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Abstract. Let L be a supersolvable lattice with nonzero Möbius function. We show that the
order complex of any rank-selected subposet of L admits a convex-ear decomposition. This proves
many new inequalities for the h-vectors of such complexes, and shows that their g-vectors are M-
vectors.
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1. Introduction. One of the most fundamental combinatorial invariants associ-
ated to a (d−1)-dimensional finite simplicial complex ∆ is its f-vector, 〈f0, f1, f2, . . . ,
fd〉, where fi is the number of (i − 1)-dimensional faces of ∆. By convention, f0 = 1
whenever∆ $= ∅. Closely related to the f-vector of∆ is its h-vector, 〈h0, h1, h2, . . . , hd〉,
defined by the transformation

∑d
0 fi(x − 1)d−i =

∑d
0 hixd−i. Somewhat surprisingly,

properties of a complex’s f-vector are sometimes better expressed in the language
of the h-vector. For instance, when ∆ is the boundary complex of a simplicial d-
polytope, hi = hd−i for all i (these are the Dehn–Sommerville relations). The g-
theorem, proven by Stanley [10] and Billera and Lee [1], says that an integral se-
quence 〈h0, h1, h2, . . . , hd〉 is the h-vector of some simplicial polytope boundary if
and only if the Dehn–Sommerville relations are satisfied and the associated g-vector,
〈h0, h1 − h0, h2 − h1, . . . , h$ d

2 %
− h$ d

2 %−1〉, is an M-vector. An M-vector (called an
O-sequence in some places) is the degree sequence of some order ideal of monomials.

Convex-ear decompositions, first introduced by Chari in [4], are an invaluable
tool in proving several key inequalities of a complex’s h-vector: when ∆ admits a
convex-ear decomposition, its h-vector satisfies hi ≤ hd−i and hi ≤ hi+1 for all i with
0 ≤ i ≤ 'd

2(. Swartz has also proven an analogue of the g-theorem, meaning that the
g-vector of a complex which admits a convex-ear decomposition is an M-vector [13].

The purpose of this paper is to prove the following theorem.
Theorem 1.1. Let L be a rank r supersolvable lattice with nonzero Möbius

function. Then for any S ⊆ [r − 1] the order complex of the rank-selected poset LS

admits a convex-ear decomposition.
Here and in the remainder of this paper, we say that a poset P has a “nonzero

Möbius function” if µ(x, y) $= 0 whenever x, y ∈ P and x < y. Given the work of
Chari and Swartz, the following is immediate.

Corollary 1.2. Let L be as above, and let S ⊆ [r− 1]. Then the h-vector of the
order complex of LS satisfies hi ≤ hr−i and hi ≤ hi+1 whenever 0 ≤ i ≤ ' r

2(, and the
associated g-vector is an M-vector.

We start by finding a convex-ear decomposition for the order complex of a super-
solvable lattice with nonzero Möbius function. This is by far the simplest convex-ear
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1010 JAY SCHWEIG

decomposition constructed in this paper, but the techniques used will help give the
flavor of the decompositions to follow. Next we give a convex-ear decomposition for
the order complex of a rank-selected subposet of a Boolean lattice. This decompo-
sition is a good deal more complicated than the first, so it helps to have a feel for
our techniques from the previous section. Our main theorem then follows from the
first two decompositions. Although our first two decompositions are special cases of
our main theorem, we have split our exposition into these three sections in hopes of
better readability.

The results in this paper are part of a larger body of work and will be expanded
upon in [8]. In this upcoming paper, we will give convex-ear decompositions for order
complexes of rank-selected subposets of geometric lattices and certain rank-selected
subposets of shellable complex face posets. We will also obtain enumerative results
for the flag h-vectors of certain complexes.

2. Preliminaries. Throughout this section, let ∆ be a (d−1)-dimensional finite
simplicial complex.

For 0 ≤ i ≤ d, let fi be the number of (i−1)-dimensional faces of∆ (by convention
we set f0 = 1). We should note that some authors use fi to mean the number of i-
dimensional simplices, but we deviate from that here. The f-vector of∆ is the sequence
〈f0, f1, f2, . . . , fd〉, and the h-vector of ∆ is the sequence 〈h0, h1, h2, . . . , hd〉 defined
by

d∑

i=0

fi(x − 1)d−i =
d∑

i=0

hix
d−i.

Definition 2.1. We say that ∆ has a convex-ear decomposition if there exist
pure (d − 1)-dimensional subcomplexes Σ1, . . .Σn such that

(i)
⋃n

1 Σi = ∆,
(ii) Σ1 is the boundary complex of a simplicial d-polytope, and for i > 1 there

exists a simplicial d-polytope ∆i so that Σi is a pure, full-dimensional subcomplex of
∂∆i,

(iii) for i > 1, Σi is a simplicial ball, and
(iv) for i > 1, (

⋃i−1
1 Σj) ∩ Σi = ∂Σi.

We refer to each Σi as an ear of the decomposition. Convex-ear decompositions
were first introduced by Chari in [4], where they were used to prove the following.

Theorem 2.2 (see [4]). Let ∆ be a (d − 1)-dimensional simplicial complex that
admits a convex-ear decomposition. Then for i < d/2 the h-vector of ∆ satisfies

(1) hi ≤ hd−i, and
(2) hi ≤ hi+1.
Swartz has also proven the following analogue of the g-theorem for complexes

admitting such decompositions.
Theorem 2.3 (see [13]). Let ∆ be as in the statement of the previous theorem.

