A CONVEX-EAR DECOMPOSITION FOR RANK-SELECTED SUBPOSETS OF SUPERSOLVABLE LATTICES*

JAY SCHWEIG ${ }^{\dagger}$

Abstract

Let L be a supersolvable lattice with nonzero Möbius function. We show that the order complex of any rank-selected subposet of L admits a convex-ear decomposition. This proves many new inequalities for the h-vectors of such complexes, and shows that their g-vectors are Mvectors.

Key words. supersolvable lattice, order complex, h-vector, convex-ear decomposition

AMS subject classifications. 05E25, 06A07
DOI. 10.1137/070709840

1. Introduction. One of the most fundamental combinatorial invariants associated to a $(d-1)$-dimensional finite simplicial complex Δ is its f-vector, $\left\langle f_{0}, f_{1}, f_{2}, \ldots\right.$, $\left.f_{d}\right\rangle$, where f_{i} is the number of $(i-1)$-dimensional faces of Δ. By convention, $f_{0}=1$ whenever $\Delta \neq \emptyset$. Closely related to the f-vector of Δ is its h-vector, $\left\langle h_{0}, h_{1}, h_{2}, \ldots, h_{d}\right\rangle$, defined by the transformation $\sum_{0}^{d} f_{i}(x-1)^{d-i}=\sum_{0}^{d} h_{i} x^{d-i}$. Somewhat surprisingly, properties of a complex's f-vector are sometimes better expressed in the language of the h-vector. For instance, when Δ is the boundary complex of a simplicial d polytope, $h_{i}=h_{d-i}$ for all i (these are the Dehn-Sommerville relations). The gtheorem, proven by Stanley [10] and Billera and Lee [1], says that an integral sequence $\left\langle h_{0}, h_{1}, h_{2}, \ldots, h_{d}\right\rangle$ is the h -vector of some simplicial polytope boundary if and only if the Dehn-Sommerville relations are satisfied and the associated g-vector, $\left\langle h_{0}, h_{1}-h_{0}, h_{2}-h_{1}, \ldots, h_{\left\lfloor\frac{d}{2}\right\rfloor}-h_{\left\lfloor\frac{d}{2}\right\rfloor-1}\right\rangle$, is an M-vector. An M-vector (called an O-sequence in some places) is the degree sequence of some order ideal of monomials.

Convex-ear decompositions, first introduced by Chari in [4], are an invaluable tool in proving several key inequalities of a complex's h-vector: when Δ admits a convex-ear decomposition, its h-vector satisfies $h_{i} \leq h_{d-i}$ and $h_{i} \leq h_{i+1}$ for all i with $0 \leq i \leq\left\lfloor\frac{d}{2}\right\rfloor$. Swartz has also proven an analogue of the g-theorem, meaning that the g -vector of a complex which admits a convex-ear decomposition is an M-vector [13].

The purpose of this paper is to prove the following theorem.
Theorem 1.1. Let L be a rank r supersolvable lattice with nonzero Möbius function. Then for any $S \subseteq[r-1]$ the order complex of the rank-selected poset L_{S} admits a convex-ear decomposition.

Here and in the remainder of this paper, we say that a poset P has a "nonzero Möbius function" if $\mu(x, y) \neq 0$ whenever $x, y \in P$ and $x<y$. Given the work of Chari and Swartz, the following is immediate.

Corollary 1.2. Let L be as above, and let $S \subseteq[r-1]$. Then the h-vector of the order complex of L_{S} satisfies $h_{i} \leq h_{r-i}$ and $h_{i} \leq h_{i+1}$ whenever $0 \leq i \leq\left\lfloor\frac{r}{2}\right\rfloor$, and the associated g-vector is an M-vector.

We start by finding a convex-ear decomposition for the order complex of a supersolvable lattice with nonzero Möbius function. This is by far the simplest convex-ear

[^0]decomposition constructed in this paper, but the techniques used will help give the flavor of the decompositions to follow. Next we give a convex-ear decomposition for the order complex of a rank-selected subposet of a Boolean lattice. This decomposition is a good deal more complicated than the first, so it helps to have a feel for our techniques from the previous section. Our main theorem then follows from the first two decompositions. Although our first two decompositions are special cases of our main theorem, we have split our exposition into these three sections in hopes of better readability.

The results in this paper are part of a larger body of work and will be expanded upon in [8]. In this upcoming paper, we will give convex-ear decompositions for order complexes of rank-selected subposets of geometric lattices and certain rank-selected subposets of shellable complex face posets. We will also obtain enumerative results for the flag h-vectors of certain complexes.
2. Preliminaries. Throughout this section, let Δ be a $(d-1)$-dimensional finite simplicial complex.

For $0 \leq i \leq d$, let f_{i} be the number of $(i-1)$-dimensional faces of Δ (by convention we set $f_{0}=1$). We should note that some authors use f_{i} to mean the number of i dimensional simplices, but we deviate from that here. The f-vector of Δ is the sequence $\left\langle f_{0}, f_{1}, f_{2}, \ldots, f_{d}\right\rangle$, and the h-vector of Δ is the sequence $\left\langle h_{0}, h_{1}, h_{2}, \ldots, h_{d}\right\rangle$ defined by

$$
\sum_{i=0}^{d} f_{i}(x-1)^{d-i}=\sum_{i=0}^{d} h_{i} x^{d-i}
$$

Definition 2.1. We say that Δ has a convex-ear decomposition if there exist pure $(d-1)$-dimensional subcomplexes $\Sigma_{1}, \ldots \Sigma_{n}$ such that
(i) $\bigcup_{1}^{n} \Sigma_{i}=\Delta$,
(ii) Σ_{1} is the boundary complex of a simplicial d-polytope, and for $i>1$ there exists a simplicial d-polytope Δ_{i} so that Σ_{i} is a pure, full-dimensional subcomplex of $\partial \Delta_{i}$,
(iii) for $i>1, \Sigma_{i}$ is a simplicial ball, and
(iv) for $i>1$, $\left(\bigcup_{1}^{i-1} \Sigma_{j}\right) \cap \Sigma_{i}=\partial \Sigma_{i}$.

We refer to each Σ_{i} as an ear of the decomposition. Convex-ear decompositions were first introduced by Chari in [4], where they were used to prove the following.

ThEOREM 2.2 (see [4]). Let Δ be a $(d-1)$-dimensional simplicial complex that admits a convex-ear decomposition. Then for $i<d / 2$ the h-vector of Δ satisfies
(1) $h_{i} \leq h_{d-i}$, and
(2) $h_{i} \leq h_{i+1}$.

Swartz has also proven the following analogue of the g-theorem for complexes admitting such decompositions.

ThEOREM 2.3 (see [13]). Let Δ be as in the statement of the previous theorem. Then the g-vector of $\Delta,\left\langle h_{0}, h_{1}-h_{0}, h_{2}-h_{1}, \ldots, h_{\lfloor d / 2\rfloor}-h_{\lfloor d / 2\rfloor-1}\right\rangle$, is an M-vector.

As an example, let Δ be the 2 -dimensional simplicial complex with the vertex set $\{1,2,3,4,5,6\}$ and facets $123,124,126,134,135,145,156,234,236,345$, and 356 , where we write " $i j k$ " as shorthand for $\{i, j, k\}$. Let Σ_{1} be the subcomplex with facets $123,124,134$, and 234 , let Σ_{2} be the subcomplex with facets 135,145 , and 345 , and let Σ_{3} be the subcomplex with facets $126,156,236$, and 356 . The sequence $\Sigma_{1}, \Sigma_{2}, \Sigma_{3}$ is a convex-ear decomposition of Δ. In Figures 1 and 2 , we show Σ_{2} being attached to Σ_{1} and then Σ_{3} being attached to $\Sigma_{1} \cup \Sigma_{2}$.

Fig. 1. Attaching Σ_{2} to Σ_{1}.

Fig. 2. Attaching Σ_{3} to $\Sigma_{1} \cup \Sigma_{2}$.

We leave it to the reader to verify that the above is a convex-ear decomposition. Note that $\Sigma_{1}, \Sigma_{3}, \Sigma_{2}$ is not a convex-ear decomposition, as $\Sigma_{3} \cap \Sigma_{1} \neq \partial \Sigma_{3}$.

