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Abstract

Stanley has conjectured that the h-vector of a matroid complex is a pure M-

vector. We prove a strengthening of this conjecture for lattice path matroids by

constructing a corresponding family of discrete polymatroids.

1 Introduction

The h-vector of a finite simplicial complex is arguably its most studied invariant. The
following conjecture of Stanley [13] has sparked a great deal of research into the h-vectors
of matroid complexes (see Hibi [9], Swartz [14, 15], Chari [5], and Hausel and Sturmfels
[6]).

Conjecture 1.1. The h-vector of a matroid complex is a pure M-vector (i.e., the degree
sequence of a pure monomial order ideal).

Conjecture 1.1 has been proven for cographic matroids by both Merino [11] and Chari
(unpublished).

Lattice path matroids, introduced by Bonin, de Mier, and Noy in [3] and studied
further in [4], are special transversal matroids whose bases can be viewed as planar lattice
paths. Subclasses of such matroids appeared in [1] and [10]. We show that Stanley’s
conjecture holds for lattice path matroids by constructing an associated family of pure
monomial order ideals. We then strengthen our result by showing that these monomial
order ideals are in fact discrete polymatroids, in the sense of Herzog and Hibi [7].

2 Preliminaries

We assume a basic familiarity with matroid theory (see, for instance, [12]).
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Recall that the f-vector of an (r−1)-dimensional simplicial complex ∆ is (f0, f1, . . . , fr),
where fi counts the number of (i− 1)-dimensional faces of ∆, and that the h-vector of ∆
is the sequence (h0, h1, . . . , hr), where

∑r
i=0 fi(t − 1)r−i =

∑r
i=0 hit

r−i.
The f- and h-vectors of a matroid M are those of its independence complex (the

simplicial complex whose faces are the independent sets of M). The h-vector of M is also
given by the coefficients of T (x, 1), where T (x, y) is the Tutte polynomial of M (see [2]).

For simplicity, all our matroids will use the ground set [n + r], for positive integers n
and r. (Here and throughout, [k] = {1, 2, . . . , k}.) When B is a basis of a matroid M , we
call i ∈ B internally active if (B\i) ∪ j is not a basis for any j < i. The following lemma
can be found in [2].

Lemma 2.1. Let (h0, h1, . . . , hr) be the h-vector of a matroid M . For 0 ! i ! r, hi is the
number of bases of M with r − i internally active elements.

A sequence (h0, h1, . . . , hr) of nonnegative integers is an M-vector if there exists a
monomial order ideal Γ containing, for all i, hi elements of degree i. Some authors,
including Stanley in [13], call these objects O-sequences. An M-vector is called pure if
there exists a monomial order ideal Γ as above with no maximal element of degree less
than r. Not all M-vectors are pure (for example, (1, 3, 1)).

3 Lattice path matroids

Let A = {A1, A2, . . . , Ak} be a collection of subsets of [n + r]. Recall that a subset
T ⊆

⋃k
i=1 Ai is a partial transversal of A if there exists an injection φ : T → [k] such

that t ∈ Aφ(t) for all t ∈ T . The partial transversals of A are the independent sets of the
transversal matroid defined by A (see [12]), which we denote as M(A).

Definition 3.1. Let A = {[a1, c1], [a2, c2], . . . , [ar, cr]}, where each ai ! ci, each [ai, ci] =
{ai, ai + 1, . . . , ci} is an interval in the integers, 1 ! a1 < a2 < · · · < ar, and c1 < c2 <
· · · < cr ! n + r. Then M(A) is called a lattice path matroid.

For our purposes, a lattice path σ to (n, r) is a sequence of unit-length steps, each either
directly north or east, beginning at the origin and terminating at (n, r). If B ⊆ [n + r]
and |B| = r, define a lattice path σB to (n, r) by the following rule: the ith step of σ
is north if and only if i ∈ B. Although the path σB depends upon the point (n, r), we
suppress this from the notation.

For the remainder of this section, let A be a collection of sets as in Definition 3.1, let
A = {a1, a2, . . . , ar} and C = {c1, c2, . . . , cr}, and assume all lattice paths terminate at
the point (n, r). The following propositions are shown in [3].

Proposition 3.2. A set B ⊆ [n + r] with |B| = r is a basis of M(A) if and only if the
path σB (weakly) lies between the paths σA and σC .

Proposition 3.3. Let B ⊆ [n + r] be a basis of M(A). Then i ∈ B is internally active if
and only if the ith step of σB (which is a north step, by definition) coincides with a north
step of σA.
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If σ is a path between σA and σC , call a north step of σ tight if it coincides with a
north step of σA. Otherwise, call it loose. We use these terms only to refer to vertical
steps. Lemma 2.1 and Proposition 3.3 immediately imply the following.

Corollary 3.4. Let (h0, h1, . . . , hr) be the h-vector of M(A). Then for all i, hi is the
number of lattice paths between σA and σC that have exactly i loose steps.

Remark 3.5. In general, a rank-r matroid M with coloop e has (h0, h1, . . . , hr−1, 0) as
its h-vector, where (h0, h1, . . . , hr−1) is the h-vector of the deletion M\e. Thus, we may
restrict our attention to coloop-free matroids. The matroid M(A) is coloop-free if and
only if each ai < ci.

Theorem 3.6. The h-vector of a lattice path matroid is a pure M-vector.

Proof. Let A, A, and C be as above. We construct a pure monomial order ideal Γ whose
elements are in bijection with the lattice paths between σA and σC such that the degree
of the monomial corresponding to a path σ is the number of loose steps of σ. Given
Corollary 3.4, this will prove the theorem.

