally real numbers, establishing both lower and
upper bounds for the limit infimum of the height of all totally real integers

and determining isolated values of the height. We remove the hypothesis that

we consider only integers and establish an lower bound on the limit infimum
of the height for all totally real numbers. Our proof relies on a quantitative

equidistribution theorem for numbers of small height.

Note: The main theorem of this article relies on a result of Favre
and Rivera-Letelier which was incorrect as stated. Specifically, in
Théorèm 3 of [5] a factor of 2 is missing before the term hρ(F ).
When this note was first written up the authors were unaware of this
error. Since discovering the error, the bound in the main theorem
of this paper was reduced by a factor of 2, and thus the bound in
this paper is no longer an improvement on existing results.

Recall that an algebraic number is said to be totally real if all of its Galois
conjugates lie in the field R under any choice of embedding Q ↪→ C. The totally
real numbers form a field which we denote Qtr. Schinzel [12] established a lower
bound on the infimum of the nonzero values of the absolute logarithmic Weil height
h for all totally real numbers:1

Theorem (Schinzel 1973). Let α ∈ Qtr, α 6= 0,±1 be a totally real number. Then

h(α) ≥ h

(
1 +
√

5

2

)
=

1

2
log

1 +
√

5

2
= 0.2406059 . . .

where h denotes the absolute logarithmic Weil height.

Work of Smyth [13, 14], later improved by Flammang [7], established bounds on
the limit infimum of the height for the ring of totally real integers:
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1In fact Schinzel’s result originally implied this result for integers, however, it is easy to see
that it generalizes to totally real nonintegers as well; cf. e.g., [8, 9].
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Theorem (Smyth 1980, Flammang 1996). Let Ztr denote the ring of all totally
real integers. Then

lim inf
α∈Ztr

h(α) ≥ 1

2
log 1.720566 = 0.271327 . . .

and there are precisely six isolated values of the Weil height of a totally real integer
in the interval (0, 0.271327 . . .). Further,

lim inf
α∈Ztr

h(α) ≤ log 1.31427 . . . = 0.27328 . . .

In this paper we establish the following bound for the limit infimum of the height
which removes the hypothesis that we only consider integers and is instead a bound
over all totally real numbers, and establishes a ‘gap’ between the infimum of the
positive values of height, set by Schinzel, and the limit infimum. Specifically, we
prove the following:

Theorem. Let Qtr denote the field of all totally real numbers. Then

lim inf
α∈Qtr

h(α) ≥ 140

3
·
(

1

8
− 1

6π

)2

= 0.120786 . . .

Our result may be thought of as similar in spirit to the result of Zagier on the
spectrum of the height on the curve y = x + 1 over Q, that is, of h(α) + h(1 − α)
(see [15, §3.A]), and the bounds of Bombieri and Zannier for the limit infimum of
the height of totally p-adic numbers [2].

Our proof relies on results about the equidistribution of points of small Weil
height. Early work on the distribution of numbers by height included results like
the uniform distribution of the Farey fractions, culminating in quantitative gener-
alization of the distribution of rational points at all places by Choi [3, 4]. Shortly
after Choi’s work, Bilu [1] formulated an equidistribution for algebraic points of
small height at the archimedean place, proving that the Galois conjugates of a se-
quence of numbers with Weil height tending to zero must equidistribute along the
unit circle in C in the sense of weak convergence of measures. Later this theorem
was made quantitative by Petsche [10], and then vastly generalized by Favre and
Rivera-Letelier [5] (see also the corrigendum [6]). We will use the result of Favre
and Rivera-Letelier in our proof.

We note that of course the upper bound for the limit infimum set by Smyth
remains valid for all totally real numbers. It is interesting to note that Smyth
established this upper bound by constructing an explicit sequence of totally real
algebraic integers with height limiting to the value 0.27328 . . . While Smyth’s work
precedes the development of arithmetic dynamics, his construction can naturally
be thought of as dynamical in spirit, as the sequence he constructs is a certain
sequence of preperiodic points for the rational map

H(x) = x− 1/x

which has a totally real archimedean Julia set. As these points have H-canonical
height 0, it follows by work of Petsche, Szpiro, and Tucker [11, Theorem 1 and
Prop. 16] that their standard Weil height must tend to a limit which is given by
the the value of the Arakelov-Zhang pairing of H with the usual squaring map:

〈H(z), z2〉AZ =

∫
R

log+|x| dµH(x) = 0.27328 . . .
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where µH is the canonical measure associated to iteration ofH(x). Smyth computed
this value by determining a remarkable iterative formula for the distribution of µH
(see [13, Theorem 3]).

