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Abstract

White has conjectured that the toric ideal of a matroid is generated by
quadric binomials corresponding to symmetric basis exchanges. We prove a
stronger version of this conjecture for lattice path polymatroids by constructing
a monomial order under which these sets of quadrics form Gröbner bases. We
then introduce a larger class of polymatroids for which an analogous theorem
holds. Finally, we obtain the same result for lattice path matroids as a corollary.

1 Introduction

If B = {i1, i2, . . . , ir} is a basis of a matroid M , the toric map of M sends the base
ring variable YB to the monomial xi1xi2 · · ·xir and is naturally extended over all
polynomials in variables indexed by bases of M . White’s conjecture (see [13]) posits
that the kernel of this map is generated by quadratic binomials corresponding to
symmetric exchanges between pairs of bases of M . This conjecture has received
much attention, but has only been proven for graphic matroids (shown by Blasiak
in [2]) and matroids of rank 3 (shown by Kashiwabara in [9]).

Lattice path matroids, introduced by Bonin, de Mier and Noy in [3] and studied
further in [4], constitute a nice class of matroids whose bases are in correspondence
with certain planar lattice paths. Subclasses of these matroids appeared in [10] and
[1]. In [12], the study of enumerative properties of such matroids gave rise to a
related class of discrete polymatroids, in the sense of Herzog and Hibi [8], known as
lattice path polymatroids.

As in [8], toric maps can be defined for discrete polymatroids as well, inspir-
ing a generalization of White’s conjecture. In [5], Conca shows that toric ideals
of transversal polymatroids (a class of polymatroids containing lattice path poly-
matroids) are generated by binomials, although White’s conjecture for these poly-
matroids remains open. In Theorem 3.1, we show that White’s conjecture holds
for lattice path polymatroids. We also provide a monomial order under which the
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generating set of symmetric exchange binomials forms a Gröbner basis for the toric
ideal.

In Section 4 we introduce pruned lattice path polymatroids, a larger class of
polymatroids for which an analogue of Theorem 3.1 holds. Finally, we show how
any lattice path matroid may be recognized as a pruned lattice path polymatroid,
proving an analogue of Theorem 3.1 for lattice path matroids.

2 Preliminaries

We assume the reader has a basic knowledge of matroid theory (see [11]). All our
monomials are in the variables {x0, x1, x2, . . .}. When m is a monomial, we write
di(m) to mean the degree of xi in m.

Definition 2.1. Let Γ be a finite collection of monomials. Then Γ is a discrete
polymatroid if it satisfies the following two properties.

1: If m ∈ Γ and m′ divides m, then m′ ∈ Γ, and

2: If m,m′ ∈ Γ and the degree of m is greater than that of m′, there exists an
index i such that di(m) > di(m′) and xim′ ∈ Γ.

Thus, a matroid can be viewed as a squarefree discrete polymatroid. It is easily
seen that the maximal monomials of a discrete polymatroid Γ are all of the same
degree. In keeping with standard matroid terminology, we refer to these maximal
monomials as bases, and we say their degree is the rank of Γ. Discrete polyma-
troids were introduced by Herzog and Hibi in [8], where the following polymatroidal
analogue of the classical symmetric exchange property for matroids was proven.

Proposition 2.2. Let m and m′ be bases of a discrete polymatroid Γ, and choose i
with di(m) > di(m′). Then there exists an index j with dj(m) < dj(m′), such that
both xj

xi
m and xi

xj
m′ are bases of Γ.

In the case of the above proposition, we say that the bases xj

xi
m and xi

xj
m′ are

obtained from m and m′ via a symmetric exchange.

2.1 Lattice paths

Fix two integers n, r > 0. For our purposes, a lattice path is a sequence of unit-
length steps in the plane, each either due north or east, beginning at the origin and
ending at the point (n, r). For a lattice path σ, define a set N(σ) ⊆ [n + r] by the
following rule: i ∈ N(σ) ⇔ the ith step of σ is north.

Let σ and τ be lattice paths. We say that σ is above τ if for all i ≤ n the ith

east step of σ lies on or above the ith east step of τ . In this case, we write σ % τ .
Now fix two lattice paths α and ω with α % ω.

