HW 12, Due Friday April 27

1) Rudin page 239 exercise 1
2) Rudin page 239 exercise 5. Note that $x \cdot y$ is the dot product, that is $x \cdot y=x_{1} y_{1}+\cdots+x_{n} y_{n}$.
3) Find A and B in $L\left(\mathbb{R}^{2}, \mathbb{R}^{2}\right)$ such that $\|A B\|<\|A\|\|B\|$. You can give A and B as matrices.
4) Show that if $A \in L\left(\mathbb{R}^{n}, \mathbb{R}^{m}\right)$, then there exists $x \in \mathbb{R}^{n}$ such that $\|A x\|=\|A\|$.
5) Show that $\frac{1}{\|A\|} \leq\left\|A^{-1}\right\|$. Find an A where equality does not hold (again 2 by 2 matrices will do).
