# Toric Ideals of Lattice Path Matroids and Polymatroids 

Jay Schweig *

November 11, 2010


#### Abstract

White has conjectured that the toric ideal of a matroid is generated by quadric binomials corresponding to symmetric basis exchanges. We prove a stronger version of this conjecture for lattice path polymatroids by constructing a monomial order under which these sets of quadrics form Gröbner bases. We then introduce a larger class of polymatroids for which an analogous theorem holds. Finally, we obtain the same result for lattice path matroids as a corollary.


## 1 Introduction

If $B=\left\{i_{1}, i_{2}, \ldots, i_{r}\right\}$ is a basis of a matroid $M$, the toric map of $M$ sends the base ring variable $Y_{B}$ to the monomial $x_{i_{1}} x_{i_{2}} \cdots x_{i_{r}}$ and is naturally extended over all polynomials in variables indexed by bases of $M$. White's conjecture (see [13]) posits that the kernel of this map is generated by quadratic binomials corresponding to symmetric exchanges between pairs of bases of $M$. This conjecture has received much attention, but has only been proven for graphic matroids (shown by Blasiak in [2]) and matroids of rank 3 (shown by Kashiwabara in [9]).

Lattice path matroids, introduced by Bonin, de Mier and Noy in [3] and studied further in [4], constitute a nice class of matroids whose bases are in correspondence with certain planar lattice paths. Subclasses of these matroids appeared in 10 and [1]. In [12], the study of enumerative properties of such matroids gave rise to a related class of discrete polymatroids, in the sense of Herzog and Hibi [8], known as lattice path polymatroids.

As in [8], toric maps can be defined for discrete polymatroids as well, inspiring a generalization of White's conjecture. In [5, Conca shows that toric ideals of transversal polymatroids (a class of polymatroids containing lattice path polymatroids) are generated by binomials, although White's conjecture for these polymatroids remains open. In Theorem [3.1, we show that White's conjecture holds for lattice path polymatroids. We also provide a monomial order under which the

[^0]generating set of symmetric exchange binomials forms a Gröbner basis for the toric ideal.

In Section 4 we introduce pruned lattice path polymatroids, a larger class of polymatroids for which an analogue of Theorem 3.1 holds. Finally, we show how any lattice path matroid may be recognized as a pruned lattice path polymatroid, proving an analogue of Theorem 3.1 for lattice path matroids.

## 2 Preliminaries

We assume the reader has a basic knowledge of matroid theory (see [11]). All our monomials are in the variables $\left\{x_{0}, x_{1}, x_{2}, \ldots\right\}$. When $m$ is a monomial, we write $d_{i}(m)$ to mean the degree of $x_{i}$ in $m$.

Definition 2.1. Let $\Gamma$ be a finite collection of monomials. Then $\Gamma$ is a discrete polymatroid if it satisfies the following two properties.

1: If $m \in \Gamma$ and $m^{\prime}$ divides $m$, then $m^{\prime} \in \Gamma$, and
2: If $m, m^{\prime} \in \Gamma$ and the degree of $m$ is greater than that of $m^{\prime}$, there exists an index $i$ such that $d_{i}(m)>d_{i}\left(m^{\prime}\right)$ and $x_{i} m^{\prime} \in \Gamma$.

Thus, a matroid can be viewed as a squarefree discrete polymatroid. It is easily seen that the maximal monomials of a discrete polymatroid $\Gamma$ are all of the same degree. In keeping with standard matroid terminology, we refer to these maximal monomials as bases, and we say their degree is the rank of $\Gamma$. Discrete polymatroids were introduced by Herzog and Hibi in [8], where the following polymatroidal analogue of the classical symmetric exchange property for matroids was proven.

Proposition 2.2. Let $m$ and $m^{\prime}$ be bases of a discrete polymatroid $\Gamma$, and choose $i$ with $d_{i}(m)>d_{i}\left(m^{\prime}\right)$. Then there exists an index $j$ with $d_{j}(m)<d_{j}\left(m^{\prime}\right)$, such that both $\frac{x_{j}}{x_{i}} m$ and $\frac{x_{i}}{x_{j}} m^{\prime}$ are bases of $\Gamma$.