Then the g-vector of ∆, 〈h0, h1 − h0, h2 − h1, . . . , h$d/2%− h$d/2%−1〉, is an M -vector.
As an example, let ∆ be the 2-dimensional simplicial complex with the vertex

set {1, 2, 3, 4, 5, 6} and facets 123, 124, 126, 134, 135, 145, 156, 234, 236, 345, and 356,
where we write “ijk” as shorthand for {i, j, k}. Let Σ1 be the subcomplex with facets
123, 124, 134, and 234, let Σ2 be the subcomplex with facets 135, 145, and 345, and
let Σ3 be the subcomplex with facets 126, 156, 236, and 356. The sequence Σ1,Σ2,Σ3

is a convex-ear decomposition of ∆. In Figures 1 and 2, we show Σ2 being attached
to Σ1 and then Σ3 being attached to Σ1 ∪Σ2.
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Fig. 1. Attaching Σ2 to Σ1.

1

2

3

4
5

1

2

3

5

6

=

Fig. 2. Attaching Σ3 to Σ1 ∪Σ2.

We leave it to the reader to verify that the above is a convex-ear decomposition.
Note that Σ1,Σ3,Σ2 is not a convex-ear decomposition, as Σ3 ∩ Σ1 $= ∂Σ3.

Convex-ear decompositions can be viewed as a coarser counterpart to the following
well-known concept of a shelling.

Definition 2.4. A pure (d − 1)-dimensional finite simplicial complex ∆ is
shellable if there is an ordering of its facets F1, F2, . . . , Ft such that (∪j−1

i=1 Fi) ∩ Fj

is a nonempty union of facets of ∂Fj whenever 1 < j ≤ t. Such a facet ordering is
called a shelling.

We will employ shellings several times in this paper, but we will use this alternate
definition, shown in [3].

Proposition 2.5. Let ∆ be as in the previous definition. Then a facet ordering
F1, F2, . . . , Ft is a shelling of ∆ if and only if for all i, j with 1 ≤ i < j ≤ t there
exists a k ≤ j such that Fi ∩ Fj ⊆ Fk ∩ Fj and |Fk ∩ Fj | = d − 1.

We now give some necessary definitions from poset theory.
Let P be a rank r graded poset with a least element 0̂ and a greatest element 1̂,

and let λ be a function that assigns an integer to each edge of the Hasse diagram of
P . That is, λ : {〈x, y〉 ∈ P 2 : y covers x} → Z. We call λ a labeling, and for some
saturated chain c := xi < xi+1 < xi+2 < · · · < xi+j in P (where each xk has rank k)
define the λ-label of c to be the word

λ(xi, xi+1)λ(xi+1, xi+2)λ(xi+2, xi+3) . . .λ(xi+j−1 , xi+j).
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Definition 2.6. We say λ is an EL-labeling of P if in each interval x < y of P
there is a unique saturated chain, starting with x and ending with y, with a strictly
increasing λ-label and the label of this chain is lexicographically first among the labels
of all saturated chains in this interval.

Now let P be as above. The order complex of P is the simplicial complex whose
faces are chains in P \ {0̂, 1̂}. The main reason for introducing EL-labelings is the
following result, shown in [3].

Theorem 2.7. Let P be as above, and suppose P admits an EL-labeling λ. Then
lexicographic order of the maximal chains of P (with respect to their λ-labels) gives a
shelling of the order complex of P .

Definition 2.8. Let P be a graded poset with an EL-labeling λ, and let c be
a nonmaximal chain in P . Let the completion of c, written com(c), be the maximal
chain that results from filling in each gap in c with the unique chain in that interval
with an increasing label.

Notice that com(c) depends on the labeling λ. The following helpful lemma
follows easily from the definition of an EL-labeling.

Lemma 2.9. Let P be as above, let P ′ be a full-rank subposet of P such that
λ restricted to P ′ is an EL-labeling, and let c be a chain in P ′. Then com(c) is a
(maximal) chain in P ′.

Finally, if c is a chain containing an element of rank j, we write c−j to denote
the chain that results from removing that element.

We will refer several times to the Möbius function µ of a finite poset. For back-
ground on this topic, we refer the reader to [12]. The main property of the Möbius
function that we use is the following.

Proposition 2.10 (see [12, Theorem 3.13.2]). Let P be a poset admitting an
EL-labeling λ, and let x, y ∈ P with x < y. Then |µ(x, y)| is equal to the number of
saturated chains in the interval [x, y] whose λ-labels are weakly decreasing.

3. The supersolvable case. We start by finding a convex-ear decomposition
for order complexes of supersolvable lattices with nonzero Möbius function. This
construction is motivated by Welker’s result [15] that the order complex of a lattice
of the above type is 2-Cohen–Macaulay. For a definition of this term, as well as the
relevant background, see [11].

Let P be a poset. An order completion of P is a total ordering of its elements
x1 < x2 < · · · < xr such that if xi < xj in P , then i < j. An order ideal of P is a
subset I ⊆ P such that if y ∈ I and x < y, then x ∈ I. Let I(P ) be the poset of
order ideals of P ordered by inclusion.

The following definition is not the standard one but is equivalent by the funda-
mental theorem of finite distributive lattices (see, for instance, [12, Theorem 3.4.1]).

Definition 3.1. A finite lattice L is distributive if there exists a poset P such
that L is isomorphic to I(P ).

All distributive lattices admit EL-labelings. To see this, let I and J be two
order ideals of some r-element poset P , and note that J covers I in I(P ) if and only
if J = I ∪ {x} for some x ∈ P \ I that covers some y ∈ I. Thus there is a 1-1
correspondence between maximal chains in I(P ) and order completions of P (and so
I(P ) is pure of rank r). Now let x1 < x2 < · · · < xr be an order completion of P ,
and define the labeling λ by λ(I, J) = n, where J = I ∪ {xn}. It is an easy exercise
to show that λ is in fact an EL-labeling.

