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One of the things that mathematics is about, perhaps the thing that mathematics is about,
is trying to make things easier to understand. John von Neumann once said “In mathematics
you don’t understand things. You just get used to them.” This is partially true, but we can get
a long way towards understanding something new by converting it into something we already
know about, and a lot of mathematics consists of tricks that make one thing look like another.
Maybe the two things aren’t exactly the same, but if we can start from what we already know
and work out the differences between the old and the new, we can understand the new.

Another really good way to understand something is to draw a picture of it, to visualise
it in some way. Often when we visualise something, we can’t get a perfectly accurate picture,
and again we have to use a trick. Perhaps we draw a picture that highlights one feature of an
object while ignoring or distorting others. One example of this kind of distortion comes from
the problem of drawing a map of the world. The Earth is (roughly) spherical, and perhaps the
best way to understand how the continents are arranged on the Earth is to look at a globe.
A globe is a very accurate representation of the Earth, the only real difference being a few
magnitudes of scale. However, we often want to draw a map in 2-dimensions, and now we run
into trouble. The 2–dimensional plane is flat, while the surface of the Earth has curvature,
and there’s no way to flatten a sphere onto a plane without introducing some kind of distor-
tion. The most common of map of the Earth uses the Mercator projection. We can see the
distortion in the Mercator projection in that features near the North and South poles appear
too big on the map in comparison to features near the equator.

David Swart and Bruce Torrence have previously written about mappings from the sphere
to the plane in Math Horizons, in their article The Viewable Sphere. They use various projec-
tions from the sphere to the plane to make all-around panoramas; pictures on a 2–dimensional
plane of the view in every direction. In this article, we want to use similar ideas to try to visu-
alise objects in 4–dimensional space, for example the 4–dimensional hypercube, or tesseract.

But let’s start with something easier first, and use another one of those understanding
tricks: 4–dimensional things are hard to think about, so let’s first look at everything one di-
mension down. So suppose, as in Edwin Abbott’s classic Flatland, a 2–dimensional flatlander
living in the plane wants to understand the 3–dimensional cube. We have to use some trick
to squish the cube down onto the plane, so that our friend the flatlander can see it with her
2–dimensional senses. How can we do this? Well, any photograph or picture of a cube is a
squished cube in the plane. What does a camera do to the geometry of an object? Roughly
speaking, a camera puts a plane of film in front of your eye, and marks points on the film
where lines between your eye and the object intersect the film. This isn’t quite true because
there are lenses involved, your eye is not a single point in space, and other complications.
(Although in much of 3–dimensional computer graphics this is essentially what happens in
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(a) The Earth viewed as a sphere. (b) The Mercator projection of the Earth

Figure 1

calculating the picture on the screen.) Notice that if we translate the film plane away from
the eye but don’t rotate it, then the image on the film doesn’t change other than scaling up.
We could even put the plane behind the object we are looking at, as long as we think about
the mapping in terms of the intersection of lines with a plane, rather than rays of light going
from the object to our eye!

(a) How to take a photograph of a cube. (b) The resulting image.

Figure 2

Although the resulting perspective projection of a cube looks very natural to us 3–dimensional
viewers, it would be quite strange to a 2–dimensional flatlander. We tell our friend the flat-
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lander that all of the angles at the corners of the cube are the same, but they would say that
our 2–dimensional picture has all different angles (and it does!). We tell them that the edges
of the cube never cross through each other, but they can see two places where they do in our
picture. Well, these are some of the flaws we expect in taking a perspective projection from a
3–dimensional object to the 2–dimensional plane.

Another thing we could do is move our eye far away from the cube, so the lines from the
cube to our eye become closer and closer to parallel. In the limit, when our eye is infinitely far
away from the cube, the lines of sight are parallel and we get an orthogonal projection. This
has some advantages: lines that are parallel on the cube in 3–dimensions are still parallel on
the 2–dimensional film, and lines that are parallel are all the same length as each other, just
as they are on the cube. We still get intersections between the edges, and we still get some
strange angles.

(a) How to take an “orthogonal photograph” of a cube. (b) The resulting image.

Figure 3

Let’s try something else. Rather than moving our eye away from the cube, let’s move it
towards the cube. If we peer in at it from one of its square faces, we should get a picture that
doesn’t have intersections between the edges. In order to do something about the angles, we
will use another trick that looks a little odd at first. Put a sphere around the cube, so that the
corners of the cube all lie on the sphere. Then, “blow air into the cube”, inflating it like a beach
ball so that its edges and faces now lie in the sphere. More precisely, project the cube radially
outwards onto the sphere, mapping a point of a face or edge to the intersection between the
sphere and a ray based at the center of the sphere. This is like the perspective projection from
before, with our eye at the center of the sphere, but with the film being the sphere, rather
than a plane. Now that we have our “beach ball cube”, take a perspective projection, but with
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our eye so close to the cube that it is on the sphere itself. This kind of perspective projection,
thought of as a map from the sphere to the plane, is called stereographic projection.

(a) The cube with a cir-
cumscribed sphere.

N

(b) The faces of the
cube radially projected
onto the sphere, with the
North pole marked.