Convex-ear decompositions can be viewed as a coarser counterpart to the following well-known concept of a shelling.

Definition 2.4. A pure $(d-1)$-dimensional finite simplicial complex Δ is shellable if there is an ordering of its facets $F_{1}, F_{2}, \ldots, F_{t}$ such that $\left(\cup_{i=1}^{j-1} F_{i}\right) \cap F_{j}$ is a nonempty union of facets of ∂F_{j} whenever $1<j \leq t$. Such a facet ordering is called a shelling.

We will employ shellings several times in this paper, but we will use this alternate definition, shown in [3].

Proposition 2.5. Let Δ be as in the previous definition. Then a facet ordering $F_{1}, F_{2}, \ldots, F_{t}$ is a shelling of Δ if and only if for all i, j with $1 \leq i<j \leq t$ there exists a $k \leq j$ such that $F_{i} \cap F_{j} \subseteq F_{k} \cap F_{j}$ and $\left|F_{k} \cap F_{j}\right|=d-1$.

We now give some necessary definitions from poset theory.
Let P be a rank r graded poset with a least element $\hat{0}$ and a greatest element $\hat{1}$, and let λ be a function that assigns an integer to each edge of the Hasse diagram of P. That is, $\lambda:\left\{\langle x, y\rangle \in P^{2}: y\right.$ covers $\left.x\right\} \rightarrow \mathbb{Z}$. We call λ a labeling, and for some saturated chain $\mathbf{c}:=x_{i}<x_{i+1}<x_{i+2}<\cdots<x_{i+j}$ in P (where each x_{k} has rank k) define the λ-label of \mathbf{c} to be the word

$$
\lambda\left(x_{i}, x_{i+1}\right) \lambda\left(x_{i+1}, x_{i+2}\right) \lambda\left(x_{i+2}, x_{i+3}\right) \ldots \lambda\left(x_{i+j-1}, x_{i+j}\right)
$$

Definition 2.6. We say λ is an EL-labeling of P if in each interval $x<y$ of P there is a unique saturated chain, starting with x and ending with y, with a strictly increasing λ-label and the label of this chain is lexicographically first among the labels of all saturated chains in this interval.

Now let P be as above. The order complex of P is the simplicial complex whose faces are chains in $P \backslash\{\hat{0}, \hat{1}\}$. The main reason for introducing EL-labelings is the following result, shown in [3].

Theorem 2.7. Let P be as above, and suppose P admits an EL-labeling λ. Then lexicographic order of the maximal chains of P (with respect to their λ-labels) gives a shelling of the order complex of P.

Definition 2.8. Let P be a graded poset with an EL-labeling λ, and let \boldsymbol{c} be a nonmaximal chain in P. Let the completion of \boldsymbol{c}, written $\operatorname{com}(\boldsymbol{c})$, be the maximal chain that results from filling in each gap in \boldsymbol{c} with the unique chain in that interval with an increasing label.

Notice that $\operatorname{com}(\mathbf{c})$ depends on the labeling λ. The following helpful lemma follows easily from the definition of an EL-labeling.

Lemma 2.9. Let P be as above, let P^{\prime} be a full-rank subposet of P such that λ restricted to P^{\prime} is an EL-labeling, and let \boldsymbol{c} be a chain in P^{\prime}. Then com (\boldsymbol{c}) is a (maximal) chain in P^{\prime}.

Finally, if \mathbf{c} is a chain containing an element of rank j, we write \mathbf{c}_{-j} to denote the chain that results from removing that element.

We will refer several times to the Möbius function μ of a finite poset. For background on this topic, we refer the reader to [12]. The main property of the Möbius function that we use is the following.

Proposition 2.10 (see [12, Theorem 3.13.2]). Let P be a poset admitting an EL-labeling λ, and let $x, y \in P$ with $x<y$. Then $|\mu(x, y)|$ is equal to the number of saturated chains in the interval $[x, y]$ whose λ-labels are weakly decreasing.
3. The supersolvable case. We start by finding a convex-ear decomposition for order complexes of supersolvable lattices with nonzero Möbius function. This construction is motivated by Welker's result [15] that the order complex of a lattice of the above type is 2-Cohen-Macaulay. For a definition of this term, as well as the relevant background, see [11].

Let P be a poset. An order completion of P is a total ordering of its elements $x_{1}<x_{2}<\cdots<x_{r}$ such that if $x_{i}<x_{j}$ in P, then $i<j$. An order ideal of P is a subset $I \subseteq P$ such that if $y \in I$ and $x<y$, then $x \in I$. Let $\mathcal{I}(P)$ be the poset of order ideals of P ordered by inclusion.

The following definition is not the standard one but is equivalent by the fundamental theorem of finite distributive lattices (see, for instance, [12, Theorem 3.4.1]).

Definition 3.1. A finite lattice L is distributive if there exists a poset P such that L is isomorphic to $\mathcal{I}(P)$.

All distributive lattices admit EL-labelings. To see this, let I and J be two order ideals of some r-element poset P, and note that J covers I in $\mathcal{I}(P)$ if and only if $J=I \cup\{x\}$ for some $x \in P \backslash I$ that covers some $y \in I$. Thus there is a 1-1 correspondence between maximal chains in $\mathcal{I}(P)$ and order completions of P (and so $\mathcal{I}(P)$ is pure of rank $r)$. Now let $x_{1}<x_{2}<\cdots<x_{r}$ be an order completion of P, and define the labeling λ by $\lambda(I, J)=n$, where $J=I \cup\left\{x_{n}\right\}$. It is an easy exercise to show that λ is in fact an EL-labeling.

The EL-labeling constructed above is of a special type; each maximal chain in $\mathcal{I}(P)$ is labeled with a permutation of $[r]$. This leads to the following definition.

Definition 3.2. Let P be a graded poset of rank r, and let λ be an EL-labeling of P. We say that λ is an \mathcal{S}_{r}-EL-labeling if every maximal chain of P is labeled by an element of S_{r} (when viewed as a word on the alphabet $[r]$).

The fairly straightforward proof of the following, by induction on the rank of P, is left to the reader.

Lemma 3.3. Let L be a distributive lattice of rank r, and let P be the poset for which L is the lattice of order ideals. Then every \mathcal{S}_{r}-EL-labeling λ of L is obtained from P in the fashion described above. That is, for every \mathcal{S}_{r}-EL-labeling λ, there exists a bijection $\nu: P \rightarrow[r]$ such that $\lambda(I, J)=n$ if and only if $J=I \cup \nu^{-1}(n)$, where I and J are order ideals of P.

Supersolvable lattices were originally introduced by Stanley in [9] as a generalization of distributive lattices. They are so named because subgroup lattices of supersolvable groups are supersolvable lattices.

Definition 3.4. Let L be a lattice. We say that L is supersolvable if there exists a maximal chain \mathbf{c}_{M} of L, called the M-chain (not to be confused with an M-vector), such that the sublattice of L generated by \mathbf{c}_{M} and any other (not necessarily maximal) chain of L is a distributive lattice.

The next result gives an alternate characterization of supersolvability.
Theorem 3.5 (see McNamara [7]). Let P be a poset of rank r. Then P is a supersolvable lattice if and only if it admits an S_{r}-EL-labeling.

We will also need the following theorem of Stanley, implicitly shown in [9], for proving our theorem.

ThEOREM 3.6. Let L be a rank r supersolvable lattice with S_{r}-EL-labeling λ and M-chain \mathbf{c}_{M}, let \mathbf{d} be a chain in L, and let L^{\prime} be the (distributive) sublattice of L generated by \mathbf{c}_{M} and \mathbf{d}. Then λ restricted to L^{\prime} is an S_{r}-EL-labeling.

Also in [9], Stanley proves that, under an S_{r}-EL-labeling of a supersolvable lattice L, the unique maximal chain with increasing label is an M-chain.

The main result in this section is the following theorem.
THEOREM 3.7. Let L be a rank r supersolvable lattice such that $\mu(x, y) \neq 0$ whenever $x, y \in L$ and $x<y$. Then the order complex of L admits a convex-ear decomposition.