In the case of the above proposition, we say that the bases $\frac{x_{j}}{x_{i}} m$ and $\frac{x_{i}}{x_{j}} m^{\prime}$ are obtained from $m$ and $m^{\prime}$ via a symmetric exchange.

### 2.1 Lattice paths

Fix two integers $n, r>0$. For our purposes, a lattice path is a sequence of unitlength steps in the plane, each either due north or east, beginning at the origin and ending at the point $(n, r)$. For a lattice path $\sigma$, define a set $N(\sigma) \subseteq[n+r]$ by the following rule: $i \in N(\sigma) \Leftrightarrow$ the $i^{\text {th }}$ step of $\sigma$ is north.

Let $\sigma$ and $\tau$ be lattice paths. We say that $\sigma$ is above $\tau$ if for all $i \leq n$ the $i^{\text {th }}$ east step of $\sigma$ lies on or above the $i^{\text {th }}$ east step of $\tau$. In this case, we write $\sigma \succeq \tau$.

Now fix two lattice paths $\alpha$ and $\omega$ with $\alpha \succeq \omega$.

Theorem 2.3 ([3). The collection $\{N(\sigma): \alpha \succeq \sigma \succeq \omega\}$ is the set of bases of $a$ matroid.

We write $\mathcal{M}(\alpha, \omega)$ to denote the matroid determined by the paths $\alpha$ and $\omega$. Matroids arising in this fashion are known as lattice path matroids. For any lattice path $\sigma$, define a monomial $m(\sigma)$ by the following rule: the degree of $x_{i}$ in $m(\sigma)$ is the number of north steps taken by $\sigma$ along the vertical line $x=i$.

Theorem 2.4 ([12). The collection $\{m(\sigma): \alpha \succeq \sigma \succeq \omega\}$ is the set of bases of $a$ discrete polymatroid.


Figure 1: The lattice path matroid $\mathcal{M}(\alpha, \omega)$ where $N(\alpha)=\{1,2,4,6\}$ and $N(\omega)=$ $\{3,5,7,8\}$. If $\sigma$ is the bold path, $m(\sigma)=x_{1}^{3} x_{3}$.

We call such discrete polymatroids lattice path polymatroids, and write $\Gamma(\alpha, \omega)$ to denote the polymatroid determined by $\alpha$ and $\omega$. For a lattice path $\sigma$ whose last step is east, let $\sigma^{+}$be the path obtained from $\sigma$ by removing its last east step, and adding an east step at the beginning. It is easily seen that the lattice path matroid $\mathcal{M}(\alpha, \omega)$ is coloop-free if and only if $\alpha$ and $\omega$ share no north steps (and thus the last step of $\alpha$ is east). That is, $\mathcal{M}(\alpha, \omega)$ is coloop-free if and only if $\alpha^{+} \succeq \omega$. The following theorem motivated the introduction of lattice path polymatroids.

Theorem 2.5 ([12]). Suppose the lattice path matroid $\mathcal{M}(\alpha, \omega)$ is coloop-free. Then its $h$-vector is the $f$-vector (or degree sequence) of $\Gamma\left(\alpha^{+}, \omega\right)$.

Example 2.6. If $\alpha$ is the path consisting of $r$ north steps followed by $n$ east steps and $\omega$ is any other path, then $\mathcal{M}(\alpha, \omega)$ is a shifted matroid. In [10], it is shown that every shifted matroid is of this form. In this case, bases of the polymatroid $\Gamma(\alpha, \omega)$ are generators of the smallest Borel-fixed ideal containing $m(\omega)$ (see [7]).

In general, the bases of a lattice path polymatroid correspond to an interval in the Borel order of monomials of degree $r$.

### 2.2 Toric ideals

The base ring of a polymatroid $\Gamma$ is the polynomial ring $\mathbb{C}\left[Y_{m}: m\right.$ is a basis of $\left.\Gamma\right]$. If $n$ and $n^{\prime}$ are obtained from $m$ and $m^{\prime}$ by a symmetric exchange (that is, $n=\left(x_{i} / x_{j}\right) m$ and $n^{\prime}=\left(x_{j} / x_{i}\right) m^{\prime}$ for some $i$ and $j$ ), we call $Y_{m} Y_{m^{\prime}}-Y_{n} Y_{n^{\prime}}$ a symmetric exchange
binomial. The toric ideal of $\Gamma$ is the kernel of the map $\phi: \mathbb{C}\left[Y_{m}: m\right.$ is a basis of $\Gamma] \rightarrow \mathbb{C}\left[x_{0}, x_{1}, x_{2}, \ldots\right]$ defined by

$$
\phi\left(Y_{m_{1}} Y_{m_{2}} \cdots Y_{m_{t}}\right)=m_{1} m_{2} \cdots m_{t}
$$

and extended by linearity. Clearly, any symmetric exchange binomial is in the toric ideal of $\Gamma$.

