

Sculptures in S^{3}
Henry Segerman and Saul Schleimer University of Melbourne University of Warwick

The 3-dimensional sphere

The 2-dimensional sphere, S^{2}, is the usual sphere in \mathbb{R}^{3} :

$$
S^{2}=\left\{(x, y, z) \in \mathbb{R}^{3} \mid x^{2}+y^{2}+z^{2}=1\right\}
$$

By analogy, the 1-dimensional sphere is the circle:

$$
S^{1}=\left\{(x, y) \in \mathbb{R}^{2} \mid x^{2}+y^{2}=1\right\}
$$

and this is the 3 -dimensional sphere:

The 3-dimensional sphere

The 2-dimensional sphere, S^{2}, is the usual sphere in \mathbb{R}^{3} :

$$
S^{2}=\left\{(x, y, z) \in \mathbb{R}^{3} \mid x^{2}+y^{2}+z^{2}=1\right\}
$$

By analogy, the 1-dimensional sphere is the circle:

$$
S^{1}=\left\{(x, y) \in \mathbb{R}^{2} \mid x^{2}+y^{2}=1\right\}
$$

and this is the 3-dimensional sphere:

The 3-dimensional sphere

The 2-dimensional sphere, S^{2}, is the usual sphere in \mathbb{R}^{3} :

$$
S^{2}=\left\{(x, y, z) \in \mathbb{R}^{3} \mid x^{2}+y^{2}+z^{2}=1\right\}
$$

By analogy, the 1-dimensional sphere is the circle:

$$
S^{1}=\left\{(x, y) \in \mathbb{R}^{2} \mid x^{2}+y^{2}=1\right\}
$$

and this is the 3-dimensional sphere:

$$
S^{3}=\left\{(x, y, z, w) \in \mathbb{R}^{4} \mid x^{2}+y^{2}+z^{2}+w^{2}=1\right\}
$$

Stereographic projection

S^{3} is hard to visualise, because it lives in \mathbb{R}^{4}. However, we can use stereographic projection, which maps from S^{n} to \mathbb{R}^{n}, to reduce the dimension by one.

For $n=1$, we define $\rho: S^{1} \rightarrow \mathbb{R}^{1}$ by $\rho(x, y)=\frac{x}{1-y}$.

Stereographic projection

S^{3} is hard to visualise, because it lives in \mathbb{R}^{4}. However, we can use stereographic projection, which maps from S^{n} to \mathbb{R}^{n}, to reduce the dimension by one.

For $n=1$, we define $\rho: S^{1} \rightarrow \mathbb{R}^{1}$ by $\rho(x, y)=\frac{x}{1-y}$.

Stereographic projection

S^{3} is hard to visualise, because it lives in \mathbb{R}^{4}. However, we can use stereographic projection, which maps from S^{n} to \mathbb{R}^{n}, to reduce the dimension by one.

For $n=1$, we define $\rho: S^{1} \rightarrow \mathbb{R}^{1}$ by $\rho(x, y)=\frac{x}{1-y}$.

This is a cross-section of stereographic projection for $n>1$.

Stereographic projection

S^{3} is hard to visualise, because it lives in \mathbb{R}^{4}. However, we can use stereographic projection, which maps from S^{n} to \mathbb{R}^{n}, to reduce the dimension by one.

For $n=1$, we define $\rho: S^{1} \rightarrow \mathbb{R}^{1}$ by $\rho(x, y)=\frac{x}{1-y}$.

This is a cross-section of stereographic projection for $n>1$.

Stereographic projection

S^{3} is hard to visualise, because it lives in \mathbb{R}^{4}. However, we can use stereographic projection, which maps from S^{n} to \mathbb{R}^{n}, to reduce the dimension by one.

For $n=1$, we define $\rho: S^{1} \rightarrow \mathbb{R}^{1}$ by $\rho(x, y)=\frac{x}{1-y}$.

This is a cross-section of stereographic projection for $n>1$.

Stereographic projection

S^{3} is hard to visualise, because it lives in \mathbb{R}^{4}. However, we can use stereographic projection, which maps from S^{n} to \mathbb{R}^{n}, to reduce the dimension by one.