For the remainder of this section, fix an S_{r}-EL-labeling of L. Call this labeling λ.
We now construct the ears of the decomposition. Let $\mathbf{d}_{1}, \mathbf{d}_{2}, \ldots, \mathbf{d}_{t}$ be all maximal chains of L with decreasing labels (the order of the list is arbitrary but fixed from here on). This list is nonempty, since $\mu(\hat{0}, \hat{1}) \neq 0$. For each i, let L_{i} be the sublattice of L generated by \mathbf{d}_{i} and \mathbf{c}_{M}, and let Σ_{i} be the simplicial complex whose facets are given by maximal chains in $L_{i} \backslash\{\hat{0}, \hat{1}\}$ that are not chains in L_{j} for any $j<i$. We let the Σ_{i} 's do double-duty, simultaneously representing the complex mentioned above and the set of (not necessarily maximal) chains in L that correspond to faces of that complex. Given the order below, it is sometimes helpful to think of maximal chains (i.e., facets) of Σ_{i} as "new" and maximal chains of $L_{i} \backslash\{\hat{0}, \hat{1}\}$ that are not in Σ_{i} as "old."

We claim that $\Sigma_{1}, \Sigma_{2}, \ldots, \Sigma_{t}$ is a convex-ear decomposition of $\Delta(L)$. We will show each part of the decomposition separately.

Proof of property (ii). By definition, each L_{i} is a distributive lattice. Fix i, and let P be the poset such that $\mathcal{I}(P) \simeq L_{i}$. By Theorem 3.6 and Lemma 3.3, the chain \mathbf{c}_{M} in L_{i} gives us an order completion of $P: x_{1}<x_{2}<\cdots<x_{r}$. Similarly, the chain \mathbf{d}_{i} gives another order completion of $P: x_{r}<x_{r-1}<\cdots<x_{1}$. So for any $x_{j}, x_{k} \in P$, one of the above order completions gives $x_{j}<x_{k}$, while the other gives $x_{k}<x_{j}$. Thus
no two elements in P are comparable, and any subset of elements is an order ideal of P. So L_{i} is isomorphic to B_{r}, the Boolean lattice on r elements. Since the order complex of B_{r} is the first barycentric subdivision of the boundary of the r-simplex, and since $\Sigma_{1}=L_{1}$ and $\Sigma_{i} \subsetneq L_{i}$ for $i>1$ (because \mathbf{c}_{M} is in every L_{i}), this completes our proof of property (ii) of the decomposition. \quad,

Proof of property (i). Let $\mathbf{c}:=\hat{0}=x_{0}<x_{1}<\cdots<x_{r}=\hat{1}$ be a maximal chain of L. We must show that \mathbf{c} is a chain in L_{i} for some i, and we do this by induction on the number of ascents of the chain-label of \mathbf{c}. If the chain-label has no ascents, then $\mathbf{c}=\mathbf{d}_{i}$ for some i and is therefore in L_{i}. Otherwise, \mathbf{c} has at least one ascent, say, at position j. Since L has nonzero Möbius function, the interval $\left(x_{j-1}, x_{j+1}\right)$ has at least one element other than x_{j}. Let \mathbf{c}^{\prime} be the chain that results from replacing x_{j} in \mathbf{c} with one of these other elements. Since \mathbf{c}^{\prime} has one fewer ascent than \mathbf{c}, it belongs to some L_{i} by induction. Since λ is an EL-labeling on L_{i} (Theorem 3.6), $\operatorname{com}\left(\left(\mathbf{c}^{\prime}\right)_{-j}\right)=\mathbf{c}$ is a chain in L_{i} by Lemma 2.9.

Proof of property (iii). To prove that Σ_{i} is a ball for all $i>2$, we show that the reverse lexicographic order of the maximal chains in Σ_{i} is a shelling. Invoking a result of Danaraj and Klee [5], which states that a shellable full-dimensional proper subcomplex of a sphere must be a ball, completes the proof. Let $\mathbf{c}:=\hat{0}=x_{0}<$ $x_{1}<\cdots<x_{r}=\hat{1}$ and \mathbf{d} be two chains in Σ_{i}, with \mathbf{d} lexicographically later (and therefore earlier in the shelling) than c. By the argument given on pages $25-26$ of [2], there must be some j such that \mathbf{d} and \mathbf{c} do not coincide at the j th rank and such that $\lambda\left(x_{j-1}, x_{j}\right)<\lambda\left(x_{j}, x_{j+1}\right)$. Now let \mathbf{c}^{\prime} be the unique maximal chain of L_{i} that coincides with \mathbf{c} everywhere but the j th position. Then, by definition of an EL-labeling, \mathbf{c}^{\prime} is lexicographically later than \mathbf{c} (and thus earlier in the shelling), $\left|\mathbf{c} \backslash \mathbf{c}^{\prime}\right|=1$, and $\mathbf{c} \cap \mathbf{d} \subseteq \mathbf{c}^{\prime}$. It remains to be shown that \mathbf{c}^{\prime} is in Σ_{i}. If \mathbf{c}^{\prime} were not a chain in Σ_{i}, it would be a chain in L_{k} for some $k<i$, meaning $\left(\mathbf{c}^{\prime}\right)_{-j}$ is a chain in L_{k}. But then, again by Lemma 2.9, we would have that $\operatorname{com}\left(\left(\mathbf{c}^{\prime}\right)_{-j}\right)=\mathbf{c}$ is a chain in L_{k}. This would mean that \mathbf{c} is not a chain in Σ_{i}, which is a contradiction.

We have yet to prove property (iv). Since we will use a very similar technique to prove this property in the coming sections, we outline the method here and refer back to this exposition later.

Proof of property (iv). Fix $i>1$, and note that a chain \mathbf{c} in Σ_{i} is in $\partial \Sigma_{i}$ if and only if there exist two maximal chains containing it, $\mathbf{c}_{\text {old }}$ and $\mathbf{c}_{n e w}$, such that $\mathbf{c}_{\text {old }}$ is a maximal chain of L_{i} but not Σ_{i}, and $\mathbf{c}_{n e w}$ is a maximal chain in Σ_{i}.

From the above description of chains in the boundary of $\Sigma_{i}, \partial \Sigma_{i} \subseteq\left(\bigcup_{1}^{i-1} \Sigma_{j}\right) \cap \Sigma_{i}$. To see the reverse inclusion, let \mathbf{c} be a chain in $\left(\bigcup_{1}^{i-1} \Sigma_{j}\right) \cap \Sigma_{i}$. Then \mathbf{c} is, by definition, a subchain of some facet of Σ_{i}. This chain is the required $\mathbf{c}_{n e w}$. To complete the proof, we must find a suitable $\mathbf{c}_{\text {old }}$. However, since \mathbf{c} is a chain in $\bigcup_{1}^{i-1} \Sigma_{j}$, it must be a chain in some L_{j} for $j<i$. Then Lemma 2.9 guarantees that $\operatorname{com}(\mathbf{c})$ is in L_{j}, so set $\mathbf{c}_{\text {old }}=\operatorname{com}(\mathbf{c})$.

4. The rank-selected Boolean case.

Definition 4.1. Let P be a graded poset of rank r, and let $S \subseteq[r-1]$. The rank-selected subposet P_{S} is defined to be the poset with elements $\{x \in P: \operatorname{rank}(x) \in$ $S \cup\{\hat{0}, \hat{1}\}\}$ and order inherited from P.

Recall that B_{r} denotes the rank r Boolean lattice. This section is devoted to proving the following theorem.

ThEOREM 4.2. For any $S \subseteq[r-1]$, the order complex of the rank-selected subposet $\left(B_{r}\right)_{S}$ admits a convex-ear decomposition.

Throughout this section, we fix an \mathcal{S}_{r}-EL-labeling λ of B_{r} defined as follows: view
the elements of B_{r} as subsets of $[r]$, and note that y covers x if and only if $y=x \cup\{n\}$ for some $n \in[r] \backslash x$. To define the labeling λ, set $\lambda(x, y)=n$. It is easy to see that λ is an \mathcal{S}_{r}-EL-labeling.

