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On your smartphone web browser, go to:

hypernom.com

(You may need to lock your phone’s screen orientation.)

hypernom.com


Hypernom is a mobile/virtual reality game/experience that uses the
VR headset (or phone) orientation in an unusual way.

There are three degrees of freedom in the orientation of a headset
(or phone, camera, etc.).

In fact, the set of possible device orientations is a three-dimensional
manifold, SO(3) ∼= RP3. The idea of Hypernom is to lift the device
orientation to navigate through a three-dimensional space, namely
the universal cover of RP3, which is the three-sphere, S3.
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What to draw on screen
I Start with a regular

polytope in R4

I Radially project it to S3

I Then stereographically
project it to R3

A camera positioned at 0 ∈ R3 shows the result on screen.



How things move on screen

We get a unit quaternion q by lifting the device orientation to
S3 ⊂ R4.

For each point p ∈ S3 of each cell of the tiling, we move it to q.p
before stereographically projecting. This gives the effect of moving
the user through S3 as q varies.

Rotating the device also rotates the view of the camera positioned
at 0 ∈ R3.

A Puzzle: Why does rotating the device seem to
move us along the axis of the rotation?
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Let H = R⊕ I ∼= R4 be the quaternions, where I = iR⊕ jR⊕ kR
is the subspace of purely imaginary quaternions.

Let S2
I = S3 ∩ I, be the equatorial great sphere.

For any q ∈ S3 − {±1} there is a unique u ∈ S2
I and a unique

α ∈ (0, π) so that q = euα

We can then define stereographic projection, ρ : S3 − {−1} → I as
ρ(q) = ρ(euα) = sin(α)

1+cos(α) · u.

Define ψq : I→ I by ψq(p) = qpq−1. This gives an element of
SO(3) induced by q ∈ S3. This gives the induced map

ψ : S3 → SO(3).

For q = ±euα the isometry ψq is a rotation of I about the direction
u through angle 2α. [Gauss, Rodrigues, Cayley, and Hamilton]

So, rotation of the device around an axis u lifts to some quaternion
in the direction of u as seen in the stereographic projection.
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hypernom.com

I Works on iOS, Android and desktop
I Paper at archive.bridgesmathart.org/2015/

bridges2015-387.html
I Source code at github.com/vihart/hypernom

hypernom.com
archive.bridgesmathart.org/2015/bridges2015-387.html
archive.bridgesmathart.org/2015/bridges2015-387.html
github.com/vihart/hypernom