2



Theorem 2.3 ([3]). The collection {N(σ) : α % σ % ω} is the set of bases of a
matroid.

We write M(α,ω) to denote the matroid determined by the paths α and ω.
Matroids arising in this fashion are known as lattice path matroids. For any lattice
path σ, define a monomial m(σ) by the following rule: the degree of xi in m(σ) is
the number of north steps taken by σ along the vertical line x = i.

Theorem 2.4 ([12]). The collection {m(σ) : α % σ % ω} is the set of bases of a
discrete polymatroid.

Figure 1: The lattice path matroid M(α,ω) where N(α) = {1, 2, 4, 6} and N(ω) =
{3, 5, 7, 8}. If σ is the bold path, m(σ) = x31x3.

We call such discrete polymatroids lattice path polymatroids, and write Γ(α,ω)
to denote the polymatroid determined by α and ω. For a lattice path σ whose last
step is east, let σ+ be the path obtained from σ by removing its last east step, and
adding an east step at the beginning. It is easily seen that the lattice path matroid
M(α,ω) is coloop-free if and only if α and ω share no north steps (and thus the
last step of α is east). That is, M(α,ω) is coloop-free if and only if α+ % ω. The
following theorem motivated the introduction of lattice path polymatroids.

Theorem 2.5 ([12]). Suppose the lattice path matroid M(α,ω) is coloop-free. Then
its h-vector is the f-vector (or degree sequence) of Γ(α+,ω).

Example 2.6. If α is the path consisting of r north steps followed by n east steps
and ω is any other path, then M(α,ω) is a shifted matroid. In [10], it is shown that
every shifted matroid is of this form. In this case, bases of the polymatroid Γ(α,ω)
are generators of the smallest Borel-fixed ideal containing m(ω) (see [7]).

In general, the bases of a lattice path polymatroid correspond to an interval in
the Borel order of monomials of degree r.

2.2 Toric ideals

The base ring of a polymatroid Γ is the polynomial ring C[Ym : m is a basis of Γ]. If n
and n′ are obtained from m and m′ by a symmetric exchange (that is, n = (xi/xj)m
and n′ = (xj/xi)m′ for some i and j), we call YmYm′ − YnYn′ a symmetric exchange
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binomial. The toric ideal of Γ is the kernel of the map φ : C[Ym : m is a basis of
Γ] → C[x0, x1, x2, . . .] defined by

φ(Ym1Ym2 · · ·Ymt) = m1m2 · · ·mt

and extended by linearity. Clearly, any symmetric exchange binomial is in the toric
ideal of Γ.

Conjecture 2.7 (White’s conjecture, adapted for polymatroids). The toric ideal
of Γ is generated by symmetric exchange binomials.

For a set V = {m1,m2, . . . ,mt} of bases of Γ, write MV as short for the base
ring monomial Ym1Ym2 · · ·Ymt . Now for any monomial µ of degree > r, we define a
simple graph G(µ), known as a symmetric exchange graph, as follows. The vertices
of G(µ) are all sets V = {m1,m2, . . . ,mt} of bases of Γ with φ(MV ) = µ (that is,
m1m2 · · ·mt = µ), and two vertices V and W are connected by an edge whenever
MV −MW = NS for some monomial N and symmetric exchange binomial S. Put
another way, V and W are connected by an edge if W can be obtained from V by
performing a symmetric exchange on two of its constituent bases. Although G(µ)
depends on Γ, we omit this from the notation whenever it will be clear from context.

The following was inspired by Blasiak’s techniques in [2], where Conjecture 2.7
was proven for graphic matroids.

Theorem 2.8. Suppose that G(µ) is connected for any monomial µ of degree > r.
Then Conjecture 2.7 holds for Γ.

Proof. Any polynomial in the toric ideal of Γ can be written as a sum of binomials
of the form MV − MW , where V and W are vertices of some G(µ). Since G(µ) is
connected, there exists a path V = V0, V1, V2, . . . , Vk = W where each Vi and Vi+1

are connected by an edge. Now write

MV −MW = (MV −MV1) + (MV1 −MV2) + (MV2 −MV3) + · · ·+ (MVk−1 −MW ).

Since each parenthesized term in this sum is the product of a monomial with a
symmetric exchange binomial, the result follows.