The EL-labeling constructed above is of a special type; each maximal chain in
I(P ) is labeled with a permutation of [r]. This leads to the following definition.
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Definition 3.2. Let P be a graded poset of rank r, and let λ be an EL-labeling
of P . We say that λ is an Sr-EL-labeling if every maximal chain of P is labeled by
an element of Sr (when viewed as a word on the alphabet [r]).

The fairly straightforward proof of the following, by induction on the rank of P ,
is left to the reader.

Lemma 3.3. Let L be a distributive lattice of rank r, and let P be the poset for
which L is the lattice of order ideals. Then every Sr-EL-labeling λ of L is obtained
from P in the fashion described above. That is, for every Sr-EL-labeling λ, there
exists a bijection ν : P → [r] such that λ(I, J) = n if and only if J = I ∪ ν−1(n),
where I and J are order ideals of P .

Supersolvable lattices were originally introduced by Stanley in [9] as a gener-
alization of distributive lattices. They are so named because subgroup lattices of
supersolvable groups are supersolvable lattices.

Definition 3.4. Let L be a lattice. We say that L is supersolvable if there exists
a maximal chain cM of L, called the M-chain (not to be confused with an M-vector),
such that the sublattice of L generated by cM and any other (not necessarily maximal)
chain of L is a distributive lattice.

The next result gives an alternate characterization of supersolvability.
Theorem 3.5 (see McNamara [7]). Let P be a poset of rank r. Then P is a

supersolvable lattice if and only if it admits an Sr-EL-labeling.
We will also need the following theorem of Stanley, implicitly shown in [9], for

proving our theorem.
Theorem 3.6. Let L be a rank r supersolvable lattice with Sr-EL-labeling λ and

M-chain cM , let d be a chain in L, and let L′ be the (distributive) sublattice of L
generated by cM and d. Then λ restricted to L′ is an Sr-EL-labeling.

Also in [9], Stanley proves that, under an Sr-EL-labeling of a supersolvable lattice
L, the unique maximal chain with increasing label is an M-chain.

The main result in this section is the following theorem.
Theorem 3.7. Let L be a rank r supersolvable lattice such that µ(x, y) $= 0

whenever x, y ∈ L and x < y. Then the order complex of L admits a convex-ear
decomposition.

For the remainder of this section, fix an Sr-EL-labeling of L. Call this labeling λ.
We now construct the ears of the decomposition. Let d1,d2, . . . ,dt be all maximal

chains of L with decreasing labels (the order of the list is arbitrary but fixed from
here on). This list is nonempty, since µ(0̂, 1̂) $= 0. For each i, let Li be the sublattice
of L generated by di and cM , and let Σi be the simplicial complex whose facets are
given by maximal chains in Li \ {0̂, 1̂} that are not chains in Lj for any j < i. We let
the Σi’s do double-duty, simultaneously representing the complex mentioned above
and the set of (not necessarily maximal) chains in L that correspond to faces of that
complex. Given the order below, it is sometimes helpful to think of maximal chains
(i.e., facets) of Σi as “new” and maximal chains of Li \ {0̂, 1̂} that are not in Σi as
“old.”

We claim that Σ1,Σ2, . . . ,Σt is a convex-ear decomposition of ∆(L). We will
show each part of the decomposition separately.

Proof of property (ii). By definition, each Li is a distributive lattice. Fix i, and
let P be the poset such that I(P ) . Li. By Theorem 3.6 and Lemma 3.3, the chain
cM in Li gives us an order completion of P : x1 < x2 < · · · < xr. Similarly, the chain
di gives another order completion of P : xr < xr−1 < · · · < x1. So for any xj , xk ∈ P ,
one of the above order completions gives xj < xk, while the other gives xk < xj . Thus
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no two elements in P are comparable, and any subset of elements is an order ideal
of P . So Li is isomorphic to Br, the Boolean lattice on r elements. Since the order
complex of Br is the first barycentric subdivision of the boundary of the r-simplex,
and since Σ1 = L1 and Σi ! Li for i > 1 (because cM is in every Li), this completes
our proof of property (ii) of the decomposition.

Proof of property (i). Let c := 0̂ = x0 < x1 < · · · < xr = 1̂ be a maximal chain of
L. We must show that c is a chain in Li for some i, and we do this by induction on
the number of ascents of the chain-label of c. If the chain-label has no ascents, then
c = di for some i and is therefore in Li. Otherwise, c has at least one ascent, say, at
position j. Since L has nonzero Möbius function, the interval (xj−1, xj+1) has at least
one element other than xj . Let c′ be the chain that results from replacing xj in c with
one of these other elements. Since c′ has one fewer ascent than c, it belongs to some
Li by induction. Since λ is an EL-labeling on Li (Theorem 3.6), com((c′)−j) = c is
a chain in Li by Lemma 2.9.

Proof of property (iii). To prove that Σi is a ball for all i > 2, we show that
the reverse lexicographic order of the maximal chains in Σi is a shelling. Invoking a
result of Danaraj and Klee [5], which states that a shellable full-dimensional proper
subcomplex of a sphere must be a ball, completes the proof. Let c := 0̂ = x0 <
x1 < · · · < xr = 1̂ and d be two chains in Σi, with d lexicographically later (and
therefore earlier in the shelling) than c. By the argument given on pages 25–26 of
[2], there must be some j such that d and c do not coincide at the jth rank and
such that λ(xj−1, xj) < λ(xj , xj+1). Now let c′ be the unique maximal chain of Li

that coincides with c everywhere but the jth position. Then, by definition of an
EL-labeling, c′ is lexicographically later than c (and thus earlier in the shelling),
|c \ c′| = 1, and c ∩ d ⊆ c′. It remains to be shown that c′ is in Σi. If c′ were not
a chain in Σi, it would be a chain in Lk for some k < i, meaning (c′)−j is a chain in
Lk. But then, again by Lemma 2.9, we would have that com((c′)−j) = c is a chain
in Lk. This would mean that c is not a chain in Σi, which is a contradiction.