For $n=1$, we define $\rho: S^{1} \rightarrow \mathbb{R}^{1}$ by $\rho(x, y)=\frac{x}{1-y}$.

This is a cross-section of stereographic projection for $n>1$.

Stereographic projection

S^{3} is hard to visualise, because it lives in \mathbb{R}^{4}. However, we can use stereographic projection, which maps from S^{n} to \mathbb{R}^{n}, to reduce the dimension by one.

For $n=1$, we define $\rho: S^{1} \rightarrow \mathbb{R}^{1}$ by $\rho(x, y)=\frac{x}{1-y}$.

This is a cross-section of stereographic projection for $n>1$.

2-dimensional stereographic projection
For $n=2$, we define $\rho: S^{2} \rightarrow \mathbb{R}^{2}$ by $\rho(x, y, z)=\left(\frac{x}{1-z}, \frac{y}{1-z}\right)$.

2-dimensional stereographic projection
For $n=2$, we define $\rho: S^{2} \rightarrow \mathbb{R}^{2}$ by $\rho(x, y, z)=\left(\frac{x}{1-z}, \frac{y}{1-z}\right)$.

2-dimensional stereographic projection
For $n=2$, we define $\rho: S^{2} \rightarrow \mathbb{R}^{2}$ by $\rho(x, y, z)=\left(\frac{x}{1-z}, \frac{y}{1-z}\right)$.

Example: cube

Example: cube

Example: cube

Example: cube, thickened

Example: cube, thickened

Example: cube, thickened

Example: cube, thickened

(Good) properties of
stereographic projection:

- Circles in S^{n} map to circles or lines in \mathbb{R}^{n}.

- Stereographic projection is conformal, meaning that it preserves angles.
(Bad) properties of stereographic projection:
- Objects near the projection point become very big in the image.

3-dimensional stereographic projection

For $n=3$, we define $\rho: S^{3} \rightarrow \mathbb{R}^{3}$ by

$$
\rho(x, y, z, w)=\left(\frac{x}{1-w}, \frac{y}{1-w}, \frac{z}{1-w}\right) .
$$

So this gives us a way to draw objects native to S^{3}.
We explored sculptures of two kinds of object:

- 4-dimensional polytopes
- Surfaces

In both cases, we need to thicken 1 or 2-dimensional objects to produce 3-dimensional objects that can be printed.

So this gives us a way to draw objects native to S^{3}.
We explored sculptures of two kinds of object:

- 4-dimensional polytopes
- Surfaces

In both cases, we need to thicken 1 or 2-dimensional objects to produce 3-dimensional objects that can be printed.

4-dimensional polytopes (drawn with thickened edges)

Thickening in S^{3} is better than thickening in \mathbb{R}^{3}

- The ratio of distances between objects to thicknesses of objects is constant if we thicken in S^{3}, but varies if we thicken in \mathbb{R}^{3}. So the former retains more symmetry.
- There are both pros and cons in terms of cost and strength of the printed object.

Duality for 3-dimensional polyhedra

Duality for 4-dimensional polytopes

vertices	\leftrightarrow	cells
edges	\leftrightarrow	faces
faces	\leftrightarrow	edges
cells	\leftrightarrow	vertices

Duality for 4-dimensional polytopes

vertices	\leftrightarrow	cells
edges	\leftrightarrow	faces
faces	\leftrightarrow	edges
cells	\leftrightarrow	vertices

Duality for 4-dimensional polytopes

vertices	\leftrightarrow	cells
edges	\leftrightarrow	faces
faces	\leftrightarrow	edges
cells	\leftrightarrow	vertices

Duality for 4-dimensional polytopes

vertices	\leftrightarrow	cells
edges	\leftrightarrow	faces
faces	\leftrightarrow	edges
cells	\leftrightarrow	vertices

Duality for 4-dimensional polytopes

vertices	\leftrightarrow	cells
edges	\leftrightarrow	faces
faces	\leftrightarrow	edges
cells	\leftrightarrow	vertices

Dual half 24-cells

Dual half 120 -cell and 600 -cell

Chains of dodecahedra in the 120－cell

Surfaces in S^{3}

Some surfaces (and other objects) can be represented in a particularly natural way in S^{3}.