2.3 Gröbner bases

Our treatment here is brief; the reader unfamiliar with the theory of Gröbner bases
is referred to [6].

Let >! be a total order on monomials of the base ring of a polymatroid Γ with
M >! 1 for any monomial M (= 1. The order >! is called a monomial order if
M >! M ′ implies that MN >! M ′N for any monomials M,M ′, and N .

If >! is a monomial order on the base ring and µ is a monomial, define a directed
graph G!(µ) as follows: the vertices and edges are those of G(µ). If V and W are
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vertices of G(µ) joined by an edge, direct the corresponding edge of G!(µ) towards
W if MV >! MW and towards V if MW >! MV . Note that G!(µ) is acyclic, since
>! is a total order.

The following lemma, whose straightforward proof we omit, is an elementary
result from graph theory.

Lemma 2.9. Let G be a finite and acyclic directed graph, and suppose G has a
unique sink v0. Then for any vertex w of G, there exists a directed path from w to
v0.

Theorem 2.10. Let >! be a monomial order on the base ring of Γ, and suppose
that G!(µ) has a unique sink anytime it is nonempty. Then Conjecture 2.7 holds for
Γ and the symmetric exchange binomials, under the order >!, form a Gröbner basis
for its toric ideal.

Proof. To see that Conjecture 2.7 holds for Γ, note that Lemma 2.9 implies that any
two vertices of some G(µ) are in the same connected component (since G(µ) is just
G!(µ) with the edge orientations removed). Therefore every G(µ) is connected, and
Theorem 2.8 gives us that the toric ideal of Γ is generated by symmetric exchange
binomials.

To finish the proof, we apply Buchberger’s algorithm (again, see [6]) to the set
of symmetric exchange binomials. The S-pair of two symmetric exchange binomials
can be represented as MV − MW , for two vertices V,W of some G!(µ). A step
in the reduction of this binomial with respect to the set of symmetric exchange
binomials consists either of replacing MV with MV ′ where V → V ′ is a directed
edge of G!(µ) or of replacing MW with MW ′ where W → W ′ is a directed edge of
G!(µ). Let V0 be the unique sink of G!(µ). By Lemma 2.9, this binomial reduces to
MV0 −MV0 = 0.

3 Lattice path polymatroids

For the remainder of this paper, fix n and r and let α and ω be two lattice paths to
(n, r) with α % ω. To eliminate excess notation we often identify a path σ with the
associated monomial m(σ), writing, for example, Yσ rather than Ym(σ) and di(σ)
rather than di(m(σ)). This section is devoted to proving the following theorem.

Theorem 3.1. Let Γ = Γ(α,ω) be a lattice path polymatroid. Then the toric ideal of
Γ is generated by symmetric exchange binomials. That is, White’s conjecture holds
for Γ. Moreover, there exists a monomial order on the base ring of Γ under which
the symmetric exchange binomials form a Gröbner basis for the toric ideal.

First, we build a monomial order on the base ring of a lattice path polymatroid
Γ so that we may apply Theorem 2.10.
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For any lattice path σ, define &(σ) to be the following nr-tuple:

(&0,r, &0,r−1, . . . , &0,1, &1,r, &1,r−1, . . . , &1,1, . . . , &n−1,r, &n−1,r−1, . . . , &n−1,1)

where &i,j = 1 if the topmost north step of σ along the line x = i goes from (i, j− 1)
to (i, j), and &i,j = 0 otherwise. For a base ring monomial M = Yσ1Yσ2 · · ·Yσt , let
&(M) =

∑
1≤i≤t &(σi), where the sum of vectors is taken componentwise.

Figure 2: If n = r = 4 and σ1 and σ2 are the paths above, &(Yσ1Yσ2) =
(0, 0, 0, 1, 0, 0, 2, 0, 0, 1, 0, 0, 0, 1, 0, 0).

Now let M and M ′ be base ring monomials, and write M >! M ′ whenever &(M)
lexicographically precedes &(M ′). Note that >! is not yet a total order, as clearly
there may be monomials M (= M ′ with &(M) = &(M ′).