Conjecture 2.7 (White's conjecture, adapted for polymatroids). The toric ideal of $\Gamma$ is generated by symmetric exchange binomials.

For a set $V=\left\{m_{1}, m_{2}, \ldots, m_{t}\right\}$ of bases of $\Gamma$, write $M_{V}$ as short for the base ring monomial $Y_{m_{1}} Y_{m_{2}} \cdots Y_{m_{t}}$. Now for any monomial $\mu$ of degree $>r$, we define a simple graph $\mathcal{G}(\mu)$, known as a symmetric exchange graph, as follows. The vertices of $\mathcal{G}(\mu)$ are all sets $V=\left\{m_{1}, m_{2}, \ldots, m_{t}\right\}$ of bases of $\Gamma$ with $\phi\left(M_{V}\right)=\mu$ (that is, $m_{1} m_{2} \cdots m_{t}=\mu$ ), and two vertices $V$ and $W$ are connected by an edge whenever $M_{V}-M_{W}=N S$ for some monomial $N$ and symmetric exchange binomial $S$. Put another way, $V$ and $W$ are connected by an edge if $W$ can be obtained from $V$ by performing a symmetric exchange on two of its constituent bases. Although $\mathcal{G}(\mu)$ depends on $\Gamma$, we omit this from the notation whenever it will be clear from context.

The following was inspired by Blasiak's techniques in [2], where Conjecture 2.7 was proven for graphic matroids.

Theorem 2.8. Suppose that $\mathcal{G}(\mu)$ is connected for any monomial $\mu$ of degree $>r$. Then Conjecture 2.7 holds for $\Gamma$.

Proof. Any polynomial in the toric ideal of $\Gamma$ can be written as a sum of binomials of the form $M_{V}-M_{W}$, where $V$ and $W$ are vertices of some $\mathcal{G}(\mu)$. Since $\mathcal{G}(\mu)$ is connected, there exists a path $V=V_{0}, V_{1}, V_{2}, \ldots, V_{k}=W$ where each $V_{i}$ and $V_{i+1}$ are connected by an edge. Now write

$$
M_{V}-M_{W}=\left(M_{V}-M_{V_{1}}\right)+\left(M_{V_{1}}-M_{V_{2}}\right)+\left(M_{V_{2}}-M_{V_{3}}\right)+\cdots+\left(M_{V_{k-1}}-M_{W}\right) .
$$

Since each parenthesized term in this sum is the product of a monomial with a symmetric exchange binomial, the result follows.

### 2.3 Gröbner bases

Our treatment here is brief; the reader unfamiliar with the theory of Gröbner bases is referred to [6].

Let $>_{\ell}$ be a total order on monomials of the base ring of a polymatroid $\Gamma$ with $M>_{\ell} 1$ for any monomial $M \neq 1$. The order $>_{\ell}$ is called a monomial order if $M>_{\ell} M^{\prime}$ implies that $M N>_{\ell} M^{\prime} N$ for any monomials $M, M^{\prime}$, and $N$.

If $>_{\ell}$ is a monomial order on the base ring and $\mu$ is a monomial, define a directed graph $\mathcal{G}^{\ell}(\mu)$ as follows: the vertices and edges are those of $\mathcal{G}(\mu)$. If $V$ and $W$ are
vertices of $\mathcal{G}(\mu)$ joined by an edge, direct the corresponding edge of $\mathcal{G}^{\ell}(\mu)$ towards $W$ if $M_{V}>_{\ell} M_{W}$ and towards $V$ if $M_{W}>_{\ell} M_{V}$. Note that $\mathcal{G}^{\ell}(\mu)$ is acyclic, since $>_{\ell}$ is a total order.