We have yet to prove property (iv). Since we will use a very similar technique
to prove this property in the coming sections, we outline the method here and refer
back to this exposition later.

Proof of property (iv). Fix i > 1, and note that a chain c in Σi is in ∂Σi if and
only if there exist two maximal chains containing it, cold and cnew , such that cold is
a maximal chain of Li but not Σi, and cnew is a maximal chain in Σi.

From the above description of chains in the boundary of Σi, ∂Σi ⊆ (
⋃i−1

1 Σj)∩Σi.
To see the reverse inclusion, let c be a chain in (

⋃i−1
1 Σj)∩Σi. Then c is, by definition,

a subchain of some facet of Σi. This chain is the required cnew. To complete the proof,
we must find a suitable cold. However, since c is a chain in

⋃i−1
1 Σj , it must be a

chain in some Lj for j < i. Then Lemma 2.9 guarantees that com(c) is in Lj , so set
cold = com(c).

4. The rank-selected Boolean case.
Definition 4.1. Let P be a graded poset of rank r, and let S ⊆ [r − 1]. The

rank-selected subposet PS is defined to be the poset with elements {x ∈ P : rank(x) ∈
S ∪ {0̂, 1̂}} and order inherited from P .

Recall that Br denotes the rank r Boolean lattice. This section is devoted to
proving the following theorem.

Theorem 4.2. For any S ⊆ [r − 1], the order complex of the rank-selected
subposet (Br)S admits a convex-ear decomposition.

Throughout this section, we fix an Sr-EL-labeling λ of Br defined as follows: view
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the elements of Br as subsets of [r], and note that y covers x if and only if y = x∪{n}
for some n ∈ [r] \ x. To define the labeling λ, set λ(x, y) = n. It is easy to see that λ
is an Sr-EL-labeling.

For any subset S ⊆ [r − 1] and any maximal chain c of Br, let cS denote the
subchain of c consisting of all elements in c whose ranks are in S∪{0, r}. In particular,
we write cj as shorthand for c{j}, the element of c of rank j with 0̂ and 1̂ adjoined.
Note that cS is a maximal chain in (Br)S .

Now fix a subset S ⊆ [r − 1] for the remainder of this section, and write S as a
disjoint union of intervals, where a1 < a2 < · · · < as:

S = [a1, b1] ∪ [a2, b2] ∪ · · · ∪ [as, bs]

and no ai − 1 or bi + 1 is a member of S and bi < ai+1 for all i. Where appropriate,
we also set b0 = 0 and as+1 = r.

Because maximal chains in Br, under their λ-labels, are in bijection with permuta-
tions of [r], we do much of our work in the context of Sr, where we write permutations
in word form: σ = σ(1)σ(2) . . . σ(r). When 1 ≤ m < n ≤ r, we write σ(m, n) to mean
the set {σ(m),σ(m + 1), . . . ,σ(n)}.

Let c be a maximal chain in Br with λ(c) = σ ∈ Sr. We wish to characterize the
labels of all chains that coincide with c at ranks in S. This will turn out to be the
coincidence set C(σ) described below. Similarly, the set Sp(σ) defined below is the
set of labels of chains that coincide with c at ranks not in S.

First, for a permutation σ ∈ Sr, define the coincidence set of σ, written C(σ),
as the set of all τ ∈ Sr such that τ(m) = σ(m) for all m ∈ S \ {a1, a2, . . . , as} and
σ(bi+1, ai+1) = τ(bi+1, ai+1) for all i. To visualize the set C(σ), define the bracketed
word σC to be the word of σ with a left bracket inserted before each σ(bi + 1) and a
right bracket inserted after each σ(ai) (as usual, we let b0 = 0 and as+1 = r). Then
C(σ) is the set of permutations that can be obtained by permuting the elements
between the brackets of σC .

For example, suppose r = 7, S = {2, 3, 4, 6}, and σ = 5 3 7 4 1 6 2. Then S =
[2, 4] ∪ [6, 6], and the bracketed word defined above is

σC = [ 5 3 ] 7 4 [ 1 6 ] [ 2 ].

Thus the set C(σ) consists of four permutations: 3 5 7 4 1 6 2, 3 5 7 4 6 1 2, 5 3 7 4 1 6 2 =
σ, and 5 3 7 4 6 1 2.

Now define the span of σ, written Sp(σ), to be the set of all permutations τ ∈ Sr

such that τ(m) = σ(m) whenever bi + 1 < m < ai for some i, and τ(ai, bi + 1) =
σ(ai, bi +1) for all i. Here, we do not follow our convention that b0 = 0 and as+1 = r.
As before, define a bracketed word σSp as follows: insert a left bracket before each
σ(ai) and a right bracket after each σ(bi +1). Then Sp(σ) consists of all permutations
obtained from σ by permuting the elements between the brackets of σSp.

Continuing with our example,

σSp = 5 [ 3 7 4 1 ] [ 6 2 ].

Thus a permutation in Sp(σ) is given by permuting the set {1, 3, 4, 7} within the first
bracket and the set {2, 6} within the second. (When no confusion can result, we use
“bracket” to mean the word specified by a pair of brackets.)