Indeed, let M = Yσ1Yσ2 · · ·Yσt and M ′ = Yτ1Yτ2 · · ·Yτt be two distinct base ring
monomials with &(M) = &(M ′), where the indexing paths of these monomials are
ordered so that whenever i < j, &(σi) lexicographically precedes &(σj) and &(τi)
precedes &(τj). Extend the definition of >! to say that M >! M ′ if &(τi) lexico-
graphically precedes &(σi) for the least i such that σi (= τi.

Since a path σ is clearly determined by the vector &(σ), this completes >! to a
total order on all monomials in the base ring (once we set M >! 1 for any monomial
M). Moreover, if M >! M ′, then MN >! M ′N , since &(MN) = &(M) + &(N) and
&(M ′N) = &(M ′) + &(N). Thus >! is a monomial order.

Definition 3.2. Let V = {σ1,σ2, . . . ,σt} be a vertex of G(µ) for some µ, where
again we have written σi to mean m(σi). We call the vertex V thin if it has the
following two properties:

1: For any two paths σi,σj ∈ V , either σi % σj or σj % σi.

2: For any i, the ith east steps of any two paths in V are at most a unit length
apart.

Thin vertices, as shown by Proposition 3.3 and Lemma 3.4, will be sinks in the
directed graphs G!(µ).

Proposition 3.3. Let V be a vertex of some G(µ) that is not thin. Then there is a
vertex V ′ of G(µ) resulting from a symmetric exchange between two bases in V such
that MV >! MV ′. In other words, V → V ′ is a directed edge of G!(µ).
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Figure 3: Two vertices of the graph G(x0x31x2x3x24). The second is thin, while the
first is not.

Proof. Let V = {σ1,σ2, . . . ,σt}. We handle two cases, each corresponding to a way
in which a vertex may fail to be thin.

First suppose that the (i+ 1)st east step of some path in V is more than a unit
length above the (i+1)st east step of another path in V , and let i be minimal with
this property. Let σp be the path with the highest (i+ 1)st east step, and let σq be
the path with the lowest. By the minimality of i, di(σp) > di(σq). Since the two
paths eventually meet, there must be some j > i such that dj(σp) < dj(σq). Let
j be minimal with this property, let σ′

p be the path obtained from σp by adding
a north step along x = j and removing one along x = i, and let σ′

q be the path
obtained from σq by adding a north step along x = i and removing one along x = j.
Note that σ′

p and σ′
q are the results of a symmetric exchange between σp and σq,

although we still need to show that both σ′
p and σ′

q are paths in Γ(α,ω). To see this,
note that the minimality of j implies that every east step of σp between x = i and
x = j is strictly above the corresponding east step of σq. Thus σp % σ′

p % σq and
σp % σ′

q % σq, meaning both σ′
p and σ′

q are between α and ω. Let V ′ be the vertex
resulting from this symmetric exchange. Then V ′ is identical to V to the left of the
line x = i. Since neither σ′

p nor σ′
q attains the same height on the line x = i as σp,

it follows that MV >! MV ′ .
Now suppose that no two paths in V are ever more than a unit length apart, and

let i be the least index so that V fails to be thin at the line x = i. Then there are
paths σp and σq of V such that every east step of σp to the left of x = i is on or above
the corresponding east step of σq (though the two do not always coincide), but the
(i+1)st step of σq is a unit length above that of σp. It is clear that di(σp) < di(σq).
Let j be the least index greater than i such that dj(σp) > dj(σq), let σ′

p be the path
obtained from σp by deleting a north step along x = j and adding one along x = i,
and let σ′

q be the path obtained from σq by deleting a north step along x = i and
adding one along x = j. The same argument from the first paragraph of this proof
shows that both σ′

p and σ′
q are paths in Γ(α,ω). Again, let V ′ be the vertex resulting

from this symmetric exchange. Since every east step of σp in between x = i and
x = j is exactly a unit length above the corresponding east step of σq, it follows
that &(MV ) = &(MV ′). Writing >lex for lexicographic order, we have the following
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chain:
&(σ′

p) >lex &(σp) >lex &(σq) >lex &(σ′
q).

Thus MV >! MV ′ .

Lemma 3.4. Let µ be a monomial so that G(µ) is nonempty. Then G(µ) has exactly
one thin vertex.

Proof. Existence follows from Proposition 3.3 and the easy fact that a finite acyclic
directed graph has at least one sink.

