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The Sunflower Spiral

Let S(n) = (r(n),0(n)) = (v/n,2mpn), where
p= @ =&®—-1~0.618, and ¢ = @ is the golden ratio.
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This sequence of points models many patterns in nature, in
particular the florets on a sunflower head.

Photo credit: http://www.flickr.com/photos/lucapost/694780262/



Fibonacci Metric

Let M : N — N be a function, M(n) is the minimal number of
Fibonacci numbers F; needed in order to sum to n.

1 =1 M(1) = 1
2 = 2 M2) = 1
3 =3 M3) = 1
4 = 341 M(4) = 2
5 = 5 M(B) = 1
6 = 5+1 M(6) = 2
7 = 5+2 M(7) = 2
8 = 8 M(8) = 1
9 = 8+1 M(9) = 2
10 = 842 M(10) = 2
11 = 8+3 M(11) = 2
12 = 84341 M(12) = 3
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Where do the patterns come from?

1. Radial spokes

2. Circular tree rings
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For the spoke at # = 0:

k k

Foo— ® E}E¢)
N8

Fk —@Fi1 = (—¢)<t
N2

O(Fky1) = 2mpFrin

= 2r (Fe — (—p) )

(—p)**1is small, and so for large k, O(Fj,1) is almost a multiple
of 2.

Thus the Fibonacci numbers themselves are near 8 = 0.
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Sums of Fibonacci numbers have
angles the sum of the angles of the
Fibonacci numbers, so sums of a
small number of large Fibonacci
numbers are also near # = 0. This
makes up other points of the § =0
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Sums of Fibonacci numbers have
angles the sum of the angles of the
Fibonacci numbers, so sums of a
small number of large Fibonacci
numbers are also near # = 0. This
makes up other points of the § =0
spoke.

Other spokes are rotations of the

0 = 0 spoke, formed by adding a
small number to all of the numbers
in the 8 = 0 spoke.

For the tree rings: Just after a large number m with small M(m),
there will be many numbers n for which the minimal M(n) is
achieved using m and some small number of additional Fibonacci
numbers, because n — m is small.
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