This is partly to do with circles being very natural in S^{3}. For example,

$$
\{(\cos (\alpha), \sin (\alpha), 0,0) \mid 0 \leq \alpha<2 \pi\} \subset S^{3}
$$

is a circle (i.e. S^{1}) which is also a geodesic.
The torus, \mathbb{T} can be formed as the product $S^{1} \times S^{1}$, so we can parameterise it as the Clifford Torus:

Surfaces in S^{3}

Some surfaces (and other objects) can be represented in a particularly natural way in S^{3}.

This is partly to do with circles being very natural in S^{3}. For example,

$$
\{(\cos (\alpha), \sin (\alpha), 0,0) \mid 0 \leq \alpha<2 \pi\} \subset S^{3}
$$

is a circle (i.e. S^{1}) which is also a geodesic.
The torus, \mathbb{T} can be formed as the product $S^{1} \times S^{1}$, so we can parameterise it as the Clifford Torus:
$\left\{\left.\frac{1}{\sqrt{2}}(\cos (\alpha), \sin (\alpha), \cos (\beta), \sin (\beta)) \right\rvert\, 0 \leq \alpha<2 \pi, 0 \leq \beta<2 \pi\right\} \subset S^{3}$

$$
\left\{\left.\frac{1}{\sqrt{2}}(\cos (\alpha), \sin (\alpha), \cos (\beta), \sin (\beta)) \right\rvert\, 0 \leq \alpha<2 \pi, 0 \leq \beta<2 \pi\right\} \subset S^{3}
$$

Unfortunately, the curves we get by fixing α and varying β, or vice versa, are not geodesics (great circles).

A rotation and reparameterisation of this gives:
$\{(\cos (\theta) \cos (\phi), \cos (\theta) \sin (\phi), \sin (\theta) \cos (\phi), \sin (\theta) \sin (\phi))$

Now we do get geodesics by fixing θ and varying ϕ, or vice versa.
Also, the torus goes through the projection point, $(0,0,0,1)$.

$$
\left\{\left.\frac{1}{\sqrt{2}}(\cos (\alpha), \sin (\alpha), \cos (\beta), \sin (\beta)) \right\rvert\, 0 \leq \alpha<2 \pi, 0 \leq \beta<2 \pi\right\} \subset S^{3}
$$

Unfortunately, the curves we get by fixing α and varying β, or vice versa, are not geodesics (great circles).

A rotation and reparameterisation of this gives:

$$
\begin{aligned}
\{(\cos (\theta) \cos (\phi), \cos (\theta) \sin (\phi), \sin (\theta) \cos (\phi), \sin (\theta) \sin (\phi)) \\
0 \leq \theta<2 \pi, 0 \leq \phi<\pi\}
\end{aligned}
$$

Now we do get geodesics by fixing θ and varying ϕ, or vice versa.
Also, the torus goes through the projection point, $(0,0,0,1)$.

$$
\left\{\left.\frac{1}{\sqrt{2}}(\cos (\alpha), \sin (\alpha), \cos (\beta), \sin (\beta)) \right\rvert\, 0 \leq \alpha<2 \pi, 0 \leq \beta<2 \pi\right\} \subset S^{3}
$$

Unfortunately, the curves we get by fixing α and varying β, or vice versa, are not geodesics (great circles).

A rotation and reparameterisation of this gives:

$$
\begin{aligned}
\{(\cos (\theta) \cos (\phi), \cos (\theta) \sin (\phi), \sin (\theta) \cos (\phi), \sin (\theta) \sin (\phi)) \\
0 \leq \theta<2 \pi, 0 \leq \phi<\pi\}
\end{aligned}
$$

Now we do get geodesics by fixing θ and varying ϕ, or vice versa.
Also, the torus goes through the projection point, ($0,0,0,1$).

$$
\left\{\left.\frac{1}{\sqrt{2}}(\cos (\alpha), \sin (\alpha), \cos (\beta), \sin (\beta)) \right\rvert\, 0 \leq \alpha<2 \pi, 0 \leq \beta<2 \pi\right\} \subset S^{3}
$$

Unfortunately, the curves we get by fixing α and varying β, or vice versa, are not geodesics (great circles).

