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Given an orientable 3-manifold M, let T (M) denote the set of ideal
triangulations of M.

Here the tetrahedra may be singular - with identifications between
its edges and faces.

We are interested in finding triangulations with “good” properties.
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Geometric

A triangulation is geometric if the tetrahedra can be given ideal
hyperbolic shapes that fit together to give the complete hyperbolic
structure on the manifold.

The shape of an ideal tetrahedron
embedded in H3 is determined by
a single complex “angle”,
associated to an edge.
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Geometric

1. In each tetrahedron, angles
at opposite edges are the
same.

2. If one angle is z , then the
other two are 1

1−z and z−1
z .

3. Around each edge of T ,∏
z = 1.

For a geometric structure, all
angles have Im(z) > 0.

These conditions give us
polynomials in the complex
angles: Thurston’s gluing
equations.



Angle structures

Associate angles (real numbers) to the edges of the tetrahedra of
T , so that:

1. In each tetrahedron, angles at
opposite edges are the same.

2. In each tetrahedron,
α1 + α2 + α3 = π.

3. Around each edge of T ,∑
α = 2π.

If all angles are in (0, π) then this is a strict angle structure on T .

The angle structure equations can be thought of as a linearisation
of the gluing equations.



Essential edges

A triangulation has essential edges if no edge
can be homotoped into ∂M, keeping the
endpoints on ∂M.

A triangulation has strongly essential edges if
in addition, no edge can be homotoped to
another edge, keeping the endpoints on ∂M.



Efficiency

A normal surface is made out of normal
disks in each tetrahedron.

A triangulation is 0-efficient if there are no embedded normal S2 or
RP2.

A triangulation is 1-efficient if in addition, there are no embedded
normal Klein bottles, and the only embedded normal tori have no
quadrilaterals.

Example:

A triangulation with a degree 1 edge opposite a
degree 2 edge is not 1-efficient.
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The Pachner graph

Theorem (Matveev, Piergallini)
Any two ideal triangulations of M are connected by a sequence of
2-3 moves (except triangulations with a single tetrahedron).

So T (M) can be thought of as a connected graph, where two
triangulations are connected by an edge if they are related by a 2-3
move.
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Main question

Are the subgraphs of T (M) corresponding to the various properties
connected?

I This could help us navigate in T (M), to find better
triangulations.

I Connectivity could lead to new invariants of manifolds
(e.g. connectivity of 1-efficient manifolds for the 3D index).

Theorem (Hodgson, Hoffman, Dadd and Duan)
The geometric triangulations of the figure 8 knot complement are
not connected.

There is however a unique ray of geometric triangulations, starting
from the canonical two-tetrahedron triangulation.
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Aside: how does SnapPy find geometric triangulations?

SnapPy performs heuristic moves, reducing the number of
tetrahedra as much as possible. When it reaches a locally minimal
triangulation, it tries to solve Thurston’s gluing equations.

If this fails, it performs random 2-3 moves, then again simplifies
and tries to solve the gluing equations.

This suggests that the geometric triangulations are easy to find,
and that T (M) is easy to navigate, but nobody knows why.
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Showing connectivity

Let’s start with an even weaker property: not having degree one
edges.

Theorem (S)
The set of triangulations of a 3-manifold for which no edge is
degree one is connected.

Sketch proof:

By Matveev/Piergallini, there is some path between two
triangulations of a manifold that do not have degree one edges.
We have to sidestep around sections of the path that have degree
one edges.
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3-2

A 2-3 or 3-2 move can only produce a degree one edge from an
edge that was previously degree two.

Just before the edge becomes degree one, the triangle that will be
incident to the edge is already there, and remains there for the
lifetime of the degree one edge.

The idea is to put something into the triangulation at that triangle
that increases the degree of the edges incident to it.
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The same kind of trick is unlikely to work for avoiding degree two
edges.

A minimax approach might be more natural: choose a complexity
measure such that minimal complexity paths should not involve
“inefficient” features.

But an “efficient” path between two triangulations without degree
two edges could go through a triangulation with a degree two edge.

So we may want to move to the more general setting of
triangulations with strongly essential edges, or at least with no
pairs of isotopic edges.

By using the bigon between two isotopic edges, we can find explicit
sequences of moves to remove such pairs of edges.

Similar ideas may work to imitate crushing a normal surface via
Pachner moves.



Thanks!