Before beginning our proof, we set some notation. Suppose that f ∈ C1(P1(C)).
We denote the Lipschitz constant of f with respect to the chordal metric by

Lip(f) = sup
x,y∈P1(C)

|f(x)− f(y)|
d(x, y)

,

where

d(x, y) =
|x− y|√

1 + |x|2 ·
√

1 + |y|2

denotes the archimedean chordal metric on P1(C). Write df = ∂f+∂̄f where ∂f is a
form of type (1, 0) on C = R⊕iR and ∂̄f is of type (0, 1), and define dcf = 1

2πi (∂f−
∂̄f). (This normalization is to ensure that the Laplacian ∆g = ddcg satisfies ∆gρ =
ρ where gρ(x) =

∫
C log|x − y| dρ(y), for suitable Borel probability measures ρ on

C.) For f, g ∈ C1(P1(C)) real-valued functions, we define the Dirichlet form to be

〈f, g〉 =

∫
C
df ∧ dcg =

∫
C

(
∂f

∂x

∂g

∂x
+
∂f

∂y

∂g

∂y

)
dx ∧ dy

2π
.

This defines a bilinear form which satisfies the Cauchy-Schwartz inequality 〈f, g〉 ≤
〈f, f〉1/2〈g, g〉1/2.

Let λ denote the Haar measure of the unit circle in C and G the absolute Galois
group. Now [5, 6, Theorem 7] (corrected; see the note at the beginning of this
article) tells us that, since our difference with the standard archimedean measure is
0, the Hölder constant κ in can be taken to be 1, and then there exists a constant
c > 0 such that for all f ∈ C1(P1(C)) and α ∈ Q,

(1)

∣∣∣∣1d ∑
z∈Gα

f(z)−
∫
P1(C)

f(z) dλ

∣∣∣∣ ≤ Lip(f)

d
+

(
2h(α) + c

log d

d

)1/2

〈f, f〉1/2

where d = #Gα is the degree of α and Lip(f) denotes the Lipschitz constant of f
on P1(C) as defined above. We are now ready to prove our theorem.

Proof of Theorem. We will obtain our lower bound by integrating a test function
f(z) and computing the exact values of the integral of f against λ and the average
of f over the Galois conjugates of any totally real number. Specifically, let

f(z) = d(z, i)3 · d(z,−i)3 =

(√
x2 + (y − 1)2

√
x2 + (y + 1)2

2(1 + x2 + y2)

)3

where z = x+iy and as defined above d denotes the chordal metric on P1(C). Notice
that f is C1 on C = R ⊕ iR ∼= R2 since both partial derivatives are continuous.
Further, for x ∈ R, we have d(x, i) = d(x,−i) = 1/

√
2, and so f(x) = 1/8. Thus,

for any totally real α, the average

1

d

∑
z∈Gα

f(z) =
1

8
.

Further, it is a simple matter to compute that∫
P1(C)

f(z) dλ(z) =
1

6π
.
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Thus by equation (1) we have∣∣∣∣18 − 1

6π

∣∣∣∣ ≤ Lip(f)

d
+

(
2h(α) + c

log d

d

)1/2

〈f, f〉1/2.

Notice that as we take the limit infimum as α ranges over all elements of Qtr, we
only care about numbers of a bounded height, so by Northcott’s theorem the degree
d must tend to infinity. Thus when we take the limit infimum above, we obtain the
lower bound: ∣∣∣∣18 − 1

6π

∣∣∣∣ ≤ lim inf
α∈Qtr

(2h(α))1/2 · 〈f, f〉1/2

With the aid of a computer it is easy to calculate the exact value 〈f, f〉 = 3/140,
and thus squaring both sides and rearranging terms, we arrive at

1

2
· 140

3
·
∣∣∣∣18 − 1

6π

∣∣∣∣2 = 0.120786 . . . ≤ lim inf
α∈Qtr

h(α)

which concludes the proof. �
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