

Sculptures in S^3

Henry Segerman and Saul Schleimer University of Melbourne University of Warwick

The 3-dimensional sphere

The 2-dimensional sphere, S^2 , is the usual sphere in \mathbb{R}^3 :

$$S^2 = \{(x, y, z) \in \mathbb{R}^3 \mid x^2 + y^2 + z^2 = 1\}$$

By analogy, the 1-dimensional sphere is the circle:

$$S^1 = \{(x, y) \in \mathbb{R}^2 \mid x^2 + y^2 = 1\}$$

and this is the 3-dimensional sphere:

$$S^3 = \{(x, y, z, w) \in \mathbb{R}^4 \mid x^2 + y^2 + z^2 + w^2 = 1\}$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

The 3-dimensional sphere

The 2-dimensional sphere, S^2 , is the usual sphere in \mathbb{R}^3 :

$$S^2 = \{(x, y, z) \in \mathbb{R}^3 \mid x^2 + y^2 + z^2 = 1\}$$

By analogy, the 1-dimensional sphere is the circle:

$$S^1 = \{(x, y) \in \mathbb{R}^2 \mid x^2 + y^2 = 1\}$$

and this is the 3-dimensional sphere:

$$S^{3} = \{(x, y, z, w) \in \mathbb{R}^{4} \mid x^{2} + y^{2} + z^{2} + w^{2} = 1\}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

The 3-dimensional sphere

The 2-dimensional sphere, S^2 , is the usual sphere in \mathbb{R}^3 :

$$S^2 = \{(x, y, z) \in \mathbb{R}^3 \mid x^2 + y^2 + z^2 = 1\}$$

By analogy, the 1-dimensional sphere is the circle:

$$S^1 = \{(x,y) \in \mathbb{R}^2 \mid x^2 + y^2 = 1\}$$

and this is the 3-dimensional sphere:

$$S^{3} = \{(x, y, z, w) \in \mathbb{R}^{4} \mid x^{2} + y^{2} + z^{2} + w^{2} = 1\}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

 S^3 is hard to visualise, because it lives in \mathbb{R}^4 . However, we can use stereographic projection, which maps from S^n to \mathbb{R}^n , to reduce the dimension by one.

For n = 1, we define $\rho : S^1 \to \mathbb{R}^1$ by $\rho(x, y) = \frac{x}{1-y}$.

This is a cross-section of stereographic projection for n > 1.

(ロ) (型) (E) (E) (E) (O)

 S^3 is hard to visualise, because it lives in \mathbb{R}^4 . However, we can use stereographic projection, which maps from S^n to \mathbb{R}^n , to reduce the dimension by one.

For n = 1, we define $\rho: S^1 \to \mathbb{R}^1$ by $\rho(x, y) = \frac{x}{1-y}$.

This is a cross-section of stereographic projection for n > 1.

(ロ) (型) (E) (E) (E) (O)

 S^3 is hard to visualise, because it lives in \mathbb{R}^4 . However, we can use stereographic projection, which maps from S^n to \mathbb{R}^n , to reduce the dimension by one.

For
$$n = 1$$
, we define $\rho : S^1 \to \mathbb{R}^1$ by $\rho(x, y) = \frac{x}{1-y}$.

・ロト ・ 日 ・ モート ・ 田 ・ うへで

 S^3 is hard to visualise, because it lives in \mathbb{R}^4 . However, we can use stereographic projection, which maps from S^n to \mathbb{R}^n , to reduce the dimension by one.

For
$$n = 1$$
, we define $\rho : S^1 \to \mathbb{R}^1$ by $\rho(x, y) = \frac{x}{1-y}$.

・ロト ・ 日 ・ モート ・ 田 ・ うへで

 S^3 is hard to visualise, because it lives in \mathbb{R}^4 . However, we can use stereographic projection, which maps from S^n to \mathbb{R}^n , to reduce the dimension by one.

For
$$n = 1$$
, we define $\rho : S^1 \to \mathbb{R}^1$ by $\rho(x, y) = \frac{x}{1-y}$.

・ロト ・個ト ・ヨト ・ヨト 三日

 S^3 is hard to visualise, because it lives in \mathbb{R}^4 . However, we can use stereographic projection, which maps from S^n to \mathbb{R}^n , to reduce the dimension by one.

