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"Clouds are not spheres, mountains are not cones, coastlines are
not circles, and bark is not smooth, nor does lightning travel in a

straight line." - Benoît Mandelbrot
Images: Wikipedia

What makes these mathematical shapes bad approximations to
these natural phenomena?
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I The real things are “rough”, the mathematical things are
“smooth”.

I How can we describe “roughness” more precisely?
I One way is to say that something is rough if it has features at

many different scales.
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Are there “simple” rough things? Simple enough for us to try to
look at using mathematics?
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Self-similarity

An object is self-similar if it is similar to a part of itself.

That is, a small part of the object is the same as a larger part,
scaled down.



Barnsley’s fern

Images: Wikipedia



The Sierpinski Triangle

1. Start with a triangle.

2. Cut it into four triangles and remove the middle one.
3. Repeat for the three new triangles.
4. Keep going forever.
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The Sierpinski Triangle
The Sierpinski triangle is self-similar because it is made up of 3
smaller copies of itself, each half the size of the original.



Dimension

If you double the size of a square or triangle, you can make it from
4 copies of the original. If you triple the size, you can make it from
9 copies of the original.
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Dimension

If you double the size of a cube, you can make it from 8 copies of
the original.
If you triple the size, you can make it from 27 copies of the original.



Dimension

×1 ×2 ×3

Dimension

Cube 1 8

= 23

27

= 33 3

Square 1 4

= 22

9

= 32 2

Triangle 1 4

= 22

9

= 32 2
Line segment

1 2

= 21

3

= 31 1

Sierpinski triangle 1 3

= 2? ?

The equation 3 = 2x can be solved by x = log(3)
log(2) ≈ 1.585, so this

suggests that the Sierpinski triangle has a “fractional” dimension,
between 1 and 2!
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The Sierpinski Tetrahedron
1. Start with a tetrahedron.

2. Remove the middle to leave four tetrahedra.
3. Repeat for the four new tetrahedra.
4. Keep going forever.
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The Sierpinski Tetrahedron: Activity
We will be attempting to build this one out of small tetrahedra:

Questions:
I How many tetrahedra

will we need?
I What is the shape

that gets removed
from the middle of
each tetrahedron?

I What is the
“dimension” of the
Sierpinski
tetrahedron?

Thanks for listening!
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