For any subset $S \subseteq[r-1]$ and any maximal chain \mathbf{c} of B_{r}, let \mathbf{c}_{S} denote the subchain of \mathbf{c} consisting of all elements in \mathbf{c} whose ranks are in $S \cup\{0, r\}$. In particular, we write \mathbf{c}_{j} as shorthand for $\mathbf{c}_{\{j\}}$, the element of \mathbf{c} of rank j with $\hat{0}$ and $\hat{1}$ adjoined. Note that \mathbf{c}_{S} is a maximal chain in $\left(B_{r}\right)_{S}$.

Now fix a subset $S \subseteq[r-1]$ for the remainder of this section, and write S as a disjoint union of intervals, where $a_{1}<a_{2}<\cdots<a_{s}$:

$$
S=\left[a_{1}, b_{1}\right] \cup\left[a_{2}, b_{2}\right] \cup \cdots \cup\left[a_{s}, b_{s}\right]
$$

and no $a_{i}-1$ or $b_{i}+1$ is a member of S and $b_{i}<a_{i+1}$ for all i. Where appropriate, we also set $b_{0}=0$ and $a_{s+1}=r$.

Because maximal chains in B_{r}, under their λ-labels, are in bijection with permutations of $[r]$, we do much of our work in the context of \mathcal{S}_{r}, where we write permutations in word form: $\sigma=\sigma(1) \sigma(2) \ldots \sigma(r)$. When $1 \leq m<n \leq r$, we write $\sigma(m, n)$ to mean the set $\{\sigma(m), \sigma(m+1), \ldots, \sigma(n)\}$.

Let \mathbf{c} be a maximal chain in B_{r} with $\lambda(\mathbf{c})=\sigma \in \mathcal{S}_{r}$. We wish to characterize the labels of all chains that coincide with \mathbf{c} at ranks in S. This will turn out to be the coincidence set $C(\sigma)$ described below. Similarly, the set $S p(\sigma)$ defined below is the set of labels of chains that coincide with \mathbf{c} at ranks not in S.

First, for a permutation $\sigma \in \mathcal{S}_{r}$, define the coincidence set of σ, written $C(\sigma)$, as the set of all $\tau \in \mathcal{S}_{r}$ such that $\tau(m)=\sigma(m)$ for all $m \in S \backslash\left\{a_{1}, a_{2}, \ldots, a_{s}\right\}$ and $\sigma\left(b_{i}+1, a_{i+1}\right)=\tau\left(b_{i}+1, a_{i+1}\right)$ for all i. To visualize the set $C(\sigma)$, define the bracketed word σ^{C} to be the word of σ with a left bracket inserted before each $\sigma\left(b_{i}+1\right)$ and a right bracket inserted after each $\sigma\left(a_{i}\right)$ (as usual, we let $b_{0}=0$ and $a_{s+1}=r$). Then $C(\sigma)$ is the set of permutations that can be obtained by permuting the elements between the brackets of σ^{C}.

For example, suppose $r=7, S=\{2,3,4,6\}$, and $\sigma=5374162$. Then $S=$ $[2,4] \cup[6,6]$, and the bracketed word defined above is

$$
\sigma^{C}=[53] 74[16][2]
$$

Thus the set $C(\sigma)$ consists of four permutations: $3574162,3574612,5374162=$ σ, and 5374612 .

Now define the span of σ, written $S p(\sigma)$, to be the set of all permutations $\tau \in \mathcal{S}_{r}$ such that $\tau(m)=\sigma(m)$ whenever $b_{i}+1<m<a_{i}$ for some i, and $\tau\left(a_{i}, b_{i}+1\right)=$ $\sigma\left(a_{i}, b_{i}+1\right)$ for all i. Here, we do not follow our convention that $b_{0}=0$ and $a_{s+1}=r$. As before, define a bracketed word $\sigma^{S p}$ as follows: insert a left bracket before each $\sigma\left(a_{i}\right)$ and a right bracket after each $\sigma\left(b_{i}+1\right)$. Then $S p(\sigma)$ consists of all permutations obtained from σ by permuting the elements between the brackets of $\sigma^{S p}$.

Continuing with our example,

$$
\sigma^{S p}=5[3741][62] .
$$

Thus a permutation in $S p(\sigma)$ is given by permuting the set $\{1,3,4,7\}$ within the first bracket and the set $\{2,6\}$ within the second. (When no confusion can result, we use "bracket" to mean the word specified by a pair of brackets.)

Note that our above definitions depend on our choice of the set $S \subseteq[r-1]$. However, as we have fixed one choice of S for the entire section, we suppress " S "
from our notation. Given the bracket interpretations of the sets $C(\sigma)$ and $S p(\sigma)$, the following lemma is obvious.

Lemma 4.3. Fix two permutations $\sigma, \tau \in \mathcal{S}_{r}$. Then $\sigma \in C(\tau)$ if and only if $C(\sigma)=C(\tau)$, and $\sigma \in S p(\tau)$ if and only if $S p(\sigma)=S p(\tau)$.

For a permutation $\sigma \in \mathcal{S}_{r}$, let \mathbf{c}^{σ} denote the unique maximal chain in B_{r} with σ as its λ-label. That is,

$$
\mathbf{c}^{\sigma}:=\hat{0}=x_{0}<x_{1}<\cdots<x_{r-1}<x_{r}=\hat{1}
$$

and $\sigma(m)=\lambda\left(x_{m-1}, x_{m}\right)$ for all m. For a subset $T \subseteq[r-1]$, we write \mathbf{c}_{T}^{σ} as shorthand for $\left(\mathbf{c}^{\sigma}\right)_{T}$. The following is our reason for introducing the sets $C(\sigma)$ and $S p(\sigma)$.

Proposition 4.4. Let $\sigma, \tau \in \mathcal{S}_{r}$. Then $C(\sigma)=C(\tau)$ if and only if $\boldsymbol{c}_{S}^{\sigma}=\boldsymbol{c}_{S}^{\tau}$, and $S p(\sigma)=S p(\tau)$ if and only if $\boldsymbol{c}_{[r-1] \backslash S}^{\sigma}=\boldsymbol{c}_{[r-1] \backslash S}^{\tau}$.

Proof. Suppose $C(\sigma)=C(\tau)$, and let $m \in S$. Then there are two possible cases: either $\sigma(j)$ is in no bracket of σ^{C}, or it is the rightmost element in some bracket. In either case, $\tau(1, m)=\sigma(1, m)$, since rearranging elements in a bracket of σ^{C} cannot remove an element from, or add an element to, the set $\sigma(1, m)$. Viewing elements of B_{r} as subsets of $[r]$, we have $\mathbf{c}_{m}^{\sigma}=\sigma(1, m)=\tau(1, m)=\mathbf{c}_{m}^{\tau}$, and so $\mathbf{c}_{S}^{\sigma}=\mathbf{c}_{S}^{\tau}$.

For the reverse implication, suppose that $\mathbf{c}_{S}^{\sigma}=\mathbf{c}_{S}^{\tau}$, and fix some $m \in S \backslash$ $\left\{a_{1}, a_{2}, \ldots, a_{s}\right\}$. Then $m-1 \in S$, meaning $\mathbf{c}_{m-1}^{\sigma}=\mathbf{c}_{m-1}^{\tau}$. Since $\mathbf{c}_{m}^{\sigma}=\mathbf{c}_{m}^{\tau}$,

$$
\sigma(m)=\lambda\left(\mathbf{c}_{m-1}^{\sigma}, \mathbf{c}_{m}^{\sigma}\right)=\lambda\left(\mathbf{c}_{m-1}^{\tau}, \mathbf{c}_{m}^{\tau}\right)=\tau(m)
$$

Now fix some i with $0 \leq i \leq s$. Then $\mathbf{c}_{b_{i}}^{\sigma}=\mathbf{c}_{b_{i}}^{\tau}$ and $\mathbf{c}_{a_{i+1}}^{\sigma}=\mathbf{c}_{a_{i+1}}^{\tau}$. It follows that the sets $\sigma\left(b_{i}+1, a_{i+1}\right)$ and $\tau\left(b_{i}+1, a_{i+1}\right)$ are equal, since each is equal to $\mathbf{c}_{a_{i+1}}^{\sigma} \backslash \mathbf{c}_{b_{i}}^{\sigma}$ where again elements of B_{r} are viewed as subsets of $[r]$. Thus $\tau \in C(\sigma)$, or equivalently $C(\sigma)=C(\tau)$.