For
$$n = 1$$
, we define $\rho : S^1 \to \mathbb{R}^1$ by $\rho(x, y) = \frac{x}{1-y}$.

・ロト ・四ト ・ヨト ・ヨト ・ヨ

 S^3 is hard to visualise, because it lives in \mathbb{R}^4 . However, we can use stereographic projection, which maps from S^n to \mathbb{R}^n , to reduce the dimension by one.

For
$$n = 1$$
, we define $\rho : S^1 \to \mathbb{R}^1$ by $\rho(x, y) = \frac{x}{1-y}$.

・ロト ・四ト ・ヨト ・ヨト ・ヨ

2-dimensional stereographic projection For n = 2, we define $\rho: S^2 \to \mathbb{R}^2$ by $\rho(x, y, z) = \left(\frac{x}{1-z}, \frac{y}{1-z}\right)$.

・ロト ・ 四ト ・ モト ・ モト

Э

2-dimensional stereographic projection For n = 2, we define $\rho: S^2 \to \mathbb{R}^2$ by $\rho(x, y, z) = \left(\frac{x}{1-z}, \frac{y}{1-z}\right)$.

(ロ > 〈 健 > 〈 臣 > 〈 臣 > 〉 臣 ・ 少々で、

2-dimensional stereographic projection For n = 2, we define $\rho: S^2 \to \mathbb{R}^2$ by $\rho(x, y, z) = \left(\frac{x}{1-z}, \frac{y}{1-z}\right)$.

Example: cube

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ● < ① へ ○</p>

Example: cube

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Example: cube

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - のへで

(Good) properties of stereographic projection:

- ► Circles in Sⁿ map to circles or lines in ℝⁿ.
- Stereographic projection is conformal, meaning that it preserves angles.

(Bad) properties of stereographic projection:

 Objects near the projection point become very big in the image.

3-dimensional stereographic projection

For
$$n = 3$$
, we define $\rho: S^3 \to \mathbb{R}^3$ by

$$\rho(x, y, z, w) = \left(\frac{x}{1-w}, \frac{y}{1-w}, \frac{z}{1-w}\right).$$

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ● < ① へ ○</p>

So this gives us a way to draw objects native to S^3 .

We explored sculptures of two kinds of object:

- 4-dimensional polytopes
- Surfaces

In both cases, we need to thicken 1 or 2-dimensional objects to produce 3-dimensional objects that can be printed.

・ロト ・ 日 ・ エ ヨ ・ ト ・ 日 ・ うらつ

So this gives us a way to draw objects native to S^3 .

We explored sculptures of two kinds of object:

- 4-dimensional polytopes
- Surfaces

In both cases, we need to thicken 1 or 2-dimensional objects to produce 3-dimensional objects that can be printed.

・ロト ・ 日 ・ エ ヨ ・ ト ・ 日 ・ うらつ

4-dimensional polytopes (drawn with thickened edges)

</l ъ

Thickening in S^3 is better than thickening in \mathbb{R}^3

- ► The ratio of distances between objects to thicknesses of objects is constant if we thicken in S³, but varies if we thicken in ℝ³. So the former retains more symmetry.
- There are both pros and cons in terms of cost and strength of the printed object.

୬ବ୍ଦ

🗄 ૧૧૯

🗉 🔊 ৭ ৫

୬ବ୍ଦ

≣ ৩৭৫

▲□▶ ▲圖▶ ▲国▶ ▲国▶ 三国 - のへで

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

▲□▶ ▲圖▶ ▲国▶ ▲国▶ - 国 - のへで

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

\leftrightarrow	cells
\leftrightarrow	faces
\leftrightarrow	edges
\leftrightarrow	vertices
	$\begin{array}{c} \leftrightarrow \\ \leftrightarrow \\ \leftrightarrow \\ \leftrightarrow \\ \leftrightarrow \end{array}$

vertices	\leftrightarrow	cells
edges	\leftrightarrow	faces
faces	\leftrightarrow	edges
cells	\leftrightarrow	vertices

78	3	

vertices	\leftrightarrow	cells
edges	\leftrightarrow	faces
faces	\leftrightarrow	edges
cells	\leftrightarrow	vertices

	0	
	0	

(ロ)、

vertices	\leftrightarrow	cells
edges	\leftrightarrow	faces
faces	\leftrightarrow	edges
cells	\leftrightarrow	vertices

/	

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

vertices	\leftrightarrow	cells
edges	\leftrightarrow	faces
faces	\leftrightarrow	edges
cells	\leftrightarrow	vertices

Dual half 24-cells

Dual half 120-cell and 600-cell

三 のへの

୬ବ୍ଦ

୬ବ୍ଦ

Chains of dodecahedra in the 120-cell

▲日▼▲□▼▲目▼▲目▼ 目 のへの

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ ▲圖 ● のへで

(目)(王)(王)(日)

Surfaces in S^3

Some surfaces (and other objects) can be represented in a particularly natural way in S^3 .