The following lemma, whose straightforward proof we omit, is an elementary result from graph theory.

Lemma 2.9. Let $G$ be a finite and acyclic directed graph, and suppose $G$ has a unique sink $v_{0}$. Then for any vertex $w$ of $G$, there exists a directed path from $w$ to $v_{0}$.

Theorem 2.10. Let $>_{\ell}$ be a monomial order on the base ring of $\Gamma$, and suppose that $\mathcal{G}^{\ell}(\mu)$ has a unique sink anytime it is nonempty. Then Conjecture 2.7 holds for $\Gamma$ and the symmetric exchange binomials, under the order $>_{\ell}$, form a Gröbner basis for its toric ideal.

Proof. To see that Conjecture 2.7 holds for $\Gamma$, note that Lemma 2.9 implies that any two vertices of some $\mathcal{G}(\mu)$ are in the same connected component (since $\mathcal{G}(\mu)$ is just $\mathcal{G}^{\ell}(\mu)$ with the edge orientations removed). Therefore every $\mathcal{G}(\mu)$ is connected, and Theorem 2.8 gives us that the toric ideal of $\Gamma$ is generated by symmetric exchange binomials.

To finish the proof, we apply Buchberger's algorithm (again, see [6]) to the set of symmetric exchange binomials. The S-pair of two symmetric exchange binomials can be represented as $M_{V}-M_{W}$, for two vertices $V, W$ of some $\mathcal{G}^{\ell}(\mu)$. A step in the reduction of this binomial with respect to the set of symmetric exchange binomials consists either of replacing $M_{V}$ with $M_{V^{\prime}}$ where $V \rightarrow V^{\prime}$ is a directed edge of $\mathcal{G}^{\ell}(\mu)$ or of replacing $M_{W}$ with $M_{W^{\prime}}$ where $W \rightarrow W^{\prime}$ is a directed edge of $\mathcal{G}^{\ell}(\mu)$. Let $V_{0}$ be the unique sink of $\mathcal{G}^{\ell}(\mu)$. By Lemma 2.9, this binomial reduces to $M_{V_{0}}-M_{V_{0}}=0$.

## 3 Lattice path polymatroids

For the remainder of this paper, fix $n$ and $r$ and let $\alpha$ and $\omega$ be two lattice paths to $(n, r)$ with $\alpha \succeq \omega$. To eliminate excess notation we often identify a path $\sigma$ with the associated monomial $m(\sigma)$, writing, for example, $Y_{\sigma}$ rather than $Y_{m(\sigma)}$ and $d_{i}(\sigma)$ rather than $d_{i}(m(\sigma))$. This section is devoted to proving the following theorem.

Theorem 3.1. Let $\Gamma=\Gamma(\alpha, \omega)$ be a lattice path polymatroid. Then the toric ideal of $\Gamma$ is generated by symmetric exchange binomials. That is, White's conjecture holds for $\Gamma$. Moreover, there exists a monomial order on the base ring of $\Gamma$ under which the symmetric exchange binomials form a Gröbner basis for the toric ideal.

First, we build a monomial order on the base ring of a lattice path polymatroid $\Gamma$ so that we may apply Theorem 2.10.

For any lattice path $\sigma$, define $\ell(\sigma)$ to be the following $n r$-tuple:

$$
\left(\ell_{0, r}, \ell_{0, r-1}, \ldots, \ell_{0,1}, \ell_{1, r}, \ell_{1, r-1}, \ldots, \ell_{1,1}, \ldots, \ell_{n-1, r}, \ell_{n-1, r-1}, \ldots, \ell_{n-1,1}\right)
$$

where $\ell_{i, j}=1$ if the topmost north step of $\sigma$ along the line $x=i$ goes from $(i, j-1)$ to $(i, j)$, and $\ell_{i, j}=0$ otherwise. For a base ring monomial $M=Y_{\sigma_{1}} Y_{\sigma_{2}} \cdots Y_{\sigma_{t}}$, let $\ell(M)=\sum_{1 \leq i \leq t} \ell\left(\sigma_{i}\right)$, where the sum of vectors is taken componentwise.


