

Hypernom: Mapping VR Headset Orientation to S^3

Vi Hart SAP Labs

Andrea Hawksley Communications Design Group Communications Design Group SAP Labs

Henry Segerman Department of Mathematics Oklahoma State University

Marc ten Bosch MTB Design Works, Inc. Hypernom is a virtual reality game that uses the VR headset (or phone) orientation in an unusual way.

Hypernom is a virtual reality game that uses the VR headset (or phone) orientation in an unusual way.

There are three degrees of freedom in the orientation of a headset (or phone, camera, etc.).

Hypernom is a virtual reality game that uses the VR headset (or phone) orientation in an unusual way.

There are three degrees of freedom in the orientation of a headset (or phone, camera, etc.).

The idea of Hypernom is to use headset orientation to navigate the player through a three-dimensional space.

Opposite points on the boundary of the ball are identified, so the space is real projective space, $\mathbb{R}P^3$.

The same construction of gluing opposite points on the boundary of a disk makes the real projective plane, $\mathbb{R}P^2$.

The same construction of gluing opposite points on the boundary of a disk makes the real projective plane, $\mathbb{R}P^2$.

 $\mathbb{R}P^2$ is double covered by the 2-sphere, S^2 . In the same way, $\mathbb{R}P^3$ is double covered by the 3-sphere, S^3 .

hypernom.com

- Works on iOS, Android and desktop
- Source code at github.com/vihart/hypernom