The proof of the lemma's second statement is completely analogous to the proof of the first.

In Figure 3, we show (between the chain with increasing label and the chain with decreasing label) the four maximal chains in B_{7} whose labels are permutations in $C(\sigma)$, where σ and S are as in our running example.

Fig. 3. Maximal chains whose labels are in $C(\sigma)$. Elements whose ranks are in $S \cup\{0,7\}$ are filled in.

Let P be any graded poset of rank r that admits an EL-labeling. Then the order complex of P_{S} is shellable and homotopy equivalent to t-many spheres (see [3]), where t is the number of maximal chains of P whose labels have descent set S. Recall that
the descent set of a permutation $\sigma \in \mathcal{S}_{r}$ is $\operatorname{des}(\sigma)=\{m \in[r-1]: \sigma(m)>\sigma(m+1)\}$. In the case we treat, where $P=B_{r}, t$ is the number of permutations in \mathcal{S}_{r} with descent set S. It makes sense, then, that our convex-ear decomposition is constructed from the set $D=\left\{\delta \in \mathcal{S}_{r}: \operatorname{des}(\delta)=S\right\}$.

For any $\sigma \in \mathcal{S}_{r}$, define a permutation δ_{σ} as follows: first, let π_{σ} be the permutation obtained by replacing each bracket in σ^{C} with the increasing word in those letters. In keeping with our running example,

$$
\pi_{\sigma}^{C}=[35] 74[16][2]
$$

where we have written π_{σ}^{C} rather than just π_{σ} in hopes of better readability. Next, obtain δ_{σ} by replacing the contents of each bracket in $\pi_{\sigma}^{S p}$ with the decreasing word in those letters. Continuing with our example,

$$
\pi_{\sigma}^{S p}=3[5741][62], \text { and so } \delta_{\sigma}^{S p}=3[7541][62] .
$$

Note that, by construction, π_{σ} is in both $C(\sigma)$ and $S p\left(\delta_{\sigma}\right)$, and so $C(\sigma) \cap S p\left(\delta_{\sigma}\right) \neq$ \emptyset.

Proposition 4.5. For any $\sigma \in \mathcal{S}_{r}, \delta_{\sigma} \in D$.
Proof. Let $n \in S$. Then $\delta_{\sigma}(n)$ and $\delta_{\sigma}(n+1)$ are in the same bracket of $\delta_{\sigma}^{S p}$. Because δ_{σ} is obtained from π_{σ} by putting the contents of each bracket of $\pi_{\sigma}^{S p}$ in decreasing order, it must be the case that $\delta_{\sigma}(n)>\delta_{\sigma}(n+1)$. Thus $S \subseteq \operatorname{des}\left(\delta_{\sigma}\right)$. Suppose $S \neq \operatorname{des}\left(\delta_{\sigma}\right)$, and choose some $m \in \operatorname{des}\left(\delta_{\sigma}\right) \backslash S$. Then $m=a_{j}-1$ or $m=b_{j}+1$ for some j. Suppose $m=a_{j}-1 . \pi_{\sigma}\left(a_{j}-1\right)$ is in the same bracket of π_{σ}^{C} as $\pi_{\sigma}\left(a_{j}\right)$, so $\pi_{\sigma}\left(a_{j}-1\right)<\pi_{\sigma}\left(a_{j}\right)$. Furthermore, $\pi_{\sigma}\left(a_{j}\right)$ is the leftmost element of some bracket of $\pi_{\sigma}^{S p}$, and so by construction $\delta_{\sigma}\left(a_{j}\right) \geq \pi_{\sigma}\left(a_{j}\right)$. Similarly, $\pi_{\sigma}\left(a_{j}-1\right)$ either is not in any bracket of $\pi_{\sigma}^{S p}$ or is the rightmost element in some bracket, so $\delta_{\sigma}\left(a_{j}-1\right) \leq \pi_{\sigma}\left(a_{j}-1\right)$. Stringing these inequalities together,

$$
\delta_{\sigma}(m)=\delta_{\sigma}\left(a_{j}-1\right) \leq \pi_{\sigma}\left(a_{j}-1\right)<\pi_{\sigma}\left(a_{j}\right) \leq \delta_{\sigma}\left(a_{j}\right)=\delta_{\sigma}(m+1)
$$

which is a contradiction. The proof for the case in which $m=b_{j}+1$ for some j is symmetric. Thus $\operatorname{des}\left(\delta_{\sigma}\right)=S$, and so $\delta_{\sigma} \in D$.

Now choose $\sigma, \delta, \tau \in \mathcal{S}_{r}$, with $\tau \in C(\sigma) \cap S p(\delta)$. By Proposition 4.4, $\mathbf{c}_{S}^{\tau}=\mathbf{c}_{S}^{\sigma}$ and $\mathbf{c}_{[r-1] \backslash S}^{\tau}=\mathbf{c}_{[r-1] \backslash S}^{\delta}$. Because only one maximal chain in B_{r} can satisfy both these constraints, it follows that the permutation τ is uniquely determined. Thus for any $\sigma, \delta \in \mathcal{S}_{r},|C(\sigma) \cap S p(\delta)| \leq 1$.

LEMMA 4.6. Let $\sigma \in \mathcal{S}_{r}$ and $\delta \in D$, and suppose that $C(\sigma) \cap S p(\delta)=\{\tau\}$. Then $\delta=\delta_{\sigma}$ if and only if the contents of each bracket of τ^{C} are increasing.

Proof. Suppose each bracket of τ^{C} is increasing. $\tau \in C(\sigma)$, so it follows that $\tau=\pi_{\sigma}$, as defined in the proof of Proposition 4.5. Since δ_{σ} is obtained by permuting elements in the brackets of $\pi_{\sigma}^{S p}=\tau^{S p}, \tau \in S p\left(\delta_{\sigma}\right)$. By assumption, $\tau \in S p(\delta)$, and so by Lemma $4.3 S p\left(\delta_{\sigma}\right)=S p(\delta)$. Because both δ and δ_{σ} are members of D, each bracket of $\delta^{S p}$ and $\delta_{\sigma}^{S p}$ must be decreasing, so $\delta=\delta_{\sigma}$.

Now suppose some bracket of τ^{C} is nonincreasing. Put another way, the word $\tau\left(b_{j}+1\right) \tau\left(b_{j}+2\right) \ldots \tau\left(a_{j+1}\right)$ is nonincreasing for some j. Choose an m with $b_{j}+1 \leq$ $m \leq a_{j+1}-1$ and $\tau(m)>\tau(m+1)$. If it were the case that $b_{j}+1<m<a_{j+1}-1$, then we would necessarily have $\delta(m)=\tau(m)$ and $\delta(m+1)=\tau(m+1)$, since both entries are outside the brackets of $\delta^{S p}$ and $\tau \in S p(\delta)$. But then $m \in \operatorname{des}(\delta)=S$, which is a contradiction. Therefore, either $m=b_{j}+1$ or $m=a_{j+1}-1$. We treat only the first case, the proof of the second being similar.

Note that $\tau \in C(\sigma)=C\left(\pi_{\sigma}\right)$, and so $\pi_{\sigma}=\pi_{\tau}$. Because π_{τ} is obtained by putting the brackets of τ^{C} in increasing order, $\tau\left(b_{j}+1\right)>\tau\left(b_{j}+2\right)$, and so $\pi_{\tau}\left(b_{j}+1\right)<$ $\tau\left(b_{j}+1\right)$. It follows that $S p\left(\pi_{\tau}\right) \neq S p(\tau)$. Putting this together,

$$
S p\left(\delta_{\sigma}\right)=S p\left(\pi_{\sigma}\right)=S p\left(\pi_{\tau}\right) \neq S p(\tau)=S p(\delta)
$$

and so $\delta \neq \delta_{\sigma}$.
Proposition 4.7. Let $\sigma \in \mathcal{S}_{r}$. Then δ_{σ} is the lexicographically least permutation in the set $\{\delta \in D: C(\sigma) \cap S p(\delta) \neq \emptyset\}$.

