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The lllustrating Mathematics
program brings together
mathematicians, makers, and artists
who share a common interest in
illustrating mathematical ideas via
computational tools.
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The lllustrating Mathematics program brings together mathematicians,

makers, and artists who share a co

mathematical ideas via computational tools.

The goals of the program are

erestin illustrating

® introduce mathematicians to new computational illustration tools to

guide and inform their research;

spark collaborations among and between mathematicians, makers

and artists;

find ways to communicate research mathematics to as wide an

audience as possible.

The program includes week-long workshops in Geometry and Topolol

Algebra and Number Theory, and

ynamics and Probability, as well as

master courses, seminars, and an art exhibition.

Mathematical topics include: moduli spaces of geometric structures,
hyperbolic geometry, configuration spaces, sphere eversions, apollonian
packings, kleinian groups, sandpiles and tropical geometry, analytic

number theory, supercharacters, c:

mplex dynamics, billiards, random
walks, and Schramm-Loewner evolution.

Illustration media include: animation, interactive visualization, virtual and
augmented reality, games, 3D printing, laser cutting, CNC routing, and
textile arts. In addition, we welcome mathematical journalists, writers, and
videographers interested in communicating and illustrating mathematics.
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lllustrating Geometry and Topology

Sep 16 - 20, 2019

Organizing Committee

e Keenan Crane ¢ David Dumas
Carnegie Mellon University University of lllinois at Chicago
Abstract

This workshop will focus on the interaction between visualization, computer experiment,
and theoretical advances in all areas of research in geometry and topology. Fruitful
interactions of this type have a long history in the field, with physical models and
computer images and animations providing both illustration of existing work and
inspiration for new developments. Emerging visualization technologies, such as virtual
reality, are poised to further increase the tools available for mathematical illustration and
experimentation. By bringing together expert practitioners of mathematical visualization
techniques and researchers interested in incorporating such tools into their research, the
workshop will give participants a clear picture of the state of the art in this fast-moving
field while also fostering new collaborations and innovations in illustrating geometry and
topology.

https://icerm.brown.edu/programs/sp-f19/

Obstructions to regular homotopy in smooth and polyhedral
surfaces.
Image credit: Albert Chern, Ulrich Pinkall and Peter
Schroder.




lllustrating Number Theory and Algebra

Oct 21 - 25, 2019

Organizing Committee

e Ellen Eischen ¢ Joel Kamnitzer ¢ Alex Kontorovich
The University of Oregon University of Toronto Rutgers University
e Katherine Stange
University of Colorado

Abstract

The symbiotic relationship between the illustration of mathematics and mathematical
research is now flowering in algebra and number theory. This workshop aims to both
showcase and develop these connections, including the development of new visualization
tools for algebra and number theory. Topics are wide-ranging, and include Apollonian
circle packings and the illustration of the arithmetic of hyperbolic manifolds more
generally, the visual exploration of the statistics of integer sequences, and the illustrative
geometry of such objects as Gaussian periods and Fourier coefficients of modular forms.
Other topics may include expander graphs, abelian sandpiles, and Diophantine
approximation on varieties. We will also focus on diagrammatic algebras and categories
such as Khovanov-Lauda-Rouquier algebras, Soergel bimodule categories, spider
categories, and foam categories. The ability to visualize complicated relations Algebraic numbers in the complex plane.

. . . . . Image credit: David Moore, based on earlier work by Stephen
diagrammatically has led to important advances in representation theory and knot theory J. Brooks
in recent years.
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lllustrating Dynamics and Probability

Nov 11 - 15, 2019

Organizing Committee

e Jayadev Athreya e Alexander Holroyd e Sarah Koch
University of Washington Churchill College and Statistical Laboratory at University of Michigan, Ann Arbor
University of Cambridge

Abstract

This workshop will focus on the theoretical insights developed via illustration,
visualization, and computational experiment in dynamical systems and probability theory.
Some topics from complex dynamics include: dynamical moduli spaces and their
dynamically-defined subvarieties, degenerations of dynamical systems as one moves
toward the boundary of moduli space, and the structure of algebraic data coming from a
family of dynamical systems. In classical dynamical systems, some topics include: flows
on hyperbolic spaces and Lorentz attractors, simple physical systems like billiards in two
and three dimensional domains, and flows on moduli spaces. In probability theory, the
workshop features: random walks and continuous time random processes like Brownian

motion, SLE, and scaling limits of discrete systems. ) 0) _\
O («@)@o ,@’

A stable matching in the plane.
Image credit: Alexander E. Holroyd.
Picture based on research by Christopher Hoffman,
Alexander Holroyd and Yuval Peres.

https://icerm.brown.edu/programs/sp-f19/
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Angle structure
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around edge

strict angle structure If:

Q; & (07 ﬂ-)

transverse taut angle structure If;

coorientations on faces and o; € {0, 7}



Veering structure

taut angle structure, and:

Each tetrahedron colours
ts O angle edges red or blue.




These colours must be
consistent for all tetrahedra
iIncident to the edge.
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(Agol 2010) Let M be a surface bundle with pseudo-
Anosov monodromy . The result of drilling out singular
orbits admits a veering triangulation canonically
associated to .

pseudo-Anosov  (Ago)  triangulation

>

surface bundle | w/ veering
- canonical
structure




(Hodgson-Rubinstein-S-Tillmann 2011) Triangulations
with veering structures admit strict angle structures. (Also
found non-fibered examples by computer search.)

(Futer-Gueritaud 2013) Give explicit strict angle
structures for triangulations admitting veering structures.
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(Issa-Hodgson-S 2016) There are non-geometric
triangulations with veering structures.
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(Agol-Gueritaud, unpublished) Extend the construction
to manifolds with pseudo-Anosov flows.