Note that our above definitions depend on our choice of the set S ⊆ [r − 1].
However, as we have fixed one choice of S for the entire section, we suppress “S”
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from our notation. Given the bracket interpretations of the sets C(σ) and Sp(σ), the
following lemma is obvious.

Lemma 4.3. Fix two permutations σ, τ ∈ Sr. Then σ ∈ C(τ) if and only if
C(σ) = C(τ), and σ ∈ Sp(τ) if and only if Sp(σ) = Sp(τ).

For a permutation σ ∈ Sr, let cσ denote the unique maximal chain in Br with σ
as its λ-label. That is,

cσ := 0̂ = x0 < x1 < · · · < xr−1 < xr = 1̂

and σ(m) = λ(xm−1, xm) for all m. For a subset T ⊆ [r−1], we write cσ
T as shorthand

for (cσ)T . The following is our reason for introducing the sets C(σ) and Sp(σ).
Proposition 4.4. Let σ, τ ∈ Sr. Then C(σ) = C(τ) if and only if cσ

S = cτ
S, and

Sp(σ) = Sp(τ) if and only if cσ
[r−1]\S = cτ

[r−1]\S.
Proof. Suppose C(σ) = C(τ), and let m ∈ S. Then there are two possible cases:

either σ(j) is in no bracket of σC , or it is the rightmost element in some bracket. In
either case, τ(1, m) = σ(1, m), since rearranging elements in a bracket of σC cannot
remove an element from, or add an element to, the set σ(1, m). Viewing elements of
Br as subsets of [r], we have cσ

m = σ(1, m) = τ(1, m) = cτ
m, and so cσ

S = cτ
S .

For the reverse implication, suppose that cσ
S = cτ

S , and fix some m ∈ S \
{a1, a2, . . . , as}. Then m − 1 ∈ S, meaning cσ

m−1 = cτ
m−1. Since cσ

m = cτ
m,

σ(m) = λ(cσ
m−1, c

σ
m) = λ(cτ

m−1, c
τ
m) = τ(m).

Now fix some i with 0 ≤ i ≤ s. Then cσ
bi

= cτ
bi

and cσ
ai+1

= cτ
ai+1

. It follows that
the sets σ(bi + 1, ai+1) and τ(bi + 1, ai+1) are equal, since each is equal to cσ

ai+1
\ cσ

bi

where again elements of Br are viewed as subsets of [r]. Thus τ ∈ C(σ), or equivalently
C(σ) = C(τ).

The proof of the lemma’s second statement is completely analogous to the proof
of the first.

In Figure 3, we show (between the chain with increasing label and the chain with
decreasing label) the four maximal chains in B7 whose labels are permutations in
C(σ), where σ and S are as in our running example.

5
1

3

4

5

6

7

7

6

5

4

1

2

3

2

2

6 1

1 6

4

7

5

3

3

Fig. 3. Maximal chains whose labels are in C(σ). Elements whose ranks are in S ∪ {0, 7} are
filled in.

Let P be any graded poset of rank r that admits an EL-labeling. Then the order
complex of PS is shellable and homotopy equivalent to t-many spheres (see [3]), where
t is the number of maximal chains of P whose labels have descent set S. Recall that
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the descent set of a permutation σ ∈ Sr is des(σ) = {m ∈ [r− 1] : σ(m) > σ(m + 1)}.
In the case we treat, where P = Br, t is the number of permutations in Sr with
descent set S. It makes sense, then, that our convex-ear decomposition is constructed
from the set D = {δ ∈ Sr : des(δ) = S}.

For any σ ∈ Sr, define a permutation δσ as follows: first, let πσ be the permutation
obtained by replacing each bracket in σC with the increasing word in those letters.
In keeping with our running example,

πC
σ = [ 3 5 ] 7 4 [ 1 6 ] [ 2 ],

where we have written πC
σ rather than just πσ in hopes of better readability. Next,

obtain δσ by replacing the contents of each bracket in πSp
σ with the decreasing word

in those letters. Continuing with our example,

πSp
σ = 3 [ 5 7 4 1 ] [ 6 2 ], and so δSp

σ = 3 [ 7 5 4 1 ] [ 6 2 ].

Note that, by construction, πσ is in both C(σ) and Sp(δσ), and so C(σ)∩Sp(δσ) $=
∅.

Proposition 4.5. For any σ ∈ Sr, δσ ∈ D.
Proof. Let n ∈ S. Then δσ(n) and δσ(n + 1) are in the same bracket of δSp

σ .
Because δσ is obtained from πσ by putting the contents of each bracket of πSp

σ in
decreasing order, it must be the case that δσ(n) > δσ(n + 1). Thus S ⊆ des(δσ).
Suppose S $= des(δσ), and choose some m ∈ des(δσ) \ S. Then m = aj − 1 or
m = bj + 1 for some j. Suppose m = aj − 1. πσ(aj − 1) is in the same bracket of
πC

σ as πσ(aj), so πσ(aj − 1) < πσ(aj). Furthermore, πσ(aj) is the leftmost element of
some bracket of πSp

σ , and so by construction δσ(aj) ≥ πσ(aj). Similarly, πσ(aj − 1)
either is not in any bracket of πSp

σ or is the rightmost element in some bracket, so
δσ(aj − 1) ≤ πσ(aj − 1). Stringing these inequalities together,

δσ(m) = δσ(aj − 1) ≤ πσ(aj − 1) < πσ(aj) ≤ δσ(aj) = δσ(m + 1),

which is a contradiction. The proof for the case in which m = bj + 1 for some j is
symmetric. Thus des(δσ) = S, and so δσ ∈ D.