Proof. Fix $\delta \in D \backslash\left\{\delta_{\sigma}\right\}$ such that $C(\sigma) \cap S p(\delta)=\{\tau\}$ for some $\tau \in \mathcal{S}_{r}$. By the previous proposition, some bracket of τ^{C} is nonincreasing, meaning the word $\tau\left(b_{j}+\right.$ 1) $\tau\left(b_{j}+2\right) \ldots \tau\left(a_{j+1}\right)$ is nonincreasing for some j. So, in forming the permutation π_{τ}, this bracket is put in increasing order. It follows that $\delta_{\tau}=\delta_{\sigma}$ is lexicographically less than δ.

We now use our work in \mathcal{S}_{r} to construct a convex-ear decomposition for the order complex of $\left(B_{r}\right)_{S}$. Let $\delta_{1}, \delta_{2}, \ldots, \delta_{t}$ be all permutations in D, listed in lexicographic order of their labels. For each i let $\mathbf{d}_{i}=\mathbf{c}^{\delta_{i}}$ (in other words, \mathbf{d}_{i} is the unique maximal chain in B_{r} with δ_{i} as its λ-label). Also let L_{i} be the poset generated by all maximal chains in $\left(B_{r}\right)_{S}$ of the form \mathbf{c}_{S}, where \mathbf{c} is a maximal chain in B_{r} such that $\mathbf{c}_{[r-1] \backslash S}=\left(\mathbf{d}_{i}\right)_{[r-1] \backslash S}$. Finally, let Σ_{i} be the simplicial complex whose facets are given by maximal chains in $L_{i} \backslash\{\hat{0}, \hat{1}\}$ that are not chains in L_{j} for any $j<i$. As in the previous section, we use Σ_{i} to refer to both the simplicial complex above and the poset whose chains correspond to (not necessarily maximal) chains in $\left(B_{r}\right)_{S}$.

Proposition 4.8. $\Sigma_{1}, \Sigma_{2}, \ldots, \Sigma_{t}$ is a convex-ear decomposition of the order complex of $\left(B_{r}\right)_{S}$.

To every maximal chain \mathbf{e} in $\left(B_{r}\right)_{S}$, associate an equivalence class of maximal chains in B_{r}, namely, all maximal chains \mathbf{c} such that $\mathbf{c}_{S}=\mathbf{e}$. By Proposition 4.4, this equivalence class can be viewed as the set $\left\{\mathbf{c}^{\tau}: \tau \in C(\sigma)\right\}$ for some $\sigma \in \mathcal{S}_{r}$. We refer to $C(\sigma)$ as the class corresponding to \mathbf{e}.

Next let \mathbf{c} be a maximal chain in B_{r} such that \mathbf{c}_{S} is a maximal chain in L_{i}. $\mathbf{c}_{[r-1] \backslash S}=\left(\mathbf{d}_{i}\right)_{[r-1] \backslash S}$, and so, by Proposition 4.4, $\lambda(\mathbf{c}) \in S p\left(\delta_{i}\right)$. Let $\sigma=\lambda(\mathbf{c})$. The chain \mathbf{c}_{S} then corresponds to the equivalence class $C(\sigma)$, and we have proven half of the following lemma.

Lemma 4.9. Let $\sigma \in \mathcal{S}_{r}$, and let \boldsymbol{e} be a maximal chain in $\left(B_{r}\right)_{S}$ corresponding to the equivalence class $C(\sigma)$. Then \boldsymbol{e} is a maximal chain in L_{i} if and only if $C(\sigma) \cap$ $S p\left(\delta_{i}\right) \neq \emptyset$.

Proof. We have already proven the "only if" direction above. For the other direction, suppose $C(\sigma) \cap S p\left(\delta_{i}\right) \neq \emptyset$. Choose the unique τ in this intersection. By Proposition 4.4, $\mathbf{c}_{S}^{\tau}=\mathbf{e}$ and $\mathbf{c}_{[r-1] \backslash S}^{\tau}=\left(\mathbf{d}_{i}\right)_{[r-1] \backslash S}$, and so \mathbf{e} is a maximal chain in L_{i}.

Now let \mathbf{e} and σ be as in the statement of the above lemma, and suppose \mathbf{e} is a facet in Σ_{i}. Then δ_{i} is the lexicographically first permutation δ in D such that $C(\sigma) \cap S p(\delta) \neq \emptyset$, and so, by Proposition 4.7, $\delta_{i}=\delta_{\sigma}$. Summarizing, we have the following lemma.

LEMMA 4.10. Let \boldsymbol{e} be a maximal chain in $\left(B_{r}\right)_{S}$ corresponding to the class $C(\sigma)$ for some $\sigma \in \mathcal{S}_{r}$. Then \boldsymbol{e} represents a facet in Σ_{i} if and only if $\delta_{i}=\delta_{\sigma}$.

We are now ready to prove the properties of our convex-ear decomposition.
Proof of property (i). We must show that any maximal chain e in $\left(B_{r}\right)_{S}$ is a maximal chain in some L_{i}. By Lemma 4.9, we must find some $\delta \in D$ such that
$C(\sigma) \cap S p(\delta) \neq \emptyset$, where $C(\sigma)$ is the class corresponding to e. But Lemma 4.5 guarantees such a permutation, namely, δ_{σ}.

Proof of property (ii). Fix \mathbf{d}_{i}, and write $\mathbf{d}_{i}:=\hat{0}=x_{0}<x_{1}<\cdots<x_{r}=\hat{1}$. A maximal chain in L_{i} is determined by a choice of maximal chain in each open interval $\left(x_{a_{j}-1}, x_{b_{j}+1}\right)$. Each of these intervals is isomorphic to $B_{b_{j}-a_{j}+2} \backslash\{\hat{0}, \hat{1}\}$. As noted before, the order complex of $B_{n} \backslash\{\hat{0}, \hat{1}\}$ is $b\left(\partial \Delta_{n-1}\right)$, where b denotes the first barycentric subdivision and Δ_{n-1} denotes the $(n-1)$-dimensional simplex. Thus the order complex of L_{i} is the product

$$
b\left(\partial \Delta_{b_{1}-a_{1}+1}\right) * b\left(\partial \Delta_{b_{2}-a_{2}+1}\right) * \cdots * b\left(\partial \Delta_{b_{s}-a_{s}+1}\right)
$$

where $*$ denotes simplicial join (see [6] for background on this operation and [16] for its application to polytopes). It follows that the order complex of each L_{i} is the boundary complex of a simplicial polytope. Since Σ_{1} is the order complex of L_{1}, it remains to be shown that Σ_{i} is a proper subcomplex of the order complex of L_{i} when $i>1$.

Fix δ_{i} with $i>1$, and define a permutation $\sigma \in S p\left(\delta_{i}\right)$ by putting each bracket of $\delta_{i}^{S p}$ in increasing order. There are two cases to consider: first, suppose that $\sigma=12 \ldots r$. In this case, we leave it to the reader to show that $\delta_{i}=\delta_{1}$, the lexicographically first permutation in \mathcal{S}_{r} with descent set S, contradicting our assumptions. Now suppose otherwise. Since each bracket of $\sigma^{S p}$ is increasing, it must be the case that some bracket of σ^{C} is nonincreasing. Then, by Lemma 4.6, $\delta_{i} \neq \delta_{\sigma}$, since $C(\sigma) \cap S p\left(\delta_{i}\right)=\{\sigma\}$. Finally, by Proposition 4.7, δ_{σ} precedes δ_{i} lexicographically, and so $\delta_{\sigma}=\delta_{j}$ for some $j<i$. \quad

Proof of property (iii). Fix $i>1$, and let \mathbf{e} be a maximal chain representing a facet in Σ_{i}. Pick a $\sigma \in \mathcal{S}_{r}$ such that e corresponds to the equivalence class $C(\sigma)$. Define $\pi_{\mathbf{e}}$ to be the permutation π_{σ}. Let $\mathbf{e}_{1}, \mathbf{e}_{2}, \ldots, \mathbf{e}_{n}$ be the maximal chains of $\left(B_{r}\right)_{S}$ corresponding to facets of Σ_{i}. Writing π_{j} as shorthand for $\pi_{\mathbf{e}_{j}}$, let the above order be so that π_{j} is lexicographically greater than π_{k} whenever $j<k$. In particular, $\pi_{1}=\delta_{i}$. We claim that this ordering is a shelling of Σ_{i}.

