The Sunflower Spiral and the Fibonacci Metric

Henry Segerman
http://www.segerman.org

Department of Mathematics and Statistics
The University of Melbourne

The Sunflower Spiral

$$
\begin{aligned}
& \text { Let } S(n)=(r(n), \theta(n))=(\sqrt{n}, 2 \pi \varphi n) \text {, where } \\
& \varphi=\frac{\sqrt{5}-1}{2}=\Phi-1 \approx 0.618 \text {, and } \Phi=\frac{\sqrt{5}+1}{2} \text { is the golden ratio. }
\end{aligned}
$$

The Sunflower Spiral

$$
\text { Let } S(n)=(r(n), \theta(n))=(\sqrt{n}, 2 \pi \varphi n) \text {, where }
$$

$$
\varphi=\frac{\sqrt{5}-1}{2}=\Phi-1 \approx 0.618, \text { and } \Phi=\frac{\sqrt{5}+1}{2} \text { is the golden ratio. }
$$

The Sunflower Spiral

Let $S(n)=(r(n), \theta(n))=(\sqrt{n}, 2 \pi \varphi n)$, where
$\varphi=\frac{\sqrt{5}-1}{2}=\Phi-1 \approx 0.618$, and $\Phi=\frac{\sqrt{5}+1}{2}$ is the golden ratio.

The Sunflower Spiral

$$
\text { Let } S(n)=(r(n), \theta(n))=(\sqrt{n}, 2 \pi \varphi n) \text {, where }
$$

$$
\varphi=\frac{\sqrt{5}-1}{2}=\Phi-1 \approx 0.618, \text { and } \Phi=\frac{\sqrt{5}+1}{2} \text { is the golden ratio. }
$$

The Sunflower Spiral
Let $S(n)=(r(n), \theta(n))=(\sqrt{n}, 2 \pi \varphi n)$, where
$\varphi=\frac{\sqrt{5}-1}{2}=\Phi-1 \approx 0.618$, and $\Phi=\frac{\sqrt{5}+1}{2}$ is the golden ratio.

$$
\begin{array}{llll}
& & 2 & 5 \\
4 & & & \\
& 1 & & \\
& & & 3
\end{array}
$$

$$
\begin{array}{lll}
& & 2 \\
4 & & 5 \\
& 1 & \\
& & 3
\end{array}
$$

7

25
4
1
3
6

7

25

6

\[

\]

$$
\left.\right) 21
$$

$$
\begin{aligned}
& 28 \\
& 2331 \\
& \begin{array}{lll}
33 & 20 & 15
\end{array} \\
& 10 \quad 18 \\
& \begin{array}{llll}
7 & 10 & 26
\end{array} \\
& \begin{array}{llll}
25 & 12 & 2 & 5
\end{array} \\
& 13 \\
& 34 \\
& 17 \\
& 30 \\
& 22 \\
& \begin{array}{llll}
14 & & 11 & 1 \\
27 & 19 & & 24
\end{array} \\
& 32
\end{aligned}
$$

$$
\begin{aligned}
& 138 \quad 125 \\
& \begin{array}{lllllllll}
143 & 109 & 96 & 83 & 70 & 78 & 99 & 120 & 141
\end{array} \\
& \begin{array}{llllllllll}
122 & 88 & 75 & 62 & 49 & 57 & 65 & 86 & 107 & 128
\end{array} \\
& \begin{array}{llllllllllll}
135 & 101 & 67 & 54 & 41 & 28 & & 36 & 44 & 52 & 53 & 73 \\
\hline
\end{array} \\
& \begin{array}{llllllllllll}
119 & 64 & 43 & 22 & 14 & 6 & 11 & 16 & 29 & 63 & 97 & 131
\end{array} \\
& \begin{array}{lllllllllll}
98 & 77 & 56 & 35 & 27 & 19 & 24 & 37 & 50 & 84 & 118
\end{array} \\
& \begin{array}{llllllllllll}
132 & 111 & 90 & 69 & 48 & 40 & { }^{32} & 45 & 58 & 71 & 105 & 139
\end{array} \\
& \begin{array}{lllllllll}
124 & 103 & 82 & & 74 & 66 & 79 & 92 & 126
\end{array} \\
& \begin{array}{llllll}
137 & 116 & 95 & 87 & 100 & 113
\end{array} \\
& 129 \quad 108 \quad 121 \quad 134
\end{aligned}
$$

This sequence of points models many patterns in nature, in particular the florets on a sunflower head.