Figure 2: If $n=r=4$ and $\sigma_{1}$ and $\sigma_{2}$ are the paths above, $\ell\left(Y_{\sigma_{1}} Y_{\sigma_{2}}\right)=$ ( $0,0,0,1,0,0,2,0,0,1,0,0,0,1,0,0)$.

Now let $M$ and $M^{\prime}$ be base ring monomials, and write $M>_{\ell} M^{\prime}$ whenever $\ell(M)$ lexicographically precedes $\ell\left(M^{\prime}\right)$. Note that $>_{\ell}$ is not yet a total order, as clearly there may be monomials $M \neq M^{\prime}$ with $\ell(M)=\ell\left(M^{\prime}\right)$.

Indeed, let $M=Y_{\sigma_{1}} Y_{\sigma_{2}} \cdots Y_{\sigma_{t}}$ and $M^{\prime}=Y_{\tau_{1}} Y_{\tau_{2}} \cdots Y_{\tau_{t}}$ be two distinct base ring monomials with $\ell(M)=\ell\left(M^{\prime}\right)$, where the indexing paths of these monomials are ordered so that whenever $i<j, \ell\left(\sigma_{i}\right)$ lexicographically precedes $\ell\left(\sigma_{j}\right)$ and $\ell\left(\tau_{i}\right)$ precedes $\ell\left(\tau_{j}\right)$. Extend the definition of $>_{\ell}$ to say that $M>_{\ell} M^{\prime}$ if $\ell\left(\tau_{i}\right)$ lexicographically precedes $\ell\left(\sigma_{i}\right)$ for the least $i$ such that $\sigma_{i} \neq \tau_{i}$.

Since a path $\sigma$ is clearly determined by the vector $\ell(\sigma)$, this completes $>_{\ell}$ to a total order on all monomials in the base ring (once we set $M>_{\ell} 1$ for any monomial $M)$. Moreover, if $M>_{\ell} M^{\prime}$, then $M N>_{\ell} M^{\prime} N$, since $\ell(M N)=\ell(M)+\ell(N)$ and $\ell\left(M^{\prime} N\right)=\ell\left(M^{\prime}\right)+\ell(N)$. Thus $>_{\ell}$ is a monomial order.

Definition 3.2. Let $V=\left\{\sigma_{1}, \sigma_{2}, \ldots, \sigma_{t}\right\}$ be a vertex of $\mathcal{G}(\mu)$ for some $\mu$, where again we have written $\sigma_{i}$ to mean $m\left(\sigma_{i}\right)$. We call the vertex $V$ thin if it has the following two properties:

1: For any two paths $\sigma_{i}, \sigma_{j} \in V$, either $\sigma_{i} \succeq \sigma_{j}$ or $\sigma_{j} \succeq \sigma_{i}$.
2: For any $i$, the $i^{\text {th }}$ east steps of any two paths in $V$ are at most a unit length apart.

Thin vertices, as shown by Proposition 3.3 and Lemma 3.4 will be sinks in the directed graphs $\mathcal{G}^{\ell}(\mu)$.

Proposition 3.3. Let $V$ be a vertex of some $\mathcal{G}(\mu)$ that is not thin. Then there is a vertex $V^{\prime}$ of $\mathcal{G}(\mu)$ resulting from a symmetric exchange between two bases in $V$ such that $M_{V}>_{\ell} M_{V^{\prime}}$. In other words, $V \rightarrow V^{\prime}$ is a directed edge of $\mathcal{G}^{\ell}(\mu)$.


Figure 3: Two vertices of the graph $\mathcal{G}\left(x_{0} x_{1}^{3} x_{2} x_{3} x_{4}^{2}\right)$. The second is thin, while the first is not.

Proof. Let $V=\left\{\sigma_{1}, \sigma_{2}, \ldots, \sigma_{t}\right\}$. We handle two cases, each corresponding to a way in which a vertex may fail to be thin.

