
The Sunflower Spiral and the Fibonacci Metric

Henry Segerman
http://www.segerman.org

Department of Mathematics and Statistics
The University of Melbourne

July 28th 2010

1

1

1

2
1

2

2

12

2

2

3
1

2

2

2

3

2

3

3

1

2

2

2

3
2

3

3

2
3

3

3

4

1

2

2

2

3

2

3

3

2
3

3

3

4
2

3

3

3

4

3

4

4

1

2

2

2

3

2

3

3

23

3

3

4

2

3

3

3

4

3

4

4

2

3

3

3

4 3

4

4

3

4

4

4

5

1

2

2

2

3

2

3

3

2
3

3

3

4

2

3

3

3

4

3

4

4

2

3

3

3

4

3

4

4

3

4

4

4

5

2

3

3

3

4

3

4

4

3

4

4

4

5
3

4

4

4

5

4

5

5

1

http://www.segerman.org


The Sunflower Spiral
Let S(n) = (r(n), θ(n)) = (

√
n, 2πϕn), where

ϕ =
√

5−1
2 = Φ− 1 ≈ 0.618, and Φ =

√
5+1
2 is the golden ratio.
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This sequence of points models many patterns in nature, in
particular the florets on a sunflower head.

Photo credit: http://www.flickr.com/photos/lucapost/694780262/



Fibonacci Metric

Let M : N→ N be a function, M(n) is the minimal number of
Fibonacci numbers Fi needed in order to sum to n.

1 = 1 M(1) = 1
2 = 2 M(2) = 1
3 = 3 M(3) = 1
4 = 3 + 1 M(4) = 2
5 = 5 M(5) = 1
6 = 5 + 1 M(6) = 2
7 = 5 + 2 M(7) = 2
8 = 8 M(8) = 1
9 = 8 + 1 M(9) = 2

10 = 8 + 2 M(10) = 2
11 = 8 + 3 M(11) = 2
12 = 8 + 3 + 1 M(12) = 3
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Where do the patterns come from?

1. Radial spokes
2. Circular tree rings

For the spoke at θ = 0:

Fk = Φk−(1−Φ)k√
5

⇓
Fk − ϕFk+1 = (−ϕ)k+1

⇓
θ(Fk+1) = 2πϕFk+1

= 2π
(
Fk − (−ϕ)k+1)

(−ϕ)k+1 is small, and so for large k , θ(Fk+1) is almost a multiple
of 2π.

Thus the Fibonacci numbers themselves are near θ = 0.
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Where do the patterns come from?

Sums of Fibonacci numbers have
angles the sum of the angles of the
Fibonacci numbers, so sums of a
small number of large Fibonacci
numbers are also near θ = 0. This
makes up other points of the θ = 0
spoke.

Other spokes are rotations of the
θ = 0 spoke, formed by adding a
small number to all of the numbers
in the θ = 0 spoke.

For the tree rings: Just after a large number m with small M(m),
there will be many numbers n for which the minimal M(n) is
achieved using m and some small number of additional Fibonacci
numbers, because n −m is small.
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