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Ideal triangulations of 3-manifolds

Thurston showed that the complement of the figure 8 knot has a
complete hyperbolic structure, and that this structure has a
decomposition into two ideal hyperbolic tetrahedra.

Conjecture: Every hyperbolic 3-manifold with torus boundary
components has a decomposition into positive volume ideal
hyperbolic tetrahedra (a geometric triangulation).
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Theorem (Epstein-Penner)
If M is a hyperbolic manifold with a single cusp then it has a
canonical decomposition into convex ideal hyperbolic polyhedra.

If all of the polyhedra are tetrahedra then we are done. If not then
all we have to do is cut up each polyhedron into ideal tetrahedra.

For example, we can cone
the polyhedron from a
chosen vertex.

This cuts the polyhedron
into pyramids.

Then any triangulation of
the base of a pyramid
induces a triangulation of
it.
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The problem

The triangulations of faces
of the polyhedra may not
match.

We can insert flat
tetrahedra between the
faces to “bridge” from one
triangulation to the other,
but then we don’t have a
geometric triangulation!

With some strong assumptions on the combinatorics of the
polyhedral decomposition, Wada, Yamashita and Yoshida show that
the coning can be chosen so that this doesn’t happen, but the
general problem remains open.
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An easier problem: find a triangulation T with a strict angle
structure

If we have a geometric triangulation, then for each ideal hyperbolic
tetrahedron in T , the dihedral angles (numbers in (0, π)) determine
its shape. These angles satisfy:

I In each tetrahedron, angles at
opposite edges are the same.

I In each tetrahedron,
α1 + α2 + α3 = π.

I Around each edge of T ,∑
α = 2π.

A strict angle structure on a triangulation T is an assignment of
angles that satisfies these properties.

The existence of an angle structure is a necessary condition for a
triangulation to be geometric.



Theorem (Hodgson, Rubinstein, S)
Assume that M is the interior of a compact orientable irreducible
hyperbolic manifold with incompressible tori boundary components.
If H1(M;Z2)→ H1(M, ∂M;Z2) is the zero map then M admits an
ideal triangulation with a strict angle structure.

Corollary
If M is a hyperbolic link complement in S3, then M admits an ideal
triangulation with a strict angle structure.

Proof.
H1 of a link complement is generated by meridians.



Outline of a sketch of a proof of the theorem

1. Start with the Epstein-Penner decomposition into convex ideal
hyperbolic polyhedra.

2. Carefully choose a coning of each polyhedron.
3. When triangulations of faces of the polyhedra disagree,

carefully bridge between them with flat tetrahedra.
4. Show that the resulting partially flat angle structure can be

deformed into a strict angle structure.

Example: When introducing flat
tetrahedra in step 3, if we make a
degree 2 edge then we will have no
hope of deforming to make a strict
angle structure.
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Strict angle structures from normal surface theory
The tool we use for step 4 is a linear programming duality result
between normal surface theory and the angle structure equations.

The normal surface solution space for
a triangulation T is C (M; T ) ⊂ R7n.
The coordinates represent weights of
the 4 triangle and 3 quad disk types
in the n tetrahedra.

The face gluings give compatibility equations on the x ∈ C (M; T ).

A quad type is vertical relative to a (partially flat) angle structure if
the facing angles are 0.

Theorem (Kang-Rubinstein, Luo-Tillmann)
The triangulation T admits a strict angle structure if and only if
there is no x ∈ C (M; T ) with all quadrilateral coordinates
non-negative, all non-vertical quadrilateral coordinates zero and at
least one quadrilateral coordinate positive.
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Any such “bad” x ∈ C (M; T ) can only have quads in the flat
“bridge” regions between the polyhedra.

When we triangulate a polyhedron by
coning, we never need to attach a
bridge to faces that aren’t next to
the coning point.

We can choose our cone points
so that the dual graph to the
polyhedra contains a spanning
tree of edges corresponding to
face identifications without
bridges.

Where we do have to insert bridges, they are of a very simple sort
(in fact we show that only bridges on faces with either 4 or 6 sides
can have any vertical quads in them).
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Assuming there is a bad x ∈ C (M; T ),
we can replace the quads in the bridges
with certain “twisted disk” surface parts
to convert the normal surface solution
class into an embedded closed surface.

Take a fundamental, non-peripheral
component of the surface. It turns out
that such a component must have an
odd number of parallel twisted disks in
some bridge region in order to be
fundamental.

Then take a path through this bridge region. Complete the path to
a loop using the spanning tree, and we get a non-peripheral
element of H1(M;Z2) since no sum of peripheral loops can have
odd intersection with a closed surface.

So H1(M;Z2)→ H1(M, ∂M;Z2) is not the zero map, which is a
contradiction to the hypothesis of the theorem.