First suppose that the $(i+1)^{s t}$ east step of some path in $V$ is more than a unit length above the $(i+1)^{s t}$ east step of another path in $V$, and let $i$ be minimal with this property. Let $\sigma_{p}$ be the path with the highest $(i+1)^{s t}$ east step, and let $\sigma_{q}$ be the path with the lowest. By the minimality of $i, d_{i}\left(\sigma_{p}\right)>d_{i}\left(\sigma_{q}\right)$. Since the two paths eventually meet, there must be some $j>i$ such that $d_{j}\left(\sigma_{p}\right)<d_{j}\left(\sigma_{q}\right)$. Let $j$ be minimal with this property, let $\sigma_{p}^{\prime}$ be the path obtained from $\sigma_{p}$ by adding a north step along $x=j$ and removing one along $x=i$, and let $\sigma_{q}^{\prime}$ be the path obtained from $\sigma_{q}$ by adding a north step along $x=i$ and removing one along $x=j$. Note that $\sigma_{p}^{\prime}$ and $\sigma_{q}^{\prime}$ are the results of a symmetric exchange between $\sigma_{p}$ and $\sigma_{q}$, although we still need to show that both $\sigma_{p}^{\prime}$ and $\sigma_{q}^{\prime}$ are paths in $\Gamma(\alpha, \omega)$. To see this, note that the minimality of $j$ implies that every east step of $\sigma_{p}$ between $x=i$ and $x=j$ is strictly above the corresponding east step of $\sigma_{q}$. Thus $\sigma_{p} \succeq \sigma_{p}^{\prime} \succeq \sigma_{q}$ and $\sigma_{p} \succeq \sigma_{q}^{\prime} \succeq \sigma_{q}$, meaning both $\sigma_{p}^{\prime}$ and $\sigma_{q}^{\prime}$ are between $\alpha$ and $\omega$. Let $V^{\prime}$ be the vertex resulting from this symmetric exchange. Then $V^{\prime}$ is identical to $V$ to the left of the line $x=i$. Since neither $\sigma_{p}^{\prime}$ nor $\sigma_{q}^{\prime}$ attains the same height on the line $x=i$ as $\sigma_{p}$, it follows that $M_{V}>_{\ell} M_{V^{\prime}}$.

Now suppose that no two paths in $V$ are ever more than a unit length apart, and let $i$ be the least index so that $V$ fails to be thin at the line $x=i$. Then there are paths $\sigma_{p}$ and $\sigma_{q}$ of $V$ such that every east step of $\sigma_{p}$ to the left of $x=i$ is on or above the corresponding east step of $\sigma_{q}$ (though the two do not always coincide), but the $(i+1)^{s t}$ step of $\sigma_{q}$ is a unit length above that of $\sigma_{p}$. It is clear that $d_{i}\left(\sigma_{p}\right)<d_{i}\left(\sigma_{q}\right)$. Let $j$ be the least index greater than $i$ such that $d_{j}\left(\sigma_{p}\right)>d_{j}\left(\sigma_{q}\right)$, let $\sigma_{p}^{\prime}$ be the path obtained from $\sigma_{p}$ by deleting a north step along $x=j$ and adding one along $x=i$, and let $\sigma_{q}^{\prime}$ be the path obtained from $\sigma_{q}$ by deleting a north step along $x=i$ and adding one along $x=j$. The same argument from the first paragraph of this proof shows that both $\sigma_{p}^{\prime}$ and $\sigma_{q}^{\prime}$ are paths in $\Gamma(\alpha, \omega)$. Again, let $V^{\prime}$ be the vertex resulting from this symmetric exchange. Since every east step of $\sigma_{p}$ in between $x=i$ and $x=j$ is exactly a unit length above the corresponding east step of $\sigma_{q}$, it follows that $\ell\left(M_{V}\right)=\ell\left(M_{V^{\prime}}\right)$. Writing $>_{\text {lex }}$ for lexicographic order, we have the following
chain:

$$
\ell\left(\sigma_{p}^{\prime}\right)>_{\text {lex }} \ell\left(\sigma_{p}\right)>_{\text {lex }} \ell\left(\sigma_{q}\right)>_{\text {lex }} \ell\left(\sigma_{q}^{\prime}\right)
$$

Thus $M_{V}>_{\ell} M_{V^{\prime}}$.
Lemma 3.4. Let $\mu$ be a monomial so that $\mathcal{G}(\mu)$ is nonempty. Then $\mathcal{G}(\mu)$ has exactly one thin vertex.

Proof. Existence follows from Proposition 3.3 and the easy fact that a finite acyclic directed graph has at least one sink.