Let σ be a path between σA and σC . Define the monomial m(σ) as follows: for each
loose step of σ along the line x = i, include a copy of xi in m(σ). (See Figure 1.) Let
Γ = {m(σ) : σ is a path between σA and σC}.

4x x xx 1 2 3

Figure 1: A lattice path σ with m(σ) = x2
1x3.

Let m(σ) ∈ Γ have degree less than r, and suppose that the highest tight step of σ
is on the line x = i. Then the next step of σ must be an east step. Letting σ′ be the
path obtained from σ by changing this last tight step to an east step and following it by
a north step, we see that m(σ′) = m(σ)xi+1. By Remark 3.5, σ′ lies between σA and σC .
Continuing in this way, we eventually obtain a degree-r monomial in Γ divisible by m(σ),
which shows that Γ is pure.

To see that the correspondence σ &→ m(σ) is injective, consider m = xe1

i1
xe2

i2
· · ·xem

im
∈ Γ

with i1 < i2 < · · · < im and each ej > 0. We show that there is a unique way to construct
a path σ between σA and σC such that m(σ) = m. Start at the point (n, r). First, travel
to the line x = im by taking west steps, except when forced to take south steps by the path
σA. Second, take all forced tight south steps and then em loose south steps. Continue this
process by traveling to the line x = im−1, and so on. This clearly produces the unique
path σ with m(σ) = m. Moreover, if m = m′xj for some j, simply modify the above
algorithm to take one fewer south step along x = j. The resulting path corresponds to
the monomial m′, which proves that Γ is an order ideal.
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4 Discrete polymatroids

In [7], the authors introduce discrete polymatroids, which generalize matroids in the way
monomial order ideals generalize simplicial complexes. Further algebraic properties of
these objects were studied in [8]. The definition in [7] involves integer vectors, but we
treat these sequences as exponents of monomials. All our monomial order ideals use the
variables {xi}. If m is a monomial, let mi denote the degree of xi in m.

Definition 4.1. A monomial order ideal Γ is a discrete polymatroid if, whenever m, m′ ∈
Γ with deg(m) > deg(m′), there is some i such that mi > m′

i and m′xi ∈ Γ.

The following proposition is shown in [7].

Proposition 4.2. A pure monomial order ideal Γ is a discrete polymatroid if and only
if, for any two maximal monomials m, m′ ∈ Γ and index i with mi > m′

i, there exists an
index j such that mj < m′

j and xj

xi
m ∈ Γ.

If we require that all monomials be squarefree, Definition 4.1 and Proposition 4.2
specialize to classical matroid axioms.

Theorem 4.3. The monomial order ideal Γ constructed in the proof of Theorem 3.6 is a
discrete polymatroid.

Proof. (We are indebted to Joe Bonin for his significant simplification of our original
proof.) Let A, A, C, and Γ be as in Theorem 3.6, and set A+ = {a1 +1, a2 +1, . . . , ar +1}.
By Remark 3.5, the path σA+ does not cross the path σC . It is clear that the set of
degree-r monomials of Γ is {m(σ) : σ is a path between σA+ and σC}. We show that these
monomials satisfy the condition of Proposition 4.2.

Let σ and σ′ be two paths in between σA+ and σC , with m(σ)i > m(σ′)i. We will show
that there is some j with m(σ)j < m(σ′)j and some path σ̂ in between σ and σ′ so that
m(σ̂) = xj

xi
m(σ). Let q be the greatest integer so that the point (i, q) is on the path σ,

and define q′ analogously for the path σ′.
First, suppose that q > q′. Since the paths σ and σ′ intersect at their common terminal

point, there must be a j > i such that m(σ)j < m(σ′)j . Choose j to be minimal with
this property (but still greater than i). Then every east step of σ between the lines x = i
and x = j is strictly above an east step of σ′. Let t be the least integer so that (j, t) lies
on the path σ. Define a new path σ̂ from σ as follows: delete the north step going from
(i, q− 1) to (i, q), and add a new north step going from (j, t− 1) to (j, t). Then move the
part of B going from (i, q) to (j, t) down a unit step. Since q > q′ and j was chosen to be
minimal, the resulting path σ̂ is between σ and σ′. Because σ̂ has one more north step
than σ along the line x = j and one fewer than σ along the line x = i, m(σ̂) = xj

xi
m(σ).

Next suppose that q ! q′. Because m(σ)i > m(σ′)i, σ has more north steps along
the line x = i than σ′. Rotating everything by 180 degrees, we return to the first case
considered.

Definition 4.4. We call a sequence (h0, h1, . . . , hr) a PM-vector if it is the degree sequence
of some discrete polymatroid Γ.
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Every PM-vector is a pure M-vector (by definition), but the converse does not hold: the
M-vector (1, 4, 2) is pure but not PM. Thus, the following corollary strengthens Theorem
3.6.

Corollary 4.5. The h-vector of a lattice path matroid is a PM-vector.

Given the above corollary, it seems natural to ask the following.

Question 4.6. Which matroids have h-vectors that are PM-vectors?

In [11], Merino proves Conjecture 1.1 for cographic matroids. Although the pure
monomial order ideals constructed in his proof are rarely discrete polymatroids, we have
yet to find a matroid (cographic or otherwise) whose h-vector is not a PM-vector.

Acknowledgements. My thanks go to Joe Bonin and Ed Swartz for many helpful discus-
sions, and to the anonymous referee for numerous edits and suggestions.
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