Now choose σ, δ, τ ∈ Sr, with τ ∈ C(σ) ∩ Sp(δ). By Proposition 4.4, cτ
S = cσ

S
and cτ

[r−1]\S = cδ
[r−1]\S . Because only one maximal chain in Br can satisfy both these

constraints, it follows that the permutation τ is uniquely determined. Thus for any
σ, δ ∈ Sr, |C(σ) ∩ Sp(δ)| ≤ 1.

Lemma 4.6. Let σ ∈ Sr and δ ∈ D, and suppose that C(σ) ∩ Sp(δ) = {τ}. Then
δ = δσ if and only if the contents of each bracket of τC are increasing.

Proof. Suppose each bracket of τC is increasing. τ ∈ C(σ), so it follows that
τ = πσ, as defined in the proof of Proposition 4.5. Since δσ is obtained by permuting
elements in the brackets of πSp

σ = τSp, τ ∈ Sp(δσ). By assumption, τ ∈ Sp(δ), and
so by Lemma 4.3 Sp(δσ) = Sp(δ). Because both δ and δσ are members of D, each
bracket of δSp and δSp

σ must be decreasing, so δ = δσ.
Now suppose some bracket of τC is nonincreasing. Put another way, the word

τ(bj + 1)τ(bj + 2) . . . τ(aj+1) is nonincreasing for some j. Choose an m with bj + 1 ≤
m ≤ aj+1 − 1 and τ(m) > τ(m + 1). If it were the case that bj + 1 < m < aj+1 − 1,
then we would necessarily have δ(m) = τ(m) and δ(m + 1) = τ(m + 1), since both
entries are outside the brackets of δSp and τ ∈ Sp(δ). But then m ∈ des(δ) = S,
which is a contradiction. Therefore, either m = bj + 1 or m = aj+1 − 1. We treat
only the first case, the proof of the second being similar.
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Note that τ ∈ C(σ) = C(πσ), and so πσ = πτ . Because πτ is obtained by putting
the brackets of τC in increasing order, τ(bj + 1) > τ(bj + 2), and so πτ (bj + 1) <
τ(bj + 1). It follows that Sp(πτ ) $= Sp(τ). Putting this together,

Sp(δσ) = Sp(πσ) = Sp(πτ ) $= Sp(τ) = Sp(δ),

and so δ $= δσ.
Proposition 4.7. Let σ ∈ Sr. Then δσ is the lexicographically least permutation

in the set {δ ∈ D : C(σ) ∩ Sp(δ) $= ∅}.
Proof. Fix δ ∈ D \ {δσ} such that C(σ) ∩ Sp(δ) = {τ} for some τ ∈ Sr. By the

previous proposition, some bracket of τC is nonincreasing, meaning the word τ(bj +
1)τ(bj + 2) . . . τ(aj+1) is nonincreasing for some j. So, in forming the permutation
πτ , this bracket is put in increasing order. It follows that δτ = δσ is lexicographically
less than δ.

We now use our work in Sr to construct a convex-ear decomposition for the order
complex of (Br)S . Let δ1, δ2, . . . , δt be all permutations in D, listed in lexicographic
order of their labels. For each i let di = cδi (in other words, di is the unique
maximal chain in Br with δi as its λ-label). Also let Li be the poset generated by
all maximal chains in (Br)S of the form cS , where c is a maximal chain in Br such
that c[r−1]\S = (di)[r−1]\S . Finally, let Σi be the simplicial complex whose facets are
given by maximal chains in Li \ {0̂, 1̂} that are not chains in Lj for any j < i. As in
the previous section, we use Σi to refer to both the simplicial complex above and the
poset whose chains correspond to (not necessarily maximal) chains in (Br)S .

Proposition 4.8. Σ1,Σ2, . . . ,Σt is a convex-ear decomposition of the order
complex of (Br)S.

To every maximal chain e in (Br)S , associate an equivalence class of maximal
chains in Br, namely, all maximal chains c such that cS = e. By Proposition 4.4, this
equivalence class can be viewed as the set {cτ : τ ∈ C(σ)} for some σ ∈ Sr. We refer
to C(σ) as the class corresponding to e.

Next let c be a maximal chain in Br such that cS is a maximal chain in Li.
c[r−1]\S = (di)[r−1]\S , and so, by Proposition 4.4, λ(c) ∈ Sp(δi). Let σ = λ(c). The
chain cS then corresponds to the equivalence class C(σ), and we have proven half of
the following lemma.

Lemma 4.9. Let σ ∈ Sr, and let e be a maximal chain in (Br)S corresponding
to the equivalence class C(σ). Then e is a maximal chain in Li if and only if C(σ) ∩
Sp(δi) $= ∅.

Proof. We have already proven the “only if” direction above. For the other
direction, suppose C(σ) ∩ Sp(δi) $= ∅. Choose the unique τ in this intersection. By
Proposition 4.4, cτ

S = e and cτ
[r−1]\S = (di)[r−1]\S , and so e is a maximal chain in

Li.
Now let e and σ be as in the statement of the above lemma, and suppose e is

a facet in Σi. Then δi is the lexicographically first permutation δ in D such that
C(σ) ∩ Sp(δ) $= ∅, and so, by Proposition 4.7, δi = δσ. Summarizing, we have the
following lemma.

Lemma 4.10. Let e be a maximal chain in (Br)S corresponding to the class C(σ)
for some σ ∈ Sr. Then e represents a facet in Σi if and only if δi = δσ.