Let $j<k$. Since $S p\left(\pi_{j}\right)=S p\left(\delta_{i}\right)=S p\left(\pi_{k}\right), \pi_{j}^{S p}$ and $\pi_{k}^{S p}$ coincide outside of their brackets. Because π_{k} lexicographically precedes π_{j}, there must be some ascent, $\pi_{k}(m)<\pi_{k}(m+1)$, such that $\pi_{k}(1, m) \neq \pi_{j}(1, m)$ and so that $\pi_{k}(m)$ and $\pi_{k}(m+1)$ are in the same bracket of $\pi_{k}^{S p}$. We claim that the proof of this assertion is, as in the proof of property (iii) in the previous section, analogous to the discussion on pages $25-26$ of [2]. This is because $\pi_{k}(1, m) \neq \pi_{j}(1, m)$ if and only if $\mathbf{c}_{m}^{\pi_{k}} \neq \mathbf{c}_{m}^{\pi_{j}}$, by Proposition 4.4. Let π_{k}^{\prime} be the permutation obtained from π_{k} by switching $\pi_{k}(m)$ and $\pi_{k}(m+1)$.

Note that π_{k}^{\prime} is lexicographically greater than π_{k}. It is clear that $C\left(\pi_{k}^{\prime}\right) \cap S p\left(\delta_{i}\right)=$ $\left\{\pi_{k}^{\prime}\right\}$. Now fix some p, and consider the following bracket in π_{k}^{C} :

$$
\pi_{k}\left(b_{p}+1\right) \pi_{k}\left(b_{p}+2\right) \ldots \pi_{k}\left(a_{p+1}\right)
$$

$\pi_{k}(m)$ and $\pi_{k}(m+1)$ are in the same bracket of $\pi_{k}^{S p}$, so there are only three possibilities for the placement of $\pi_{k}(m)$ within the above bracket: $m+1=b_{p}+1, m=a_{p+1}$, or $\{m, m+1\} \cap\left[b_{p}+1, a_{p+1}\right]=\emptyset$. In the first case, $m=b_{p}$, and the corresponding bracket in $\left(\pi_{k}^{\prime}\right)^{C}$ is

$$
\pi_{k}^{\prime}(m+1) \pi_{k}^{\prime}\left(b_{p}+2\right) \ldots \pi_{k}^{\prime}\left(a_{p+1}\right)=\pi_{k}(m) \pi_{k}\left(b_{p}+2\right) \ldots \pi_{k}\left(a_{p+1}\right)
$$

Because this bracket is increasing in π_{k}^{C} (by Lemmas 4.10 and 4.6) and $\pi_{k}(m)<$ $\pi_{k}(m+1)$, it must be increasing in $\left(\pi_{k}^{\prime}\right)^{C}$ as well, meaning $\delta_{i}=\delta_{\pi_{k}^{\prime}}$ (by Lemma 4.6).

The proof for the second case is again symmetric to the case we have proven, and the proof for the third case is trivial (since the bracket's contents are unchanged). Thus $\pi_{k}^{\prime}=\pi_{\ell}$ for some $\ell<k$, since π_{k}^{\prime} is lexicographically later than π_{k}.

To complete the proof, we have to show that $\mathbf{e}_{j} \cap \mathbf{e}_{k} \subseteq \mathbf{e}_{j} \cap \mathbf{e}_{k}^{\prime}$. Since \mathbf{e}_{k} coincides with \mathbf{e}_{k}^{\prime} everywhere except at rank m, it is enough to show that \mathbf{e}_{j} and \mathbf{e}_{k} do not intersect at that rank. But this follows immediately, since $\mathbf{c}_{m}^{\pi_{k}} \neq \mathbf{c}_{m}^{\pi_{j}}$.

Proof of property (iv). We take our cue from the proof of property (iv) from the first section, since the Σ_{i} are defined analogously. That is, let \mathbf{e}_{i} and \mathbf{e}_{j} be facets of Σ_{i} and Σ_{j}, where $i<j$, and let $\mathbf{e}=\mathbf{e}_{i} \cap \mathbf{e}_{j}$. By the discussion in the proof of property (iv) in the previous section, it suffices to find a facet \mathbf{e}^{\prime} of some Σ_{k} with $k<j$ such that \mathbf{e}^{\prime} contains \mathbf{e}.

Define the maximal chain \mathbf{e}^{\prime} by $\mathbf{e}^{\prime}=(\operatorname{com}(\mathbf{e}))_{S}$, and let σ be the λ-label of $\operatorname{com}(\mathbf{e})$. By construction, $\pi_{\sigma}=\sigma$. Now let τ be the λ-label of some maximal chain \mathbf{c} in B_{r} with $\mathbf{c}_{S}=\mathbf{e}_{i}$. It is clear that π_{τ} is independent of the choice of maximal chain \mathbf{c} and that π_{σ} is lexicographically less than or equal to π_{τ}. It follows that δ_{σ} is lexicographically less than or equal to δ_{τ}, which means that \mathbf{e}^{\prime} is a facet of Σ_{k} for some $k \leq i<j$.
5. The rank-selected supersolvable case. It is implicit in our earlier work that supersolvable lattices are composed of Boolean lattices that are pieced together in an orderly fashion. Using the previous sections, we can prove the following theorem.

Theorem 5.1. Let L be a rank r supersolvable lattice such that $\mu(x, y) \neq 0$ whenever $x, y \in L$ and $x<y$, and let $S \subseteq[r-1]$. Then the order complex of L_{S} admits a convex-ear decomposition.

Fix an S_{r}-EL-labeling λ of L. Let $\mathbf{d}_{1}, \mathbf{d}_{2}, \ldots, \mathbf{d}_{t}$ be a fixed ordering of the maximal chains in L with decreasing λ-label. For each i, let L_{i} be the sublattice of L generated by \mathbf{d}_{i} and the unique maximal chain in L with increasing λ-label. From our convexear decomposition for supersolvable lattices, we know that each L_{i} is isomorphic to B_{r}. For a fixed i, let $\mathbf{d}_{i}^{1}, \mathbf{d}_{i}^{2}, \ldots, \mathbf{d}_{i}^{t}$ be a list of the maximal chains in L_{i} whose labels have descent set S, where the chains are listed in lexicographic order of their labels. For each j, let L_{i}^{j} be the poset generated by all maximal chains in \mathbf{c} in L_{i} such that $\mathbf{c}_{[r-1] \backslash S}=\left(\mathbf{d}_{i}^{j}\right)_{[r-1] \backslash S}$. In other words, L_{i}^{j} is just the poset L_{j} as defined in our convex-ear decomposition for $\left(B_{r}\right)_{S}$, when L_{i} is viewed as the Boolean lattice B_{r}. Finally, let Σ_{i}^{j} be the simplicial complex whose facets are given by the maximal proper chains in L_{i}^{j} that are not maximal chains in any L_{i}^{k} for some $k<j$ or any L_{m}^{n} for some $m<i$.

Proposition 5.2. Once we eliminate all $\Sigma_{i}^{j}=\emptyset$, the sequence $\left\langle\Sigma_{i}^{j}\right\rangle$, ordered lexicographically with respect to the tuples $\langle i, j\rangle$, is a convex-ear decomposition of the order complex of L_{S}.

Property (i) is immediately verified by our earlier decompositions. Property (ii) is almost verified as well; we know from the previous section that the order complex of each L_{i}^{j} is the boundary complex of some simplicial r-polytope, and it follows from the definitions that Σ_{1}^{1} is the order complex of L_{1}^{1}. However, we still need to know that Σ_{i}^{j} is a proper subcomplex of the order complex of L_{i}^{j} whenever $j>1$ or $i>1$.

Let $j>1$. Then, by our decomposition of the rank-selected Boolean lattice, some maximal chain in L_{i}^{j} is a maximal chain in L_{i}^{k} for some $k<j$. Now suppose $j=1$. Then the label of \mathbf{d}_{i}^{1} is the lexicographically first permutation in \mathcal{S}_{r} with descent set S. It follows that \mathbf{c}_{S} is a maximal chain in L_{i}^{1}, where \mathbf{c} is the unique chain in L with increasing λ-label. Thus \mathbf{c}_{S} is a maximal chain in L_{1}^{1}, proving the remainder of property (ii).