(Schleimer-S, work in progress) Prove the converse.
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flows live on closed manifolds so we need to fill. Also Agol-Guéritaud use the analytic version of a pseudo-Anosov flow, while we use a topological version. These are conjectured to be equivalent.



(Agol-Gueritaud, unpublished) Extend the construction
to manifolds with pseudo-Anosov flows.

(Schleimer-S, work in progress) Prove the converse.
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(Other work on veering structures by Landry, Minksy, Sakata, Taylor, Worden...)

* pseudo-Anosov flows live on closed manifolds so we need to fill. Also Agol-Guéritaud use the analytic version of a pseudo-Anosov flow, while we use a topological version. These are conjectured to be equivalent.



How common are veering structures?

Of the 4,815 orientable triangulations in the SnapPea
census (up to 7 tetrahedra):

All are geometric so all have strict angle structures
There are 13,599 taut angle structures
"here are 158 veering structures (on 151 triangulations)

S0 on this non-random sample, approx 1.1% of
triangulations admit veering structures.



How common are veering structures?

Another way to sample triangulations: explore the
Pachner graph of triangulations of a manifold.
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connected under 2-3 and 3-2 <«

moves. 3-2 move
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How common are veering structures?

Another way to sample triangulations: explore the
Pachner graph of triangulations of a manifold.

(Matveev (1987), Piergallini 2.3 move
(1988)) The Pachner graph is S
connected under 2-3 and 3-2 <«
moves. 3-2 move

In the “celling 10" subgraph of the Pachner graph for the figure 8
knot complement:

triangulations 19,470,660 100%
admit a taut angle structure 799,358 4.1%
admit a strict angle structure 2,621 0.013%

admit a veering structure 1 0.0000051%



Conjecture:
Each manifold admits a finite
number of veering structures.
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tetrahedra directly. (Work with Masters student Andreas
Giannopolous.)



Another approach to finding
veering structures

Generate all (transverse) veering triangulations with up to n
tetrahedra directly. (Work with Masters student Andreas

Giannopolous.)

We use the following result to reduce the search space:

Theorem (Schleimer, S): A manifold with a veering
triangulation admits a canonical decomposition into veering
Ideal solid tori.





















Solid tori glue to each other
along rhombuses on their
boundaries, matching edge
colours.

To build our census of
transverse veering
structures, we try all such
gluings.

We get a transverse veering
structure If the total angle at
each edge is 2.



Transverse taut veering structures

H#tetrahedra

#veering é#duplicate %#non geom %#non layered %fraction non

structs

2

5

12,
20
50
85
205!
356
750
1358
2871
5332
10986
21290

triangs

A

triangs

R G N

35
32

N
A

52
110
234

structs

61
120;
255
492

1035
2075
4269;
8788

layered

0.000
0.000
0.000
0.200
0.260
0.282
0.298
0.337
0.340
0.362
0.361
0.389
0.389
0.413



Transverse taut veering structures

Log (num veering structures)

10 -

| num tetrahedra

he number of veering structures approximately doubles
every time we increase the number of tetrahedra by one.



Layers and continents in
the universal cover
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Layers and continents in
the universal cover ”w%

Taut ideal tetrahedra layer to make ﬁ
larger taut ideal polyhedra:

continents. QQ p

This gives a circular order to the
vertices of the tetrahedra.

Theorem (Schleimer, S): A
veering triangulation admits a
unique circular order on the
vertices of the universal cover.




Theorem (Schleimer, S): A
veering triangulation admits a
unique circular order on the
vertices of the universal cover.

Example There are two
taut angle structures on
the canonical triangulation
of the figure 8 knot
complement that admit
uncountably many circular
orders on the vertices of
the universal cover.

Picture of Dehn surgery space (generated with SnapPy)
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Dynamic pairs and topological
pseudo-Anosov flows

Veering canonical dynamic
—— :
Structure (Schieimer, S) pair

topological
N (Mosher) pseudo-
filing slope Anosov flow
(avoiding finite
number of lines) with
+

i ——» N0 perfect fits
(avcndmg afew (Schleimer, S) P
more lines)



A dynamic pair is a "well arranged”
pair of a stable branched surface and
an unstable branched surface

These carry stable and
unstable laminations
which “expand” and

“contract” as we flow up.



A dynamic pair is a “well arranged”
pair of a stable branched surface and
an unstable branched surface

These carry stable and
unstable laminations
which “expand” and

“contract” as we flow up.

Each vertex of the stable branched
surface sits on the lower edge of a
veering tetrahedron.

—ach vertex of the unstable branched
surface sits on the upper edge of a

veering tetrahedron.




S0 the veering triangulation tells us where to put
the branched surfaces...

But we need more for a dynamic pair:

1) The branched surfaces should be transverse.
(At the moment they coincide in some tetrahedral)



2) The complementary components
to the stable and unstable branched
surfaces should be dynamic torus
shells and pinched tetrahedra.

KKK KX



2) The complementary components
to the stable and unstable branched
surfaces should be dynamic torus
shells and pinched tetrahedra.

3) ...
4) ...

KKK KX



Ex: the
figure 8 knot
complement

Pushing the branched
surfaces off of each other
WOrks In some cases...




Ex: the
figure 8 knot
sister

Pushing the branched
surfaces off of each other
WOrks In some cases...

...but fails catastrophically
IN general.

A




We have to very
delicately split the
branched surfaces In
each veering solid
torus 10 get a
dynamic pairr.



ADEREIN]

ASUAKIAKIA KX éf‘?»

DD DN
A leaf carried by the stable branched surface for the veering triangulation of the figure 8
knot complement. The leaf is decomposed into sectors, and then into normal disks.




