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The 3-dimensional sphere

The 2-dimensional sphere, S2, is the usual sphere in R3:

S2 = {(x , y , z) ∈ R3 | x2 + y2 + z2 = 1}

By analogy, the 1-dimensional sphere is the circle:

S1 = {(x , y) ∈ R2 | x2 + y2 = 1}

and this is the 3-dimensional sphere:

S3 = {(x , y , z ,w) ∈ R4 | x2 + y2 + z2 + w2 = 1}
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Stereographic projection

S3 is hard to visualise, because it lives in R4. However, we can use
stereographic projection, which maps from Sn to Rn, to reduce the
dimension by one.

For n = 1, we define ρ : S1 → R1 by ρ(x , y) = x
1−y .
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This is a cross-section of stereographic projection for n > 1.
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2-dimensional stereographic projection
For n = 2, we define ρ : S2 → R2 by ρ(x , y , z) =

(
x

1−z ,
y

1−z

)
.
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Example: cube, thickened
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Example: cube, thickened



(Good) properties of
stereographic projection:

I Circles in Sn map to circles
or lines in Rn.

I Stereographic projection is
conformal, meaning that it
preserves angles.

(Bad) properties of stereographic
projection:

I Objects near the projection
point become very big in the
image.



3-dimensional stereographic projection

For n = 3, we define ρ : S3 → R3 by

ρ(x , y , z ,w) =

(
x

1− w
,

y
1− w

,
z

1− w

)
.



So this gives us a way to draw objects native to S3.

We explored sculptures of two kinds of object:
I 4-dimensional polytopes
I Surfaces

In both cases, we need to thicken 1 or 2-dimensional objects to
produce 3-dimensional objects that can be printed.
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4-dimensional polytopes (drawn with thickened edges)

5-cell 8-cell 16-cell

24-cell 120-cell 600-cell



Thickening in S3 is better than thickening in R3

I The ratio of distances between objects to thicknesses of
objects is constant if we thicken in S3, but varies if we thicken
in R3. So the former retains more symmetry.

I There are both pros and cons in terms of cost and strength of
the printed object.



























Duality for 3-dimensional polyhedra

vertices ↔ faces
edges ↔ edges
faces ↔ vertices
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Dual half 24-cells



Dual half 120-cell and 600-cell















Chains of dodecahedra in the 120-cell









Surfaces in S3

Some surfaces (and other objects) can be represented in a
particularly natural way in S3.

This is partly to do with circles being very natural in S3. For
example, {(

cos(α), sin(α), 0, 0
) ∣∣∣∣ 0 ≤ α < 2π

}
⊂ S3

is a circle (i.e. S1) which is also a geodesic.

The torus, T can be formed as the product S1 × S1, so we can
parameterise it as the Clifford Torus:{

1√
2

(
cos(α), sin(α), cos(β), sin(β)

) ∣∣∣∣ 0 ≤ α < 2π, 0 ≤ β < 2π
}
⊂ S3
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(
cos(α), sin(α), cos(β), sin(β)

) ∣∣∣∣ 0 ≤ α < 2π, 0 ≤ β < 2π
}
⊂ S3

Unfortunately, the curves we get by fixing α and varying β, or vice
versa, are not geodesics (great circles).

A rotation and reparameterisation of this gives:{(
cos(θ) cos(φ), cos(θ) sin(φ), sin(θ) cos(φ), sin(θ) sin(φ)

) ∣∣∣∣
0 ≤ θ < 2π, 0 ≤ φ < π

}
Now we do get geodesics by fixing θ and varying φ, or vice versa.

Also, the torus goes through the projection point, (0, 0, 0, 1).
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I All arcs shown are geodesics.
I We cut off the surface near the projection point, otherwise we

would use an infinite amount of plastic.
I We get a pleasing symmetry: the Clifford torus cuts S3 into

two isometric solid tori, and this property is retained in R3.



Thickening
As before, thickening in S3 is better than thickening in R3, for
aesthetic reasons of retaining more symmetry.

We parameterise the normal to the surface in S3, and then thicken
in that direction.

How do we find a normal in S3?

p(θ, φ) =
(
cos(θ) cos(φ), cos(θ) sin(φ), sin(θ) cos(φ), sin(θ) sin(φ)

)
p(θ, φ) is perpendicular to both ∂

∂θp(θ, φ) and
∂
∂φp(θ, φ) in R4, so

we define the normal vector n(θ, φ) to be one of the unit vectors
perpendicular to p, ∂∂θp and ∂

∂φp in R4.

We introduce a new parameter, ψ for thickness, and move a
distance ψ along the geodesic from p(θ, φ) to n(θ, φ) to reach

r(θ, φ, ψ) = cos(ψ)p(θ, φ) + sin(ψ)n(θ, φ).
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A slight modification of the torus gives a “Round” Möbius strip:{(
cos(θ) cos(φ), cos(θ) sin(φ), sin(θ) cos(2φ), sin(θ) sin(2φ)

) ∣∣∣∣
0 ≤ θ < π, 0 ≤ φ < π

}

This is a version of the “Sudanese Möbius strip”, but projected to
R3 in such a way that the surface goes through infinity.

If we extend the surface, taking 0 ≤ θ < 2π, we get the union of
two Möbius strips along their boundaries, which is...



A “Round” Klein bottle



Another variant gives a parameterisation of a torus knot (a knot
that can be drawn on a torus). In this case, the trefoil knot:{(

cos(θ) cos(φ), cos(θ) sin(φ), sin(θ) cos(3/2φ), sin(θ) sin(3/2φ)
) ∣∣∣∣

0 ≤ φ < 4π
}

Here θ has a fixed value, greater
than 0 and smaller than π/2.
Altering the fraction 3/2 will
produce other torus knots.

We can use the local coordinates
(θ, φ, ψ) : R3 → S3 to add small
features, using any shape we
could define in ordinary
3-dimensional space, in this case
cog teeth.











Thanks!

segerman.org

ms.unimelb.edu.au/∼segerman/

youtube.com/user/henryseg