A rotation and reparameterisation of this gives:

$$
\begin{aligned}
\{(\cos (\theta) \cos (\phi), \cos (\theta) \sin (\phi), \sin (\theta) \cos (\phi), \sin (\theta) \sin (\phi)) \\
0 \leq \theta<2 \pi, 0 \leq \phi<\pi\}
\end{aligned}
$$

Now we do get geodesics by fixing θ and varying ϕ, or vice versa.
Also, the torus goes through the projection point, $(0,0,0,1)$.

- All arcs shown are geodesics.
- We cut off the surface near the projection point, otherwise we would use an infinite amount of plastic.
- We get a pleasing symmetry: the Clifford torus cuts S^{3} into two isometric solid tori, and this property is retained in \mathbb{R}^{3}.

Thickening

As before, thickening in S^{3} is better than thickening in \mathbb{R}^{3}, for aesthetic reasons of retaining more symmetry.

We parameterise the normal to the surface in S^{3}, and then thicken in that direction.

How do we find a normal in S^{3} ?
$p(\theta, \phi)=(\cos (\theta) \cos (\phi), \cos (\theta) \sin (\phi), \sin (\theta) \cos (\phi), \sin (\theta) \sin (\phi))$
$p(\theta, \phi)$ is perpendicular to both $\frac{\partial}{\partial \theta} p(\theta, \phi)$ and $\frac{\partial}{\partial \phi} p(\theta, \phi)$ in \mathbb{R}^{4}, so
we define the normal vector $n(\theta, \phi)$ to be one of the unit vectors perpendicular to $p, \frac{\partial}{\partial \theta} p$ and $\frac{\partial}{\partial \phi} p$ in \mathbb{R}^{4}

We introduce a new parameter, w for thickness, and move a distance ψ along the geodesic from $p(\theta, \phi)$ to $n(\theta, \phi)$ to reach

$$
r(\theta, \phi, \psi)=\cos (\psi) p(\theta, \phi)+\sin (\psi) n(\theta, \phi) .
$$

Thickening

As before, thickening in S^{3} is better than thickening in \mathbb{R}^{3}, for aesthetic reasons of retaining more symmetry.

We parameterise the normal to the surface in S^{3}, and then thicken in that direction.

How do we find a normal in S^{3} ?
$p(\theta, \phi)=(\cos (\theta) \cos (\phi), \cos (\theta) \sin (\phi), \sin (\theta) \cos (\phi), \sin (\theta) \sin (\phi))$
$p(\theta, \phi)$ is perpendicular to both $\frac{\partial}{\partial \theta} p(\theta, \phi)$ and $\frac{\partial}{\partial \phi} p(\theta, \phi)$ in \mathbb{R}^{4}, so
we define the normal vector $n(\theta, \phi)$ to be one of the unit vectors perpendicular to $p, \frac{\partial}{\partial \theta} p$ and $\frac{\partial}{\partial \phi} p$ in \mathbb{R}^{4}.

We introduce a new parameter, w for thickness, and move a distance ψ along the geodesic from $p(\theta, \phi)$ to $n(\theta, \phi)$ to reach

$$
r(\theta, \phi, \psi)=\cos (\psi) p(\theta, \phi)+\sin (\psi) n(\theta, \phi) .
$$

Thickening

As before, thickening in S^{3} is better than thickening in \mathbb{R}^{3}, for aesthetic reasons of retaining more symmetry.

We parameterise the normal to the surface in S^{3}, and then thicken in that direction.