Photo credit: http://www.flickr.com/photos/lucapost/694780262/

Fibonacci Metric

Let $M: \mathbb{N} \rightarrow \mathbb{N}$ be a function, $M(n)$ is the minimal number of Fibonacci numbers F_{i} needed in order to sum to n.

1	$=1$	$M(1)$	$=1$
2	$=2$	$M(2)$	$=1$
3	$=3$	$M(3)$	$=1$
4	$=3+1$	$M(4)$	$=2$
5	$=5$	$M(5)$	$=1$
6	$=5+1$	$M(6)$	$=2$
7	$=5+2$	$M(7)$	$=2$
8	$=8$	$M(8)$	$=1$
9	$=8+1$	$M(9)$	$=2$
10	$=8+2$	$M(10)$	$=2$
11	$=8+3$	$M(11)$	$=2$
12	$=8+3+1$	$M(12)$	$=3$

Where do the patterns come from?

1. Radial spokes
2. Circular tree rings

Where do the patterns come from?

1. Radial spokes
2. Circular tree rings

For the spoke at $\theta=0$:

$$
\begin{aligned}
F_{k} & =\frac{\Phi^{k}-(1-\Phi)^{k}}{\sqrt{5}} \\
& \Downarrow \\
F_{k}-\varphi F_{k+1} & =(-\varphi)^{k+1} \\
& \Downarrow \\
\theta\left(F_{k+1}\right) & =2 \pi \varphi F_{k+1} \\
& =2 \pi\left(F_{k}-(-\varphi)^{k+1}\right)
\end{aligned}
$$

Where do the patterns come from?

1. Radial spokes
2. Circular tree rings

For the spoke at $\theta=0$:

$$
\begin{aligned}
F_{k} & =\frac{\phi^{k}-(1-\phi)^{k}}{\sqrt{5}} \\
& \Downarrow \\
F_{k}-\varphi F_{k+1} & =(-\varphi)^{k+1} \\
& \Downarrow \\
\theta\left(F_{k+1}\right) & =2 \pi \varphi F_{k+1} \\
& =2 \pi\left(F_{k}-(-\varphi)^{k+1}\right)
\end{aligned}
$$

$(-\varphi)^{k+1}$ is small, and so for large $k, \theta\left(F_{k+1}\right)$ is almost a multiple of 2π.

Thus the Fibonacci numbers themselves are near $\theta=0$.

Where do the patterns come from?

Sums of Fibonacci numbers have angles the sum of the angles of the Fibonacci numbers, so sums of a small number of large Fibonacci numbers are also near $\theta=0$. This makes up other points of the $\theta=0$ spoke.

Where do the patterns come from?

Sums of Fibonacci numbers have angles the sum of the angles of the Fibonacci numbers, so sums of a small number of large Fibonacci numbers are also near $\theta=0$. This makes up other points of the $\theta=0$ spoke.

Other spokes are rotations of the $\theta=0$ spoke, formed by adding a small number to all of the numbers in the $\theta=0$ spoke.

Where do the patterns come from?

Sums of Fibonacci numbers have angles the sum of the angles of the Fibonacci numbers, so sums of a small number of large Fibonacci numbers are also near $\theta=0$. This makes up other points of the $\theta=0$ spoke.

Other spokes are rotations of the $\theta=0$ spoke, formed by adding a small number to all of the numbers in the $\theta=0$ spoke.

For the tree rings: Just after a large number m with small $M(m)$, there will be many numbers n for which the minimal $M(n)$ is achieved using m and some small number of additional Fibonacci numbers, because $n-m$ is small.

Thanks!