To prove uniqueness, let $V=\left\{\sigma_{1}, \sigma_{2}, \ldots, \sigma_{t}\right\}$ be a thin vertex, ordered so that $\sigma_{1} \succeq \sigma_{2} \succeq \cdots \succeq \sigma_{t}$, and suppose $V$ is uniquely determined to the left of the line $x=i$ (where we allow $i=0$ ). Since $V$ is thin, there is an index $k$ and a number $p$ so that the $i^{t h}$ east steps of the paths $\sigma_{1}, \sigma_{2}, \ldots, \sigma_{k}$ coincide and lie on the line $y=p$ and the $i^{t h}$ east steps of the paths $\sigma_{k+1}, \sigma_{k+2}, \ldots, \sigma_{t}$ coincide and lie on the line $y=p-1$. Now write $d_{i}(\mu)=q t+r$, with $r<t$.

If $r \leq t-k$, then the paths $\sigma_{k+1}, \sigma_{k+2}, \ldots, \sigma_{k+r}$ must each have $q+1$ steps along the line $x=i$, while the rest must have $q$ north steps along this line. If $r>t-k$, then each of the paths $\sigma_{1}, \sigma_{2}, \ldots, \sigma_{r-t+k}$ and $\sigma_{k+1}, \sigma_{k+2}, \ldots, \sigma_{t}$ must have $q+1$ steps along $x=i$, and the rest must have $q$ steps.

Thus, $V$ is uniquely determined to the left of the line $x=i+1$, and the result follows.

Proof of Theorem 3.1. Proposition 3.3 and Lemma 3.4 imply that any $\mathcal{G}^{\ell}(\mu)$ has a unique sink (namely its thin vertex), so Theorem 2.10 finishes the proof.

## 4 Pruned polymatroids and lattice path matroids

Definition 4.1. Let $\Gamma$ be a rank-r polymatroid in the variables $\left\{x_{0}, x_{1}, x_{2}, \ldots, x_{m}\right\}$, and let $\boldsymbol{v}=\left(v_{0}, v_{1}, v_{2}, \ldots, v_{m}\right)$ be a vector of nonnegative integers. Let $B(\Gamma)$ denote the set of bases of $\Gamma$. The pruned polymatroid $\Gamma_{v}$ is the polymatroid with bases

$$
\left\{x_{0}^{a_{0}} x_{1}^{a_{1}} \cdots x_{m}^{a_{m}} \in B(\Gamma): a_{i} \leq v_{i} \text { for all } i\right\}
$$

It is straightforward to verify that $\Gamma_{\mathbf{v}}$ is a discrete polymatroid.
Observation 4.2. The class of lattice path polymatroids is not closed under pruning. To see this, let $\Gamma$ be the lattice path polymatroid whose bases are $x_{0} x_{1}, x_{0} x_{2}, x_{1}^{2}$, and $x_{1} x_{2}$. Setting $\mathbf{v}=(1,1,1)$, we see $\Gamma_{\mathbf{v}}$ has bases $x_{0} x_{1}, x_{0} x_{2}$, and $x_{1} x_{2}$. It is easy to show that $\Gamma_{\mathbf{v}}$ is not a lattice path polymatroid.

By Observation 4.2, the following corollary expands upon Theorem 3.1.
Corollary 4.3. Let $\Gamma$ be a lattice path polymatroid in $\left\{x_{0}, x_{1}, \ldots, x_{m}\right\}$, and let $\boldsymbol{v}=\left(v_{0}, v_{1}, \ldots, v_{m}\right)$ be a vector of nonnegative integers. Then the toric ideal of $\Gamma_{\boldsymbol{v}}$ is generated by symmetric exchange binomials, and there exists a monomial order under which these binomials form a Gröbner basis for the toric ideal.

Proof. Consider a monomial $\mu$. Using the same monomial order $\ell$ as in Theorem 3.1. we see that $\mathcal{G}_{\Gamma_{\mathrm{v}}}^{\ell}(\mu)$ is a directed subgraph of $\mathcal{G}_{\Gamma}^{\ell}(\mu)$. Because a symmetric exchange in $\Gamma$ between two bases of $\Gamma_{\mathbf{v}}$ results in two bases of $\Gamma_{\mathbf{v}}$ (this is easy to see), Proposition 3.3 and Lemma 3.4 together imply that $\mathcal{G}_{\Gamma_{\mathrm{v}}}^{\ell}(\mu)$ has a unique sink. Applying Theorem 2.10 completes the proof.