How do we find a normal in S^{3} ?
$p(\theta, \phi)=(\cos (\theta) \cos (\phi), \cos (\theta) \sin (\phi), \sin (\theta) \cos (\phi), \sin (\theta) \sin (\phi))$

We introduce a new parameter, ψ for thickness, and move a distance ψ along the geodesic from $p(\theta, \phi)$ to $n(\theta, \phi)$ to reach

$$
r(\theta, \phi, \psi)=\cos (\psi) p(\theta, \phi)+\sin (\psi) n(\theta, \phi) .
$$

Thickening

As before, thickening in S^{3} is better than thickening in \mathbb{R}^{3}, for aesthetic reasons of retaining more symmetry.

We parameterise the normal to the surface in S^{3}, and then thicken in that direction.

How do we find a normal in S^{3} ?
$p(\theta, \phi)=(\cos (\theta) \cos (\phi), \cos (\theta) \sin (\phi), \sin (\theta) \cos (\phi), \sin (\theta) \sin (\phi))$
$p(\theta, \phi)$ is perpendicular to both $\frac{\partial}{\partial \theta} p(\theta, \phi)$ and $\frac{\partial}{\partial \phi} p(\theta, \phi)$ in \mathbb{R}^{4}, so we define the normal vector $n(\theta, \phi)$ to be one of the unit vectors perpendicular to $p, \frac{\partial}{\partial \theta} p$ and $\frac{\partial}{\partial \phi} p$ in \mathbb{R}^{4}.

We introduce a new parameter, ψ for thickness, and move a distance ψ along the geodesic from $p(\theta, \phi)$ to $n(\theta, \phi)$ to reach

Thickening

As before, thickening in S^{3} is better than thickening in \mathbb{R}^{3}, for aesthetic reasons of retaining more symmetry.
We parameterise the normal to the surface in S^{3}, and then thicken in that direction.

How do we find a normal in S^{3} ?

$$
p(\theta, \phi)=(\cos (\theta) \cos (\phi), \cos (\theta) \sin (\phi), \sin (\theta) \cos (\phi), \sin (\theta) \sin (\phi))
$$

$p(\theta, \phi)$ is perpendicular to both $\frac{\partial}{\partial \theta} p(\theta, \phi)$ and $\frac{\partial}{\partial \phi} p(\theta, \phi)$ in \mathbb{R}^{4}, so we define the normal vector $n(\theta, \phi)$ to be one of the unit vectors perpendicular to $p, \frac{\partial}{\partial \theta} p$ and $\frac{\partial}{\partial \phi} p$ in \mathbb{R}^{4}.
We introduce a new parameter, ψ for thickness, and move a distance ψ along the geodesic from $p(\theta, \phi)$ to $n(\theta, \phi)$ to reach

$$
r(\theta, \phi, \psi)=\cos (\psi) p(\theta, \phi)+\sin (\psi) n(\theta, \phi) .
$$

A slight modification of the torus gives a "Round" Möbius strip:

$$
\left.\begin{aligned}
\{(\cos (\theta) \cos (\phi), \cos (\theta) \sin (\phi), \sin (\theta) \cos (2 \phi), \sin (\theta) \sin (2 \phi))
\end{aligned} \right\rvert\,
$$

This is a version of the "Sudanese Möbius strip", but projected to \mathbb{R}^{3} in such a way that the surface goes through infinity.

If we extend the surface, taking $0 \leq \theta<2 \pi$, we get the union of two Möbius strips along their boundaries, which is...

A "Round" Klein bottle

Another variant gives a parameterisation of a torus knot (a knot that can be drawn on a torus). In this case, the trefoil knot:

$$
\begin{array}{r}
\{(\cos (\theta) \cos (\phi), \cos (\theta) \sin (\phi), \sin (\theta) \cos (3 / 2 \phi), \sin (\theta) \sin (3 / 2 \phi)) \mid \\
0 \leq \phi<4 \pi\}
\end{array}
$$

Here θ has a fixed value, greater than 0 and smaller than $\pi / 2$. Altering the fraction $3 / 2$ will produce other torus knots.

We can use the local coordinates $(\theta, \phi, \psi): \mathbb{R}^{3} \rightarrow S^{3}$ to add small features, using any shape we could define in ordinary 3-dimensional space, in this case cog teeth.

Thanks!

segerman.org
ms.unimelb.edu.au/~segerman/
youtube.com/user/henryseg