This is partly to do with circles being very natural in S^3 . For example,

$$\Big\{ig(\cos(lpha),\sin(lpha),0,0ig) \ \Big| \ 0\leq lpha < 2\pi\Big\} \subset S^3$$

is a circle (i.e. S^1) which is also a geodesic.

The torus, $\mathbb T$ can be formed as the product $S^1 imes S^1$, so we can parameterise it as the Clifford Torus:

$$\left\{\frac{1}{\sqrt{2}}(\cos(\alpha),\sin(\alpha),\cos(\beta),\sin(\beta))\ \middle|\ 0\leq\alpha<2\pi,\ 0\leq\beta<2\pi\right\}\subset S^3$$

・ロト ・ 日 ・ エ ヨ ・ ト ・ 日 ・ うらつ

Surfaces in S^3

Some surfaces (and other objects) can be represented in a particularly natural way in S^3 .

This is partly to do with circles being very natural in S^3 . For example,

$$\left\{\left(\cos(lpha),\sin(lpha),0,0
ight) \ \middle| \ 0\leqlpha<2\pi
ight\}\subset S^3$$

is a circle (i.e. S^1) which is also a geodesic.

The torus, \mathbb{T} can be formed as the product $S^1 \times S^1$, so we can parameterise it as the Clifford Torus:

$$\left\{\frac{1}{\sqrt{2}}(\cos(\alpha),\sin(\alpha),\cos(\beta),\sin(\beta))\ \middle|\ 0\leq\alpha<2\pi,\ 0\leq\beta<2\pi\right\}\subset S^3$$

$$\left\{\frac{1}{\sqrt{2}}(\cos(\alpha),\sin(\alpha),\cos(\beta),\sin(\beta))\ \middle|\ 0\leq\alpha<2\pi,\ 0\leq\beta<2\pi\right\}\subset S^3$$

A rotation and reparameterisation of this gives:

$$\left\{ \left(\cos(\theta) \cos(\phi), \cos(\theta) \sin(\phi), \sin(\theta) \cos(\phi), \sin(\theta) \sin(\phi) \right) \right| \\ 0 \le \theta < 2\pi, 0 \le \phi < \pi \right\}$$

Now we do get geodesics by fixing θ and varying ϕ , or vice versa.

- コン (雪) (日) (日) (日)

Also, the torus goes through the projection point, (0,0,0,1).

$$\left\{\frac{1}{\sqrt{2}}(\cos(\alpha),\sin(\alpha),\cos(\beta),\sin(\beta))\ \middle|\ 0\leq\alpha<2\pi,\ 0\leq\beta<2\pi\right\}\subset S^3$$

A rotation and reparameterisation of this gives:

$$egin{cases} \left\{ \left(\cos(heta)\cos(\phi),\cos(heta)\sin(\phi),\sin(heta)\cos(\phi),\sin(heta)\sin(\phi)
ight) \ & \ 0 \leq heta < 2\pi, 0 \leq \phi < \pi
ight\} \end{cases}$$

Now we do get geodesics by fixing θ and varying ϕ , or vice versa.

・ロト ・ 日 ・ エ ヨ ・ ト ・ 日 ・ うらつ

Also, the torus goes through the projection point, (0,0,0,1).

$$\left\{\frac{1}{\sqrt{2}}(\cos(\alpha),\sin(\alpha),\cos(\beta),\sin(\beta))\ \middle|\ 0\leq\alpha<2\pi,\ 0\leq\beta<2\pi\right\}\subset S^3$$

A rotation and reparameterisation of this gives:

Now we do get geodesics by fixing θ and varying ϕ , or vice versa.