N
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(c) Stereographic projection from the sphere to the
plane, with our “eye” at the North pole.

N

(d) Stereographic projection of our “beach ball cube” pattern
to the plane.

(e) The resulting image, with the equa-
tor of the sphere marked.

Figure 4: A cube, radially projected to the circumscribing sphere, then stereographically
projected to the plane. Since we can move the film plane towards or away from our eye
without changing the image other than by scaling, we have chosen to place the film plane so
it passes through the center of the sphere.

What was the point of all of that? First, we have removed the intersections between edges.
In fact, stereographic projection is a bijective map from the sphere (minus the North pole)
to the plane. This means that any pattern on the sphere is transferred to the plane with no
possibility of any parts of the pattern crashing into any others. In addition, notice that all
of the angles between edges are the same! They are all at 120 degrees to each other. In fact,
stereographic projection is a conformal map, which means that it preserves angles. So the 120
degree angles we see in the image are the same as the 120 degree angles we see on the “beach
ball cube”. Our flatlander friend might complain that these ‘lines’ aren’t straight any more,
and that the angles between faces were supposed to be 90 degrees on a cube, but, well, you
can’t have everything.
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We can also see the conformality of stereographic projection when we apply it to the Earth.
The shapes of all of the coastlines are locally accurate, with no shearing or bending, although
the larger scale distortion of scale becomes very extreme as we look further North on the globe!

N

(a) Stereographic projection of the Earth. (b) The resulting image, with the equa-
tor marked. This looks back-to-front be-
cause we are looking at the continents
from the inside of the planet!

Figure 5

Ok, so now we want to visualise the hypercube. Just as you can build a square by starting
with two line segments, moving them apart and connecting the ends together, and you can
make a cube by starting with two squares, moving them apart and connecting the corners
together, you can make (the edges of) a hypercube by starting with two cubes, moving them
apart and connecting the corners together. The problem is that we want all of the edges
meeting at a corner to be at right angles to each other, and there aren’t enough dimensions in
our 3–dimensional world to do this for the hypercube. (In the figure, there aren’t even enough
dimensions to do the cube, since the page is 2-dimensional!) However, this isn’t a problem if
we do our construction in 4-dimensional space.

The hypercube has 16 vertices. If we put them at (±1/2,±1/2,±1/2,±1/2), then they all
sit on the unit hypersphere in 4–dimensional space, since 1/22+1/22+1/22+1/22 = 1. So we
can do exactly what we did with the cube: Radially project the boundary of the hypercube
onto the hypersphere, then stereographically project from the hypersphere to 3–dimensional
space. The result is shown in Figure 7a. The 3–dimensional version of stereographic projection
is also a bijection and is also conformal. Having the edges miss each other isn’t so hard for
a 3–dimensional picture of a 4–dimensional object; an orthogonal or perspective projection of
the hypercube could have this property. However, we can also draw in the 2–dimensional faces
(shown as translucent films), and then we would have edges crashing through faces unless we
use stereographic projection.

The edges are thickened up in this picture. Although it looks as if the outer edges are
thicker than the inner edges, this is just a trick of perspective: the edges are all the same
thickness on the unit hypersphere in 4–dimensional space, and the outer edges look bigger
only because they are closer to the “eye” of the projection!
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Figure 6: We can build an n–dimensional cube by taking two copies of the (n−1)–dimensional
cube and connecting corresponding corners together.

There’s one more thing we want to do, which is to actually print a “picture” of the hyper-
cube. By which we mean 3D print a model, because if we want the best possible visualisation
of the hypercube, why lose two dimensions when we could lose only one? Sadly, the photo-
graph of the 3D printed model shown in Figure 7b does lose two dimensions after all. For now
at least, Math Horizons only uses 2D printing technology.

The cube is just one of the regular 3–dimensional polyhedra, the others being the tetra-
hedron, the octahedron, the dodecahedron and the icosahedron. Similarly, there are other
regular 4–dimensional polytopes than the hypercube. The hypercube is also called the “8–
cell”, because it has 8 cubical cells (the square has 4 sides, the cube has 6 faces, the hypercube
has 8 cells). One of our favourite regular 4–dimensional polytopes is called the 120–cell, which
has 120 dodecahedral cells. We can print a picture of the 120–cell in exactly the same way
as we did for the hypercube. Figure 8 actually only shows half of the 120–cell, cut along the
“equatorial” sphere half way between the North pole and the South pole of the unit hyper-
sphere. We can get the other half by “reflecting” across the equatorial sphere, which looks like
Figure 9. However, since the other half gets very close to the “eye” at the North pole, the
objects near the North pole get very large (and so very expensive to print!), just as in Figure
5b.
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(a) Radial then stereographic projection of the hypercube. (b) A 3D printed model of the hypercube.

Figure 7
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(a) A generic viewpoint. (b) A 2-fold symmetry axis.

(c) A 3-fold symmetry axis. (d) A 5-fold symmetry axis.

Figure 8: Half of a 120-Cell. The 3D prints in this article were designed with Saul Schleimer
and printed using Shapeways.com.
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Figure 9: All of a 120–cell.
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