To prove uniqueness, let V = {σ1,σ2, . . . ,σt} be a thin vertex, ordered so that
σ1 % σ2 % · · · % σt, and suppose V is uniquely determined to the left of the line
x = i (where we allow i = 0). Since V is thin, there is an index k and a number
p so that the ith east steps of the paths σ1,σ2, . . . ,σk coincide and lie on the line
y = p and the ith east steps of the paths σk+1,σk+2, . . . ,σt coincide and lie on the
line y = p− 1. Now write di(µ) = qt+ r, with r < t.

If r ≤ t−k, then the paths σk+1,σk+2, . . . ,σk+r must each have q+1 steps along
the line x = i, while the rest must have q north steps along this line. If r > t − k,
then each of the paths σ1,σ2, . . . ,σr−t+k and σk+1,σk+2, . . . ,σt must have q+1 steps
along x = i, and the rest must have q steps.

Thus, V is uniquely determined to the left of the line x = i + 1, and the result
follows.

Proof of Theorem 3.1. Proposition 3.3 and Lemma 3.4 imply that any G!(µ) has a
unique sink (namely its thin vertex), so Theorem 2.10 finishes the proof.

4 Pruned polymatroids and lattice path matroids

Definition 4.1. Let Γ be a rank-r polymatroid in the variables {x0, x1, x2, . . . , xm},
and let v = (v0, v1, v2, . . . , vm) be a vector of nonnegative integers. Let B(Γ) denote
the set of bases of Γ. The pruned polymatroid Γv is the polymatroid with bases

{xa00 xa11 · · ·xamm ∈ B(Γ) : ai ≤ vi for all i}.

It is straightforward to verify that Γv is a discrete polymatroid.

Observation 4.2. The class of lattice path polymatroids is not closed under pruning.
To see this, let Γ be the lattice path polymatroid whose bases are x0x1, x0x2, x21, and
x1x2. Setting v = (1, 1, 1), we see Γv has bases x0x1, x0x2, and x1x2. It is easy to
show that Γv is not a lattice path polymatroid.

By Observation 4.2, the following corollary expands upon Theorem 3.1.

Corollary 4.3. Let Γ be a lattice path polymatroid in {x0, x1, . . . , xm}, and let
v = (v0, v1, . . . , vm) be a vector of nonnegative integers. Then the toric ideal of Γv

is generated by symmetric exchange binomials, and there exists a monomial order
under which these binomials form a Gröbner basis for the toric ideal.
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Proof. Consider a monomial µ. Using the same monomial order & as in Theorem
3.1, we see that G!

Γv
(µ) is a directed subgraph of G!

Γ(µ). Because a symmetric
exchange in Γ between two bases of Γv results in two bases of Γv (this is easy to
see), Proposition 3.3 and Lemma 3.4 together imply that G!

Γv
(µ) has a unique sink.

Applying Theorem 2.10 completes the proof.

Corollary 4.4. Let M = M(α,ω) be a lattice path matroid. Then the toric ideal
of M is generated by symmetric exchange binomials, and there exists a monomial
order under which these binomials form a Gröbner basis for the toric ideal.

Proof. Let σ be a lattice path to the point (n, r) with N(σ) = {a1, a2, . . . , ar},
where a1 < a2 < · · · < ar. Define a lattice path σ to the point (n + r, r) by
N(σ) = {a1 +1, a2 +2, . . . , ar + r}, and note that m(σ) = xa1xa2 · · ·xar (see Figure
4).

Figure 4: A lattice path matroid M(α,ω) and the associated polymatroid Γ(α,ω).
If σ is the bold path, note that N(σ) = {2, 3, 4, 7} and m(σ) = x2x3x4x7.

Define a function from M = M(α,ω) to Γ = Γ(α,ω) by σ → σ, and note that
a lattice path σ in between α and ω is in the image of this map if and only if it has
no more than one north step along every line x = i, which is equivalent to m(σ)
being squarefree. Letting v = (1, 1, . . . , 1), we may thus identify M with the pruned
polymatroid Γv and apply Corollary 4.3.

Acknowledgements. Thanks to Craig Huneke and Joe Bonin for many insightful
conversations. Thanks also to Aldo Conca for pointing out Corollary 4.3.
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