We are now ready to prove the properties of our convex-ear decomposition.
Proof of property (i). We must show that any maximal chain e in (Br)S is a

maximal chain in some Li. By Lemma 4.9, we must find some δ ∈ D such that
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C(σ) ∩ Sp(δ) $= ∅, where C(σ) is the class corresponding to e. But Lemma 4.5
guarantees such a permutation, namely, δσ.

Proof of property (ii). Fix di, and write di := 0̂ = x0 < x1 < · · · < xr = 1̂.
A maximal chain in Li is determined by a choice of maximal chain in each open
interval (xaj−1, xbj+1). Each of these intervals is isomorphic to Bbj−aj+2 \ {0̂, 1̂}. As
noted before, the order complex of Bn \ {0̂, 1̂} is b(∂∆n−1), where b denotes the first
barycentric subdivision and ∆n−1 denotes the (n− 1)-dimensional simplex. Thus the
order complex of Li is the product

b(∂∆b1−a1+1) ∗ b(∂∆b2−a2+1) ∗ · · · ∗ b(∂∆bs−as+1),

where ∗ denotes simplicial join (see [6] for background on this operation and [16] for
its application to polytopes). It follows that the order complex of each Li is the
boundary complex of a simplicial polytope. Since Σ1 is the order complex of L1, it
remains to be shown that Σi is a proper subcomplex of the order complex of Li when
i > 1.

Fix δi with i > 1, and define a permutation σ ∈ Sp(δi) by putting each bracket
of δSp

i in increasing order. There are two cases to consider: first, suppose that
σ = 1 2 . . . r. In this case, we leave it to the reader to show that δi = δ1, the lexico-
graphically first permutation in Sr with descent set S, contradicting our assumptions.
Now suppose otherwise. Since each bracket of σSp is increasing, it must be the case
that some bracket of σC is nonincreasing. Then, by Lemma 4.6, δi $= δσ, since
C(σ) ∩ Sp(δi) = {σ}. Finally, by Proposition 4.7, δσ precedes δi lexicographically,
and so δσ = δj for some j < i.

Proof of property (iii). Fix i > 1, and let e be a maximal chain representing a
facet in Σi. Pick a σ ∈ Sr such that e corresponds to the equivalence class C(σ).
Define πe to be the permutation πσ. Let e1, e2, . . . , en be the maximal chains of (Br)S

corresponding to facets of Σi. Writing πj as shorthand for πej , let the above order be
so that πj is lexicographically greater than πk whenever j < k. In particular, π1 = δi.
We claim that this ordering is a shelling of Σi.

Let j < k. Since Sp(πj) = Sp(δi) = Sp(πk), πSp
j and πSp

k coincide outside of
their brackets. Because πk lexicographically precedes πj , there must be some ascent,
πk(m) < πk(m + 1), such that πk(1, m) $= πj(1, m) and so that πk(m) and πk(m + 1)
are in the same bracket of πSp

k . We claim that the proof of this assertion is, as in
the proof of property (iii) in the previous section, analogous to the discussion on
pages 25–26 of [2]. This is because πk(1, m) $= πj(1, m) if and only if cπk

m $= cπj
m , by

Proposition 4.4. Let π′
k be the permutation obtained from πk by switching πk(m) and

πk(m + 1).
Note that π′

k is lexicographically greater than πk. It is clear that C(π′
k)∩Sp(δi) =

{π′
k}. Now fix some p, and consider the following bracket in πC

k :

πk(bp + 1)πk(bp + 2) . . .πk(ap+1).

πk(m) and πk(m+1) are in the same bracket of πSp
k , so there are only three possibilities

for the placement of πk(m) within the above bracket: m + 1 = bp + 1, m = ap+1,
or {m, m + 1} ∩ [bp + 1, ap+1] = ∅. In the first case, m = bp, and the corresponding
bracket in (π′

k)C is

π′
k(m + 1)π′

k(bp + 2) . . .π′
k(ap+1) = πk(m)πk(bp + 2) . . .πk(ap+1).

Because this bracket is increasing in πC
k (by Lemmas 4.10 and 4.6) and πk(m) <

πk(m + 1), it must be increasing in (π′
k)C as well, meaning δi = δπ′

k
(by Lemma 4.6).
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The proof for the second case is again symmetric to the case we have proven, and the
proof for the third case is trivial (since the bracket’s contents are unchanged). Thus
π′

k = π% for some ( < k, since π′
k is lexicographically later than πk.

To complete the proof, we have to show that ej ∩ek ⊆ ej ∩e′k. Since ek coincides
with e′k everywhere except at rank m, it is enough to show that ej and ek do not
intersect at that rank. But this follows immediately, since cπk

m $= cπj
m .

Proof of property (iv). We take our cue from the proof of property (iv) from the
first section, since the Σi are defined analogously. That is, let ei and ej be facets of
Σi and Σj , where i < j, and let e = ei∩ej . By the discussion in the proof of property
(iv) in the previous section, it suffices to find a facet e′ of some Σk with k < j such
that e′ contains e.

Define the maximal chain e′ by e′ = (com(e))S , and let σ be the λ-label of
com(e). By construction, πσ = σ. Now let τ be the λ-label of some maximal chain
c in Br with cS = ei. It is clear that πτ is independent of the choice of maximal
chain c and that πσ is lexicographically less than or equal to πτ . It follows that δσ

is lexicographically less than or equal to δτ , which means that e′ is a facet of Σk for
some k ≤ i < j.

5. The rank-selected supersolvable case. It is implicit in our earlier work
that supersolvable lattices are composed of Boolean lattices that are pieced together
in an orderly fashion. Using the previous sections, we can prove the following theorem.