・ロト ・ 日 ・ エ ヨ ・ ト ・ 日 ・ うらつ

Also, the torus goes through the projection point, (0,0,0,1).

$$\left\{\frac{1}{\sqrt{2}}(\cos(\alpha),\sin(\alpha),\cos(\beta),\sin(\beta))\ \middle|\ 0\leq\alpha<2\pi,\ 0\leq\beta<2\pi\right\}\subset S^3$$

A rotation and reparameterisation of this gives:

Now we do get geodesics by fixing θ and varying ϕ , or vice versa. Also, the torus goes through the projection point, (0, 0, 0, 1).

- All arcs shown are geodesics.
- We cut off the surface near the projection point, otherwise we would use an infinite amount of plastic.
- We get a pleasing symmetry: the Clifford torus cuts S³ into two isometric solid tori, and this property is retained in ℝ³.

As before, thickening in S^3 is better than thickening in \mathbb{R}^3 , for aesthetic reasons of retaining more symmetry.

We parameterise the normal to the surface in S^3 , and then thicken in that direction.

How do we find a normal in S^3 ?

 $p(\theta, \phi) = (\cos(\theta)\cos(\phi), \cos(\theta)\sin(\phi), \sin(\theta)\cos(\phi), \sin(\theta)\sin(\phi))$

 $p(\theta, \phi)$ is perpendicular to both $\frac{\partial}{\partial \theta}p(\theta, \phi)$ and $\frac{\partial}{\partial \phi}p(\theta, \phi)$ in \mathbb{R}^4 , so we define the normal vector $n(\theta, \phi)$ to be one of the unit vectors perpendicular to p, $\frac{\partial}{\partial \theta}p$ and $\frac{\partial}{\partial \phi}p$ in \mathbb{R}^4 .

We introduce a new parameter, ψ for thickness, and move a distance ψ along the geodesic from $p(\theta, \phi)$ to $n(\theta, \phi)$ to reach

$$r(\theta, \phi, \psi) = \cos(\psi)p(\theta, \phi) + \sin(\psi)n(\theta, \phi).$$

(日) (伊) (日) (日) (日) (0) (0)

As before, thickening in S^3 is better than thickening in \mathbb{R}^3 , for aesthetic reasons of retaining more symmetry.

We parameterise the normal to the surface in S^3 , and then thicken in that direction.

How do we find a normal in S^3 ?

 $p(\theta, \phi) = (\cos(\theta)\cos(\phi), \cos(\theta)\sin(\phi), \sin(\theta)\cos(\phi), \sin(\theta)\sin(\phi))$

 $p(\theta, \phi)$ is perpendicular to both $\frac{\partial}{\partial \theta} p(\theta, \phi)$ and $\frac{\partial}{\partial \phi} p(\theta, \phi)$ in \mathbb{R}^4 , so we define the normal vector $n(\theta, \phi)$ to be one of the unit vectors perpendicular to p, $\frac{\partial}{\partial \theta} p$ and $\frac{\partial}{\partial \phi} p$ in \mathbb{R}^4 .

We introduce a new parameter, ψ for thickness, and move a distance ψ along the geodesic from $p(\theta, \phi)$ to $n(\theta, \phi)$ to reach

$$r(\theta, \phi, \psi) = \cos(\psi)p(\theta, \phi) + \sin(\psi)n(\theta, \phi).$$

(日) (伊) (日) (日) (日) (0) (0)

As before, thickening in S^3 is better than thickening in \mathbb{R}^3 , for aesthetic reasons of retaining more symmetry.

We parameterise the normal to the surface in S^3 , and then thicken in that direction.

How do we find a normal in S^3 ?

 $p(\theta, \phi) = (\cos(\theta)\cos(\phi), \cos(\theta)\sin(\phi), \sin(\theta)\cos(\phi), \sin(\theta)\sin(\phi))$

 $p(\theta, \phi)$ is perpendicular to both $\frac{\partial}{\partial \theta}p(\theta, \phi)$ and $\frac{\partial}{\partial \phi}p(\theta, \phi)$ in \mathbb{R}^4 , so we define the normal vector $n(\theta, \phi)$ to be one of the unit vectors perpendicular to p, $\frac{\partial}{\partial \theta}p$ and $\frac{\partial}{\partial \phi}p$ in \mathbb{R}^4 .

