HW 8, Due Friday Mar 23

1) If $m^{*}(A)=0$, then $m^{*}(A \cup B)=m^{*}(B)$.
2) a) Prove that m^{*} is translation invariant. That is, given a set A and $x \in \mathbb{R}$, and

$$
A+x=\{y+x \in \mathbb{R}: y \in A\}
$$

then

$$
m^{*}(A)=m^{*}(A+x) .
$$

b) Show that if E is Lebesgue measurable, then given any $x \in \mathbb{R}$, the set $E+x$ is Lebesgue measurable.
3) If $\left\{E_{j}\right\}$ are all Lebesgue measurable sets such that $E_{1} \supset E_{2} \supset E_{3} \supset \cdots$ and let $E=$ $\cap_{j=1}^{\infty} E_{j}$. Suppose that $m\left(E_{1}\right)<\infty$ then

$$
\lim _{j \rightarrow \infty} m\left(E_{j}\right)=m(E)
$$

4) Find an example of sets E_{j} with $E_{1} \supset E_{2} \supset E_{3} \supset \cdots$ but such that $m\left(E_{j}\right)=\infty$ for all j, and $\cap_{j=1}^{\infty} E_{j}=\emptyset$. So the hypothesis that E_{1} is of finite measure in exercise 3) is necessary.

Note that a previous version of the exercise just said $m\left(E_{1}\right)=\infty$, that was a typo, it should have been $m\left(E_{j}\right)=\infty$ as it now says.
5) Prove that if $\left\{E_{j}\right\}$ is a countable collection of pairwise disjoint Lebesgue measurable sets and $A \subset \mathbb{R}$ is any set then

$$
m^{*}\left(A \cap \bigcup_{j=1}^{\infty} E_{j}\right)=\sum_{j=1}^{\infty} m^{*}\left(A \cap E_{j}\right)
$$