Theorem 5.1. Let L be a rank r supersolvable lattice such that µ(x, y) $= 0
whenever x, y ∈ L and x < y, and let S ⊆ [r − 1]. Then the order complex of LS

admits a convex-ear decomposition.
Fix an Sr-EL-labeling λ of L. Let d1,d2, . . . ,dt be a fixed ordering of the maximal

chains in L with decreasing λ-label. For each i, let Li be the sublattice of L generated
by di and the unique maximal chain in L with increasing λ-label. From our convex-
ear decomposition for supersolvable lattices, we know that each Li is isomorphic to
Br. For a fixed i, let d1

i ,d
2
i , . . . ,d

t
i be a list of the maximal chains in Li whose

labels have descent set S, where the chains are listed in lexicographic order of their
labels. For each j, let Lj

i be the poset generated by all maximal chains in c in Li

such that c[r−1]\S = (dj
i )[r−1]\S. In other words, Lj

i is just the poset Lj as defined
in our convex-ear decomposition for (Br)S , when Li is viewed as the Boolean lattice
Br. Finally, let Σj

i be the simplicial complex whose facets are given by the maximal
proper chains in Lj

i that are not maximal chains in any Lk
i for some k < j or any Ln

m

for some m < i.
Proposition 5.2. Once we eliminate all Σj

i = ∅, the sequence 〈Σj
i 〉, ordered

lexicographically with respect to the tuples 〈i, j〉, is a convex-ear decomposition of the
order complex of LS.

Property (i) is immediately verified by our earlier decompositions. Property (ii)
is almost verified as well; we know from the previous section that the order complex
of each Lj

i is the boundary complex of some simplicial r-polytope, and it follows from
the definitions that Σ1

1 is the order complex of L1
1. However, we still need to know

that Σj
i is a proper subcomplex of the order complex of Lj

i whenever j > 1 or i > 1.
Let j > 1. Then, by our decomposition of the rank-selected Boolean lattice, some

maximal chain in Lj
i is a maximal chain in Lk

i for some k < j. Now suppose j = 1.
Then the label of d1

i is the lexicographically first permutation in Sr with descent set
S. It follows that cS is a maximal chain in L1

i , where c is the unique chain in L
with increasing λ-label. Thus cS is a maximal chain in L1

1, proving the remainder of
property (ii).
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Proof of property (iii). We claim that, as in the previous section, reverse lexico-
graphic order of the facets of Σj

i is a shelling. In fact, let ej , ek, and e′k be as in the
proof of property (iii) given there. The only way in which this proof could fail to work
in this case is if e′k is a chain in Ln

m for some m < i. Suppose this is the case. Let
p be the unique rank level at which ek and e′k do not coincide, let c be the unique
maximal chain in L such that cS = (ek)S and c[r−1]\S = (dj

i )[r−1]\S, and define c′
analogously. Then c′ = com(c−p). λ restricts to an EL-labeling on Lm, and thus,
by Lemma 2.9, c is a maximal chain in Lm, which means that ek = cS is a maximal
chain in Lk

m for some k, which is a contradiction.
Proof of property (iv). As above, we refer to the proof of property (iv) in the

previous section and show that the same technique works here. Indeed, let ej
i and en

m

be facets of Σj
i and Σn

m, respectively, where 〈i, j〉 lexicographically precedes 〈m, n〉.
Let e = ej

i ∩ en
m. As discussed earlier, we need only find a maximal chain e′ in Ln

m

that is old (i.e., that is not a facet of Σn
m) such that e′ contains e as a subchain. If

i = m, our previous proof guarantees such a chain. Otherwise i < m, so let c′ be the
maximal chain com(e). Then Lemma 2.9 guarantees that c′ is a maximal chain in
Li.

Suppose that Σj
i $= ∅. Since reverse lexicographic order is a shelling of Σj

i , (dj
i )S

is a facet of Σj
i . Because |µ((Br)S)| is the number of maximal chains of Br whose

labels have descent set S and (dj
i )S is not a maximal chain in any Σl

k for 〈i, j〉 $= 〈k, l〉,
we obtain the following as a corollary.

Corollary 5.3. For any i and j, let ∆j
i denote the order complex of Lj

i . Then
{∆j

i : Σj
i $= ∅} is a homology basis for the order complex of (Br)S.

6. Final remarks. Recall that a simplicial complex ∆ is Cohen–Macaulay if
the reduced homology of the link of any face (including the empty set) vanishes in all
but the top dimension. ∆ is 2-Cohen–Macaulay if ∆ is Cohen–Macaulay and, for any
vertex v of ∆, ∆− v is Cohen–Macaulay and of the same dimension as ∆.

Theorem 6.1 (see [13]). If ∆ admits a convex-ear decomposition, then ∆ is
2-Cohen–Macaulay.

Theorem 3.7 was originally motivated by Welker’s result [15] that the order com-
plex of a supersolvable lattice with nonzero Möbius function is 2-Cohen–Macaulay.
Since rank-selected subposets of 2-Cohen–Macaulay posets are 2-Cohen–Macaulay
(see [11] for background), we obtain the following as a corollary of Welker’s result.

Corollary 6.2. Let L be a rank r supersolvable lattice with nonzero Möbius
function, and let S ⊆ [r − 1]. Then the order complex of LS is 2-Cohen–Macaulay.

The above can also be obtained as a corollary of Theorems 1.1 and 6.1.
It is not hard to construct 2-Cohen–Macaulay complexes that have no convex-ear

decomposition (for instance, any nonpolytopal triangulation of a sphere). However,
Björner and Swartz have conjectured the following partial converse.

Conjecture 6.3 (see Swartz [13]). Let ∆ be a 2-Cohen–Macaulay simplicial
complex. Then the g-vector of ∆ is an M-vector.
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