Corollary 4.4. Let $\mathcal{M}=\mathcal{M}(\alpha, \omega)$ be a lattice path matroid. Then the toric ideal of $\mathcal{M}$ is generated by symmetric exchange binomials, and there exists a monomial order under which these binomials form a Gröbner basis for the toric ideal.
Proof. Let $\sigma$ be a lattice path to the point $(n, r)$ with $N(\sigma)=\left\{a_{1}, a_{2}, \ldots, a_{r}\right\}$, where $a_{1}<a_{2}<\cdots<a_{r}$. Define a lattice path $\bar{\sigma}$ to the point $(n+r, r)$ by $N(\bar{\sigma})=\left\{a_{1}+1, a_{2}+2, \ldots, a_{r}+r\right\}$, and note that $m(\bar{\sigma})=x_{a_{1}} x_{a_{2}} \cdots x_{a_{r}}$ (see Figure (4).


Figure 4: A lattice path matroid $\mathcal{M}(\alpha, \omega)$ and the associated polymatroid $\Gamma(\bar{\alpha}, \bar{\omega})$. If $\sigma$ is the bold path, note that $N(\sigma)=\{2,3,4,7\}$ and $m(\bar{\sigma})=x_{2} x_{3} x_{4} x_{7}$.

Define a function from $\mathcal{M}=\mathcal{M}(\alpha, \omega)$ to $\Gamma=\Gamma(\bar{\alpha}, \bar{\omega})$ by $\sigma \rightarrow \bar{\sigma}$, and note that a lattice path $\sigma$ in between $\bar{\alpha}$ and $\bar{\omega}$ is in the image of this map if and only if it has no more than one north step along every line $x=i$, which is equivalent to $m(\sigma)$ being squarefree. Letting $\mathbf{v}=(1,1, \ldots, 1)$, we may thus identify $\mathcal{M}$ with the pruned polymatroid $\Gamma_{\mathbf{v}}$ and apply Corollary 4.3.

Acknowledgements. Thanks to Craig Huneke and Joe Bonin for many insightful conversations. Thanks also to Aldo Conca for pointing out Corollary 4.3.

## References

[1] Federico Ardila. The Catalan matroid. J. Combin. Theory Ser. A, 104(1):4962, 2003.
[2] Jonah Blasiak. The toric ideal of a graphic matroid is generated by quadrics. Combinatorica, 28(3):283-297, 2008.
[3] Joseph Bonin, Anna de Mier, and Marc Noy. Lattice path matroids: enumerative aspects and Tutte polynomials. J. Combin. Theory Ser. A, 104(1):63-94, 2003.
[4] Joseph E. Bonin and Anna de Mier. Lattice path matroids: structural properties. European J. Combin., 27(5):701-738, 2006.
[5] Aldo Conca. Linear spaces, transversal polymatroids and ASL domains. J. Algebraic Combin., 25(1):25-41, 2007.
[6] David Eisenbud. Commutative algebra, volume 150 of Graduate Texts in Mathematics. Springer-Verlag, New York, 1995. With a view toward algebraic geometry.
[7] Christopher Francisco, Jeff Mermin, and Jay Schweig. Borel generators. Preprint, 2010.
[8] Jürgen Herzog and Takayuki Hibi. Discrete polymatroids. J. Algebraic Combin., 16(3):239-268 (2003), 2002.
[9] Kenji Kashiwabara. The toric ideal of a matroid of rank 3 is generated by quadrics. Electron. J. Combin., 17(1):Research Paper 28, 12, 2010.
[10] C. Klivans. Shifted Matroid Complexes. PhD thesis, Massachusetts Institute of Technology, 2003.
[11] James G. Oxley. Matroid theory. Oxford Science Publications. The Clarendon Press Oxford University Press, New York, 1992.
[12] Jay Schweig. On the $h$-vector of a lattice path matroid. Electron. J. Combin., 17(1):Note 3, 6, 2010.
[13] Neil L. White. A unique exchange property for bases. Linear Algebra Appl., 31:81-91, 1980.


[^0]:    *University of Kansas; jschweig@math.ku.edu