Proof of property (iii). We claim that, as in the previous section, reverse lexicographic order of the facets of Σ_{i}^{j} is a shelling. In fact, let $\mathbf{e}_{j}, \mathbf{e}_{k}$, and \mathbf{e}_{k}^{\prime} be as in the proof of property (iii) given there. The only way in which this proof could fail to work in this case is if \mathbf{e}_{k}^{\prime} is a chain in L_{m}^{n} for some $m<i$. Suppose this is the case. Let p be the unique rank level at which \mathbf{e}_{k} and \mathbf{e}_{k}^{\prime} do not coincide, let \mathbf{c} be the unique maximal chain in L such that $\mathbf{c}_{S}=\left(\mathbf{e}_{k}\right)_{S}$ and $\mathbf{c}_{[r-1] \backslash S}=\left(\mathbf{d}_{i}^{j}\right)_{[r-1] \backslash S}$, and define \mathbf{c}^{\prime} analogously. Then $\mathbf{c}^{\prime}=\operatorname{com}\left(\mathbf{c}_{-p}\right)$. λ restricts to an EL-labeling on L_{m}, and thus, by Lemma 2.9, \mathbf{c} is a maximal chain in L_{m}, which means that $\mathbf{e}_{k}=\mathbf{c}_{S}$ is a maximal chain in L_{m}^{k} for some k, which is a contradiction.

Proof of property (iv). As above, we refer to the proof of property (iv) in the previous section and show that the same technique works here. Indeed, let \mathbf{e}_{i}^{j} and \mathbf{e}_{m}^{n} be facets of Σ_{i}^{j} and Σ_{m}^{n}, respectively, where $\langle i, j\rangle$ lexicographically precedes $\langle m, n\rangle$. Let $\mathbf{e}=\mathbf{e}_{i}^{j} \cap \mathbf{e}_{m}^{n}$. As discussed earlier, we need only find a maximal chain \mathbf{e}^{\prime} in L_{m}^{n} that is old (i.e., that is not a facet of Σ_{m}^{n}) such that \mathbf{e}^{\prime} contains \mathbf{e} as a subchain. If $i=m$, our previous proof guarantees such a chain. Otherwise $i<m$, so let \mathbf{c}^{\prime} be the maximal chain $\operatorname{com}(\mathbf{e})$. Then Lemma 2.9 guarantees that \mathbf{c}^{\prime} is a maximal chain in L_{i}.

Suppose that $\Sigma_{i}^{j} \neq \emptyset$. Since reverse lexicographic order is a shelling of $\Sigma_{i}^{j},\left(\mathbf{d}_{i}^{j}\right)_{S}$ is a facet of Σ_{i}^{j}. Because $\left|\mu\left(\left(B_{r}\right)_{S}\right)\right|$ is the number of maximal chains of B_{r} whose labels have descent set S and $\left(\mathbf{d}_{i}^{j}\right)_{S}$ is not a maximal chain in any Σ_{k}^{l} for $\langle i, j\rangle \neq\langle k, l\rangle$, we obtain the following as a corollary.

Corollary 5.3. For any i and j, let Δ_{i}^{j} denote the order complex of L_{i}^{j}. Then $\left\{\Delta_{i}^{j}: \Sigma_{i}^{j} \neq \emptyset\right\}$ is a homology basis for the order complex of $\left(B_{r}\right)_{S}$.
6. Final remarks. Recall that a simplicial complex Δ is Cohen-Macaulay if the reduced homology of the link of any face (including the empty set) vanishes in all but the top dimension. Δ is 2-Cohen-Macaulay if Δ is Cohen-Macaulay and, for any vertex v of $\Delta, \Delta-v$ is Cohen-Macaulay and of the same dimension as Δ.

THEOREM 6.1 (see [13]). If Δ admits a convex-ear decomposition, then Δ is 2-Cohen-Macaulay.

Theorem 3.7 was originally motivated by Welker's result [15] that the order complex of a supersolvable lattice with nonzero Möbius function is 2-Cohen-Macaulay. Since rank-selected subposets of 2-Cohen-Macaulay posets are 2-Cohen-Macaulay (see [11] for background), we obtain the following as a corollary of Welker's result.

Corollary 6.2. Let L be a rank r supersolvable lattice with nonzero Möbius function, and let $S \subseteq[r-1]$. Then the order complex of L_{S} is 2-Cohen-Macaulay.

The above can also be obtained as a corollary of Theorems 1.1 and 6.1.
It is not hard to construct 2-Cohen-Macaulay complexes that have no convex-ear decomposition (for instance, any nonpolytopal triangulation of a sphere). However, Björner and Swartz have conjectured the following partial converse.

Conjecture 6.3 (see Swartz [13]). Let Δ be a 2-Cohen-Macaulay simplicial complex. Then the g-vector of Δ is an M-vector.

Acknowledgments. The writing (and rewriting) of this paper would not have been possible without the tireless guidance and patience of Ed Swartz. It should also be noted that Vic Reiner initially suggested that supersolvable lattices with nonzero Möbius functions admit convex-ear decompositions, and that many of our decompositions are based upon (or inspired by) a homology basis given by Michelle Wachs in [14] for rank-selected subposets of geometric lattices.

REFERENCES

[1] L.J. Billera and C.W. Lee, Sufficiency of McMullen's conditions for f-vectors of simplicial polytopes, Bull. Amer. Math. Soc. (N.S.), 2 (1980), pp. 181-185.
[2] A. BJÖrner, The homology and shellability of matroids and geometric lattices, in Matroid Applications, N. L. White, ed., Cambridge University Press, Cambridge, UK, 1992, pp. 226-283.
[3] A. Björner and M. Wachs, On lexicographically shellable posets, Trans. Amer. Math. Soc., 277 (1983), pp. 323-341.
[4] M.K. Chari, Two decompositions in topological combinatorics with applications to matroid complexes, Trans. Amer. Math. Soc., 349 (1997), pp. 3925-3943.
[5] G. Danaraj and V. Klee, Shellings of spheres and polytopes, Duke Math. J., 41 (1974), pp. 443-451.
[6] A. Hatcher, Algebraic Topology, Oxford University Press, Oxford, UK, 2001.
[7] P. McNamara, EL-labelings, supersolvability and 0-Hecke algebra actions on posets, J. Combin. Theory Ser. A, 101 (2003), pp. 69-89.
[8] J. Schweig, Convex-ear decompositions and the flag h-vector, in preparation.
[9] R. Stanley, Supersolvable lattices, Algebra Universalis, 2 (1972), pp. 197-217.
[10] R. Stanley, The number of faces of a simplicial convex polytope, Adv. Math., 35 (1980), pp. 236-238.
[11] R. Stanley, Combinatorics and Commutative Algebra, Birkhäuser Boston, Boston, 1996.
[12] R. Stanley, Enumerative Combinatorics, Vol. 1, Cambridge University Press, Cambridge, UK, 1997.
[13] E. Swartz, g-elements, finite buildings, and higher Cohen-Macaulay connectivity, J. Combin. Theory Ser. A, 113 (2006), pp. 1305-1320.
[14] M. Wachs, Poset topology: Tools and applications, in Geometric Combinatorics, IAS/Park City Math. Ser. 13, AMS, Providence, RI, 2007, pp. 497-615.
[15] V. Welker, On the Cohen-Macaulay connectivity of supersolvable lattices and the homotopy type of posets, European J. Combin., 16 (1995), pp. 415-426.
[16] G. Ziegler, Lectures on Polytopes, Springer-Verlag, New York, 1995.

[^0]: *Received by the editors December 1, 2007; accepted for publication March 3, 2009; published electronically June 10, 2009.
 http://www.siam.org/journals/sidma/23-2/70984.html
 ${ }^{\dagger}$ Department of Mathematics, University of Kansas, 405 Snow Hall, 1460 Jayhawk Blvd., Lawrence, KS 66045 (jschweig@math.ku.edu).

