The Sunflower Spiral and the Fibonacci Metric

Henry Segerman http://www.segerman.org

Department of Mathematics and Statistics The University of Melbourne

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

Let
$$S(n) = (r(n), \theta(n)) = (\sqrt{n}, 2\pi\varphi n)$$
, where
 $\varphi = \frac{\sqrt{5}-1}{2} = \Phi - 1 \approx 0.618$, and $\Phi = \frac{\sqrt{5}+1}{2}$ is the golden ratio.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Let
$$S(n) = (r(n), \theta(n)) = (\sqrt{n}, 2\pi\varphi n)$$
, where
 $\varphi = \frac{\sqrt{5}-1}{2} = \Phi - 1 \approx 0.618$, and $\Phi = \frac{\sqrt{5}+1}{2}$ is the golden ratio.

The Sunflower Spiral Let $S(n) = (r(n), \theta(n)) = (\sqrt{n}, 2\pi\varphi n)$, where $\varphi = \frac{\sqrt{5}-1}{2} = \Phi - 1 \approx 0.618$, and $\Phi = \frac{\sqrt{5}+1}{2}$ is the golden ratio.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ ◇◇◇

・ロト ・個ト ・モト ・モト

æ

▲ロト ▲圖ト ▲画ト ▲画ト 三回 - のへで

▲ロト ▲圖 ▶ ▲ ヨ ▶ ▲ ヨ ▶ ● のへで

['] 36 ⁴⁴ 52 ⁷³ 94 115 ⁹⁸ 77 56 ³⁵ 27 ¹⁹ ²⁴ 37 ⁵⁰ 84 118 $111 \ _{90} \ _{69} \ ^{48} \ _{40} \ ^{32} \ _{45} \ _{58} \ ^{71} \ _{105} \ _{139}$ 132 142 Ξ. This sequence of points models many patterns in nature, in particular the florets on a sunflower head.

Fibonacci Metric

Let $M : \mathbb{N} \to \mathbb{N}$ be a function, M(n) is the minimal number of Fibonacci numbers F_i needed in order to sum to n.

1	=	1	M(1)	=	1
2	=	2	M(2)	=	1
3	=	3	M(3)	=	1
4	=	3 + 1	M(4)	=	2
5	=	5	M(5)	=	1
6	=	5 + 1	M(6)	=	2
7	=	5 + 2	M(7)	=	2
8	=	8	M(8)	=	1
9	=	8 + 1	M(9)	=	2
10	=	8+2	M(10)	=	2
11	=	8+3	M(11)	=	2
12	=	8 + 3 + 1	M(12)	=	3

🛯 ୬ବ୍ ୧

🛯 🔊 ۹ ୯

🗉 ૧૧૯

- 1. Radial spokes
- 2. Circular tree rings

・ロト ・個ト ・モト ・モト

ж

- 1. Radial spokes
- 2. Circular tree rings

For the spoke at $\theta = 0$:

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

- 1. Radial spokes
- 2. Circular tree rings

For the spoke at $\theta = 0$:

 $(-\varphi)^{k+1}$ is small, and so for large k, $\theta(F_{k+1})$ is almost a multiple of 2π .

Thus the Fibonacci numbers themselves are near $\theta = 0$.

Sums of Fibonacci numbers have angles the sum of the angles of the Fibonacci numbers, so sums of a small number of large Fibonacci numbers are also near $\theta = 0$. This makes up other points of the $\theta = 0$ spoke.

Sums of Fibonacci numbers have angles the sum of the angles of the Fibonacci numbers, so sums of a small number of large Fibonacci numbers are also near $\theta = 0$. This makes up other points of the $\theta = 0$ spoke.

Other spokes are rotations of the $\theta = 0$ spoke, formed by adding a small number to all of the numbers in the $\theta = 0$ spoke.

・ロト ・ 雪 ト ・ ヨ ト ・ 日 ト

Sums of Fibonacci numbers have angles the sum of the angles of the Fibonacci numbers, so sums of a small number of large Fibonacci numbers are also near $\theta = 0$. This makes up other points of the $\theta = 0$ spoke.

Other spokes are rotations of the $\theta = 0$ spoke, formed by adding a small number to all of the numbers in the $\theta = 0$ spoke.

For the tree rings: Just after a large number m with small M(m), there will be many numbers n for which the minimal M(n) is achieved using m and some small number of additional Fibonacci numbers, because n - m is small.

Thanks!