We introduce a new parameter, ψ for thickness, and move a distance ψ along the geodesic from $p(\theta, \phi)$ to $n(\theta, \phi)$ to reach

$$r(\theta, \phi, \psi) = \cos(\psi)p(\theta, \phi) + \sin(\psi)n(\theta, \phi).$$

(日) (伊) (日) (日) (日) (0) (0)

As before, thickening in S^3 is better than thickening in \mathbb{R}^3 , for aesthetic reasons of retaining more symmetry.

We parameterise the normal to the surface in S^3 , and then thicken in that direction.

How do we find a normal in S^3 ?

 $p(\theta, \phi) = (\cos(\theta) \cos(\phi), \cos(\theta) \sin(\phi), \sin(\theta) \cos(\phi), \sin(\theta) \sin(\phi))$

 $p(\theta, \phi)$ is perpendicular to both $\frac{\partial}{\partial \theta} p(\theta, \phi)$ and $\frac{\partial}{\partial \phi} p(\theta, \phi)$ in \mathbb{R}^4 , so we define the normal vector $n(\theta, \phi)$ to be one of the unit vectors perpendicular to $p, \frac{\partial}{\partial \theta} p$ and $\frac{\partial}{\partial \phi} p$ in \mathbb{R}^4 .

We introduce a new parameter, ψ for thickness, and move a distance ψ along the geodesic from $p(\theta, \phi)$ to $n(\theta, \phi)$ to reach

$$r(\theta, \phi, \psi) = \cos(\psi)p(\theta, \phi) + \sin(\psi)n(\theta, \phi).$$
Thickening

As before, thickening in S^3 is better than thickening in \mathbb{R}^3 , for aesthetic reasons of retaining more symmetry.

We parameterise the normal to the surface in S^3 , and then thicken in that direction.

How do we find a normal in S^3 ?

 $p(\theta, \phi) = (\cos(\theta) \cos(\phi), \cos(\theta) \sin(\phi), \sin(\theta) \cos(\phi), \sin(\theta) \sin(\phi))$

 $p(\theta, \phi)$ is perpendicular to both $\frac{\partial}{\partial \theta} p(\theta, \phi)$ and $\frac{\partial}{\partial \phi} p(\theta, \phi)$ in \mathbb{R}^4 , so we define the normal vector $n(\theta, \phi)$ to be one of the unit vectors perpendicular to $p, \frac{\partial}{\partial \theta} p$ and $\frac{\partial}{\partial \phi} p$ in \mathbb{R}^4 .

We introduce a new parameter, ψ for thickness, and move a distance ψ along the geodesic from $p(\theta, \phi)$ to $n(\theta, \phi)$ to reach

$$r(\theta, \phi, \psi) = \cos(\psi)p(\theta, \phi) + \sin(\psi)n(\theta, \phi).$$

A slight modification of the torus gives a "Round" Möbius strip: $\left\{ \left(\cos(\theta) \cos(\phi), \cos(\theta) \sin(\phi), \sin(\theta) \cos(2\phi), \sin(\theta) \sin(2\phi) \right) \right|$

$$\mathsf{0} \leq \theta < \pi, \mathsf{0} \leq \phi < \pi$$

This is a version of the "Sudanese Möbius strip", but projected to \mathbb{R}^3 in such a way that the surface goes through infinity.

If we extend the surface, taking $0 \le \theta < 2\pi$, we get the union of two Möbius strips along their boundaries, which is $\theta \to 0$

A "Round" Klein bottle

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ● < ① へ ○</p>

Another variant gives a parameterisation of a torus knot (a knot that can be drawn on a torus). In this case, the trefoil knot:

 $\left\{ \left(\cos(\theta) \cos(\phi), \cos(\theta) \sin(\phi), \sin(\theta) \cos(3/2\phi), \sin(\theta) \sin(3/2\phi) \right) \right\}$

Here θ has a fixed value, greater than 0 and smaller than $\pi/2$. Altering the fraction 3/2 will produce other torus knots.

We can use the local coordinates $(\theta, \phi, \psi) : \mathbb{R}^3 \to S^3$ to add small features, using any shape we could define in ordinary 3-dimensional space, in this case cog teeth.

 $0 \le \phi < 4\pi$

▶ ▲ 臣 ▶ 三 ● の Q () ●

Thanks!

segerman.org

ms.unimelb.edu.au/~segerman/

youtube.com/user/henryseg

